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The interest in precise knowledge of the intensity factors for investigating molecular structure is pointed out
and illustrated by some typical recent examples. Diatomic intensity factors are derived. Starting from pure

coupling-case wave functions, the intensity factors rc;lated to transitions between states belonging to a, a&, b»,
b@, and b» coupling cases, in the spin-forbidden or spin-allowed hypothesis, are derived. Cases are considered

for which hyperfine structure is fully observed, partially observed, or absent.

I. INTRODUCTION

The basic formula for studying diatomic line in-
tensities" can be summarized in a simple ex-
pression:

f(i- f) -f(v)JI(i)m(i- f),
where f(v) is equal to kv4 for an emission line and
to k'v for an absorption one; v is the frequency of
the line, k and k' are constants dependent upon the
characteristics of the experimental apparatus.
JI(i) is the number of particles in the initial level
i, and could be called the "statistical part of the
formula. " Its evaluation is not always easy' and
the usual Boltzmann approximation is often rough
because of imprecise knowledge of the real emis-
sion or absorption processes. m(i- f), the inten-
sity factor, related to the probability for the trans-
ition i-f, is the square modulus of the matrix ele-
ment of the operator connecting the initial and final
states. In this paper only the most frequent of the
possible operators is considered, the electric di-
pole moment operator M.

It is a common fact that when a molecular ele-
mentary (rotational or even hyperfine) level is per
turbed, the strongest effect is often concentrated
in the intensities of the corresponding spectral
lines. Therefore intensities in molecular spectra
may often provide a very sensitive means of in-
vestigation. For instance, a very simple calcula-
tion shows that when considering the transitions
from two initial levels a and b to the same final
level x, a very slight perturbation between a and b

leads to a second-order energy correction and line
shift, while the wave functions of the initial levels,
and hence, the intensity factors m(a-x), m(b-x)
and the intensity of each line, show a first order-
correction. This emphasizes the importance of the
quantum factor m in the intensity formula. Three
examples in the recent literature may be mentioned
where the role played by m in an intensity study is
predominant. Firstly, the study of the 'P-X'A
transition of Nbw, where the use of hyperfine in-

tensity factors unambiguously demonstrates a slight
hyperfine effect in the excited 'p state and provides
some ideas on the molecular bonding. Secondly the
hyperfine analysis of the B'Z-X'Z system of
LaO, ' where a detailed study of the intensity ratios,
involving only a knowledge of m, allows an accurate
determination of the weak spin-rotation interaction
parameter, unavailable by the usual line-position
analysis. Finally, a recent intensity analysis6 of
the emission spectrum of ScO gives a good example
of the high sensitivity of intensity to a slight mixing
of states; the method used to evaluate the mixing
effect on intensity gives an idea of the fruitful con-
nection existing between intensity and line-position
investigations but essentially gives us the opportun-
ity of justifying the somewhat detailed attention ex-
ercised in deriving the diatomic pure coupling-case
wave functions' '0: In the (almost unavoidable) case
of mixing of states the calculation of m is made by
a linear combination of wave functions which is in-
compatible with any phase-factor error.

In the following, the aim is to present the basic
algebraic expressions of the intensity factors re-
lated to transitions between theoretical pure cou-
pling-case states. Expressions suitable for actual
molecular problems can be obtained by using pro-
cedures analogous to those presented in Refs. 5
and 6.

Section II is devoted to some general considera-
tions concerning the background of our calculations
and the problems of symmetry and parity selection
rules. In Sec. III, the wave-function notations and
the calculation of the basic case a -case a„and
as- a& intensity factors are presented. Sections
IV and V are devoted, respectively, to b- a and
5- 5 intensity factors.

