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Dynamics of multilevel laser excitation: Three-level atomse
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We display the time dependence of populations in coherently excited three-level atoms. In particular we

examine the relationship between ion production and the dynamical parameters: Rabi frequencies, detunings,
and loss rate.

I. INTRODUCTION

The model two-level atom, driven near-reso-
nantly by a single laser, has been studied ex-
tensively. ' Details of the dynamical behavior have
been reported in numerous articles and mono-
graphs, and a considerable corpus of intuition is
now available for understanding such models.
Much current interest attaches to such processes
because of potential application to isotopically
selective excitation, ionization, dissociation, or
reaction.

Generalization to multilevel excitation, though
introducing no essentially new physics, does re-
quire extension of our intuition regarding two-
level processes to admit the increased degrees of
freedom and enlarged parameter space. ' Although
it is possible to obtain analytic expressions for
special cases, notably when parameters tend to
extreme values, thereby permitting simple ap-
proximations, the general cases become too com-
plicated for simple analytic treatment and one is
led eventually to numerical computation. By re-
lying at the outset on numerical rather than anal-
ytic approaches, one readily treats intense fields
acting for long times and so accesses a large por-
tion of parameter space. When displayed graphi-
cally, the computations often admit simple inter-
pretation. In the following note we present illus-
trative examples of the dynamical behavior of
multilevel atoms, pointing out some of the regular-
ities.

Figure 1 symbolizes the model system we shall
consider: a succession of atomic energy levels
El E2 Zs driven by lasers of intensities I, and
I, and angular frequencies ~, and &,. We assume
the lasers to be nearly monochromatic, to be
turned on abruptly at t=0, and to be tuned near
the appropriate Bohr frequency, S~„-=E„„-E„.
We assume the laser intensities to be sufficiently
great that stimulated emission and absorption
processes dominate the dynamics; we neglect
spontaneous decay and collision-induced relax-
ation. Only the irreversible loss of probability

i „C,(t) =QW, ,C, (t), .

where, for three-level excitation, the effective
non-Hermitian time-evolution operator g has the
form

Level 3 LOSS

L~se)" 2: I2' "2' ~l2

Level 2

Laser 1: I1, heal, ~)1

Level 1

FIG. 1. Model three-level atom.

from the uppermost level at rate y, referred to
as ionization loss, disturbs the laser-. driven dy-
namics.

Our model exemplifies situations wherein the
dynamics is controlled by coherent stimulated
processes. When incoherent processes, such as
spontaneous decay, collisional interruption, or
laser incoherence, become the dominant rates,
then one must employ a more general formulation
such as that provided by the density matrix or
the Bloch vector (cf. Brewer and Hahn3).

Our interest centers on the time depen~dence of
probabilities P,.(t) =

~ C, (t) ~' for finding the atom in
level i, given initial certainty of the ground level,
P~(0) = l. The complex probability amplitudes C,(t).
satisfy the time-dependent multilevel rotating-
wave-approximation (RWA) Schrodinger equation~:
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tunings.
Consider first the case of collinear lasers —boih

lasers propagating in the same direction. For
simplicity, let the two lasers have nearly equal
frequencies, so that to a moving atom each laser
frequency appears Doppler shifted by the same
amount b, . The operator g of Eq. (4) now has the
special form

0 —,
' g~

W= ~Q~ —,'0,
2Q --'jy

(6)

Note that, because each laser is shifted by ~, the
two-photon energy deviates from resonance by 2~.
Figure 9 shows the populations of each level as a
function of time and detuning g, for Doppler shifts
of collinear lasers. We observe that as detuning
increases the populations of level 1 and 2 oscillate
more rapidly. This phenomena is well-known in
the two-level atom: populations pulsate at a fre-
quency equal to the rms value of detuning and reso-
nant Habi frequency. Further we observe that ion-
ization is appreciable only for a range of detunings
comparable to the Rabi frequency; for larger de-
tunings the population never reaches the third level.

Consider next the case of counter-propagating
lasers —lasers propagating in opposite directions.
Now the Doppler shift of one laser, ~, is offset
by an opposite shift, -~, for the other laser. As
a result, the matrix p' is

FIG. 7. Populations of three-level atom as a function
of time, 0 ~t ~ 20, showing effect of detuning first level
by E~ =0.5, with Habi frequencies 0& =0.3, 92 =1.0: (a)
V=0. (b) &=1.

(a ) (b)

two-photon resonance.
If we scan in frequency the more intense of the

two lasers as shown in Figs. 8(c) and 8(d), we see
less evidence of dynamic Stark splitting. The
small splitting of the weak laser, though percept-
ible at short times, is masked by the power broad-
ening of the stronger laser. By increasing the de-
tuning of the intense laser, we increase its induced
Stark splitting. Consequently the bvo-photon tran-
sition never passes through a resonance.

I
N

0

V. DOPPLER DETUNING

In a vapor source the thermal motion of irradi-
ated atoms introduces Doppler shifts to the laser
light. We consider vapors for which phase-inter-
rupting or velocity-changing collisions are in-
frequent, so that excitation remains coherent.
Then the influence of thermal motion can be mod-
eled by an ensemble average over Doppler de-

I;—----

1 2

h3
1 2

FIG. 8. Fractional ionization of three-level atom as
a function of detunings A& or 42 for y=0.1: (a) 0& =0.3,
02 =1, vary E~,' (b) 0& = 1.0, 92 =0.3, vary 4 ' (c) ~
=0.3, Qg=1.0, varyb2, (d) Qg=1.0, 02=0.3, varying.
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FIG. 9. For collinear lasers, the separate frames
show populations in levels 1, 2, and 3 and the ions as a
function o mme anf t' T and as a function of the first-trans-

detunin 4 (in units of the equal Rabi frequencies).ition e kg in
and E =M. ExactThe cumulative detunings are A& =A an

resonance (no detuning) is represented by a vertical

an instantaneous snapshot of population distributions is
given by a vertical plane perpendicular to the T axis.

W= ~Qq

The two-photon transition is now resonant for all
Doppl. er components —one has the familiar Dop-
pler-free absorption. For those atoms which have
large .detunings, the second level is a "virtual"
level: its population, never very large, oscillates
at high frequency. This high-frequency modulation
of populations in levels 1 and 3 is apparent in Fig. 10.

FIG. 10. For counter-propagating lasers (or for a
virtual level), the separate frames show populations in
levels 1, 2, and 3 and the ions as a function of time T
and as a function of the first-transition detuning b, (in
units of the equal Rabi frequencies). The cumulative
detunings are A& =4 and 42 =0.

VI. SUMMARY

The behavior of a coherently driven three-level
system is governed by the Rabi frequencies, de-
tunings, and loss rate.

For fixed loss rate, ionization occurs most
rapidly when the Rabi frequencies are comparable
in magnitude; particularly favorable is the case
where successive Rabi frequencies increase by
some 25%. When Rabi frequencies are very dif-
ferent, the overall ionization rate is degraded.
Some improvement in ionization can be gained by
detuning the weaker lasers achieving an n-photon
resonance.

For fixed and comparable Rabi frequencies, ion-
ization occurs most rapidly when the loss rate is
comparable to the Rabi rate.
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