II. GENERAL REMARKS

All the following calculations will be made using
a set of "case a" wave functions" as a refere'nce
basis. Thus m(i- f) has the following basic form":
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m(i -f) = I&(L. )A' s' z', Q'z M~IMs l(L)Asz, nzM&&l'

(2)
where the primed wave function corresponds to the
final state, M~ and M~ are the components of J' and
J along the Z axis of the laboratory frame of refer-
ence, and M~ is a component of the electric dipole
moment M in this frame. " The matrix element in-
volved in this expression is related to the reduced
matrix element of M by the Wigner-'Eckart theo-
rem

&(L')A's'z', Q wM,'I M„I (L)Asz, QZM, &

(J' 1 Z)
k-Mg R Mg 1

x &(L'&A's'z', n'~'I
I
M

I I (L)A», QJ&. (2)

If we assume that there is no external field and if
we are not concerned with a particular polarization
of the light, we have to evaluate Q„„„m(i-f)
which reduces to"

I&(L )A s'z, n'~'I IMI l(L)A» «&I'

Our second remark is related to "Kronig symme-
trization. " A better representation of a molecular
level is given by the two eigenfunctions of the sym-
metry operator o„," each associated with a A-
component of the elementary level (if Ae0)

I(L)Asz, nrM, +&

=(1/v 2 )[l(L)ASZ, nag&

+ I(r.) —As —z, nrM, &]-, (4)

with

g„I(L)Asz, QzM~&=(-1)" ' (-1)~

x I(L) - As- z, AM, &-,

and e=o or +1 "if the electronic state of the mole-
cule correlates with a united atom state of even or
odd parity, respectively. "" Thus, in fact we have
to evaluate &4 'g'IM„I4'(&, where $' and g represent
+ or —.This matrix element can be written

&~ ~ I M. I ~4 =&-'[ .&e'I M. l e&

+(P)(5'1) &-y'IM„I -y&

+ (&1)&+e'IM I -y&

+ (g'1)& -P'IM„ I+ 0& 1,

where
I + Q& stands for I(L) +AS+ Z, +QJM~&. Using

ovoid=I

(6)

this can be easily reduced to

&+'('IM, I+5&=-.'[1+((1)(g'l)(-1)"-"'"]
x[& e'IM. I e&

where
+(&1)&+O'IMMI -4&1 (7)

III. WAVE FUNCTIONS AND BASICa ~a
AND ap ~ap INTR;NSITY FACTORS

A. "Hyperfine" diatomic wave functions

The method for deriving molecular wave functions
in complex hyperfine coupling cases has already

g = e+ L+ A+8+K +J+Q.
The parity of l+g& is easily shown to be ($1)(-1)",
and (E'1)(—1)" that of I+'g'&; thus the first bracket
on the right-hand side of Eq. (7) gives the well-
known selection rule+/+, —$ —,—-+,+--. The
second matrix element of the second bracket is
nonvanishing if 0+0'&1 in the case of spin-for-
bidden transitions, and if A +A ' ~ 1 in the case of a
spin-allowed one, which gives, with the usual cor-
responding selection rules

l
Q- Q'l -1 and

l
A- A'l

~ 1. 0 and O'= 0, ~, 1. or A and A'= 0, 1. This must
be taken into account in the calculations, above all
in the most frequent cases of II —II and H —Z
transitions. jn almost all cases" if &+&]&'lMz I+Q&

exists, then &+Q'lM„l-Q& vanishes and conversely;
consequently, when the parity selection rule is
verified, the relation (7) reduces often to

&+'&'I Ml~~&=& elM. I y&

or

&@'4'IM l~f&=(41)&+@'IM I

Note that, in the 'following, the expressions of Z-
state wave functions (belonging to case b coupling
scheme) will be already Kronig symmetrized. "

Therefore, each transition must be studied care-
fully as a particular case, using the parity infor-
mation obtainable about the corresponding
states, "'"the coefficients of mixing, the factors
of Herman and Wallis and a degeneracy factor 2
when A components are not separated. ' The fol-
lowing, intensity factors are basic and correspond
to ideal wave functions, thus they should not gen-
erally be used without the corrections mentioned
above.

We are very indebted to the works of Edmonds"
and Yutsis et al."on angular momentum theory;
several references will be made to these books in
the following. The notations Ed($) and Y(q) will,
respectively, refer to equation number ($) in the
Edmonds book and equation number (q) in that of
Yutsis et a).
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been presented"'" We give here our notations and the expansions we use for the functions

I (L)Aszn, IznFM, &

(as )

I F J')
I(L)ASZI, ndFM, &= g ( 1)' +'~( 1)'-"op~2

I l(L)Aszlz„n~FM &.
(as ) -zr n~ nj-(.&'

(10)

Henceforth, A will denote 2A+1:
fs zN&

I(L)ASNAIzFM„&=+ (-1)' "(-1)'-'+' N" I~ „ I I(L)ASZI, nrFM, &,
(aS)

(1ia)

and similarly

fs
l(L)ASNAdMz&= Q (-1P"(-1)' "'N' '~

~

I(L}ASZ ndMz»
o (Z n Aj

S I G
I(L)A(SI)GNAFM )= Q (-1) + + + [GJ']'

I (L)ASNAI JFM~&)
~&8S) E B J (ps~)

(11b)

I F Z
l (L)AINASKFM~& g ( 1)l+z+s+r[~p/a

I (L)ASNAIdFM, &.
~~BN) J S N E (I~z)

In the last bsN coupling case, K is the quantum number associated with the momentum K which arises from
the coupling of N and I. The coupling of K and S gives the total angular momentum F.

B. a ~ a intensity factor

We calculate

M(~. , ~.) = &(L')A's'z7'z, 'n' F'
I IMI I(L)AszIz, Q,F&

or

M(a. , a.) =( 1p, ~
I

&I &(L )A's'z'I'z'snzF M ylMsl(L)AszIzzn, FM,&.

&,

-M' ~ M, j

It is convenient to write M„ in terms of M components in the molecule fixed frame of reference xyz'

Ms = Q P,,u,"~&((u), (1
s=p, +1

where &u is the set (n, P, yj of Euler angles giving the position of the molecule in the laboratory frame of
reference XFZ. Therefore

M(~. , g.) =( 1)"&- '

I I g &(L')A's'z'I'z, 'IP, kL}ASZIZ,&&n', F'M~
I &l (s&&I}n&FM&& (18}

PM j so~

by separating the rotational part, which depends on (o, P, y), and the nonrotating one.
The rotating matrix element i.s calculated using symmetric-top molecule wave functions"

IQ„FM,&
— —y(F) [(2F+1)/8~'g "n„"&„(~),

where P(F) is a phase factor which depends only on F. Therefore, we obtain

A

&n~'M~ IS,"„'(~)In FM &
= y+(F')y(F) [ F" ~&&'& (~)g&u&(+)g) &&&„(~)do, sinpdpdy,

P J S P J y P P P
(18}
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and thus, using Ed(4.6.2),
~E' 1 E~ ~

E' 1 E
~

&Q~'M,' Im,"„'(~)IA,EM ) = y*(E')y(E)(-1)"s-"~[E'E]'"I

Finally, we obtain

(19)

(E' 1 E)
M( .. .) = 0*(E')A(E)(-I&"' [E'E]'" Q I, I&(L')~'s'z'I'z, 'lu, l(L)&sziz, &.

~ g, ~g (-Q~ s Q~j
(20)

The operator M depends essentially upon the elec-
tronic repartition around the nuclei and, in several
eases, only upon the orbital motion of the elec-
trons. Thus we can make the assumption that p,,
is diagonal in I and ZI. Therefore, we have for
brevity's sake

&(I, ')x's'z'I'z, '
Ip, l(I.)wszlz, &

&(I.')A's'z Y'z', lq, I(I,)wszlz, )

= 6,,6...,,&(I.')~'s'z' I~, (I,)~sz&.

%e could call this assumption "nuclear-spin-
allowed (NSA) hypothesis "We. do not know any nu

s

clear-spin-forbidden (NSF) case. If the matrix
element of p,, is diagonal in 8 and Z we have in the
same way

&(x,')~'s'z' q, I(L,)zsz& .

= 6 ~ 6 ~ &(I ')~'s'z' Iu, I(L)&sz&

= 6, ,6..&(L')A' Iv. (L)»,
which is the case of spin-allowed (SA) transition.
If this matrix element is not diagonal in S and/or
Z, the transition is spin forbidden (SF).
definitions are well known and are only given here
in order to specify our notations.

With the NSA hypothesis, we get

M(s. , ~.&
= 6ss'c;c,@*(E')4(»(-»"'s "'[E'E]'" g

I
I &(L')w's'z'I&. I(I )»z&.

s.=O~ sl i —Qp s Qpf

Therefore, if we assume that s= AF -QF, the corresponding intensity factor is given by

f E'
m(~„- a ) = 5...5„,E EI, I l&(I )~ s z l~. I(I )~sz& I'.~i I —Qz s Qz

C. up ~ap intensity factor

(23)

(24)

By use of Eq. (10), we obtain the reduced matrix element of M,

M(a8, as) = 5p, g~(E') P(E)[E'EJ'J ]'~'(-I) "s' "'(-1)' s' "
(I' E'

x g g g 6 (-1) & &
( I)I+ c&( I)o'-s'

I

c o' q a s ~ I &-Zz Q~ -Q')I F I F

(I E J3 fE' 1 E
x I I, I

&(I')A's; z' l~. I(I )~sz&(-Zl Q~ -Q -Qs s Qs

which reduces to
4

(J' I J) J 1„(,„,)=,,y ( )y( )( 1) ~ " "[E'EJ'i]' 'I, I, &(L')&'s'z'Iv, l(1)&sz&, (26)

using Ed(6. 2.6) and assuming s = Q —Q. The subscript SF specifies the spin forbidden type of th«»»ition.
In the case of spin allowed transition, the expression of M(as, a~) is

(J' 1 Jl J 1 J'
M,„(a„a,&=6,,,6,.,6...y+(E)y(E)( 1)s ~""[E'EJ'i]'"I, I, «L'»'I~. l(1.)»k-Q' s Q E' I E (27)
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with s=A -A. In each case, the square modulus of I yields the corresponding intensity factor. For in-
stance, we have in the SF case

SPY (as as) = 5,p~pJ j I I
l&(f'')~'s'z' lir. l(L')~sz& I'. (28)

It is obvious that the knowledge of I is much
more important than that of rn because of the phase
problem already mentioned. Therefore in the fol-
lowing we shall only give M. Next, we shall sys-
tematically derive the expression of the intensity
factor when no hyperfine splitting is observed;
firstly, in the final state; secondly, in the initial
state (when it does not belong to the same coupling
case as the final state}; and thirdly, when no hy-
perfine components are observed at all. Next,
other cases depending on the characteristics of
more complicated coupling cases will be studied.

For instance, in the present case, we obtain the
intensity factor corresponding to the case when no
hyperfine effect is observed in the final state by
summing m over E',

Q IM(a„a,) I'= 6r,rZPi
-Q' s Q)

M.{a,a) = y+(J') P(Z) (-1)"'-'[PZ]"

x ~ ~ &(J.')A's'z'I q, l
(L,)risz&,

(-Q' s Qj

and leads to the usual degeneracy expression

g IM(w as) I'= 6'r(2f+ 1}IM.(a a}l' (33)

which may be considered as a verification of our
expressions.

In the following, we shall omit 51,, and also the
phase factors $*(E'), Q(E), Q*(Z'), and Q(J) which
have no influence on the final expression of the
intensity factors.

IV. b ~a INTENSITY FACTORS

A. Classical b ~a transition

x l&(f )ri s'z'Iv.
l (f)rlsz&l'

(29)

-; (J' 1 Jl'
Q IM(as as) I'= 6r rJ""~'

k-Q' s Q)

x I((L, )As z'Iq, l(L,)risz&l'.

Equations (11b) and (32) lead to

M (b )=( 1) '"'( 1) ' [PJN]'r'B(J' J)
With

B(JI J') g ( 1)s+c f' S & & l (~
I, -Z Q -&) E,

-Q' s Q1

&(f')r~'s'z'
I v. I

(L)Asz&,

which reduces to

B (~' ~)=6.'6.'«f')A'Ii. l(»"&

(34)

Similarly if no hyperfine effect is observed in
both states the intensity factor is, using ZzF
=Id.

I M (as as) I
= 6r r~~I'

II-Q' s Qj

x -1)„,(s z x'I fz'
&-Z Q -rid & Q' s Qi '-

(36)

if the transition is spin allowed and assuming
g=A' -A.

x I&(L')ri's'z'
I ~. I

(f,)As z& I'.

(31)

B. b&J ~u& transition

Following the same procedure we obtain from
Eqs. (11a) and (26), we have

D. e~u intensity factor

The "classical" (i.e., without nuclear spin I)
M, (a, a) is easily obtained by analogy with

M(a, a },

M(f ) ( 1)F+0 +I+1( ] )s J+A[grgfygfjjl/s-

x B(J',J) .J 1 g'

z'r y
(37)
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Using Ed(6.2.9.), we obtain

g IM(b», a, ) I'=FJ'NIB(J', J) I',
F'

(38)
(44)

g IM(b», a, ) I'=F'JNIB(J', J) I',

Z IM(b8. as) I'=fJ'INIB(J' J) I'=&IM. (b a) I'

(40)

Let us consider the case when the "6 components"
are not observed; starting from Eg. (43a) and
using Y(A.6.21), we obtain

g IM(b„, a, ) I'=F'N P JIB(J',J) I'
F, G

C. bp& ~up transition

Starting from Eqs. (12) and (37), we obtain

M(bing, aq) = (-1)"'[F'FJ'NG]'~'

x Q ( 1)Q'+A-J'I
J Z'I Z F', E, G

= -- g I M, (b, a) I'
J'

IM(b», q, ) I'=IP N g JIB(J,J) I'

=f g IM, (b, a)l'.

(45)

Using Ed(6.2.9) leads to

g IM(b», ~)I'=FJ'NG

x Q J . IB(J')J) I'.
ZXJ

D. bp& ~up transition

The calculations are similar to those of the
preceding case; here we only give the results

M(b a ) ( 1)F+0'+I+it( 1)2S+I+r+A[FtpJIK'g]1/2

II
Ji

zjIz
1 J'j~(~, ~)

The definition of the 12j coefficient of the second
kind [Y(A.6.12)] gives

Q IM(b, a)l'

=F'J"'NG g. ( 1)'~ 'I,i--
I I J J

x S J' S J' B*(J',J,)B(J',J). '

G N Ii'

(43a)

The use of Y(A.6.47) leads to another form ensur-
ing of the positive sign of the expression

IM(b8~, a3) I'=FJ'NK Q J'
F' SNK

xlB(J', J) I', (46)

-81K E'

Z IM(bar~as) I
=F J'NK 2 JiJ N N J' J'

JI J, I
xB~(J',J,)B(J', J),

Q IM(b, „,a,)l'=JK Q JIB(J,J)l'
F') F

—E'O'NG

= —g IM, (b, a)l',
J

g IM(b, ,) I'= F'N g J IB(J',J) I'
F, E

=—„Q IM, (b, a)l',
J'

2 IM(&a. aa)l'=&&'NZ JIB(J' J)l'

(50)

(51)

Directly from Eg. (42) we obtain =& Z IM.(b,.) I
. (52)
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V. b ~b INTENSITY FACTORS

A. Classical b ~b transition

Equations (lib) and (34) lead to

M, (f, 5) = (-I)"-'[iiX N]'~'c(z, z),
where

(53)

in the more-general case of spin-forbidden hy-
pothesis. %hen the transition is spin allowed,
Eq. (22) and Ed(6. 2.8) lead to

c..(~', ~) = (-1)"'(-1)""
J' S J

c(z', z)=g g g (-1)"
L, A. o', D' s ( gi Di Aij

&(I.')A'I ~. l(L)A),
(A s -A')

(55)

x
I

(S Z

( q g A] ( u.' s &i

x ((g )A s P
I

p l(g)As+)
(54)

assuming s=A' -A and omitting 5~,~.
In the following, both cases will be studied,

first, by considering the general spin forbidden
case, and next, by restricting the formula to the
spin allowed case using the subscript 3A.

B. b +b J transition

Equation (37) and (lla) lead to

M(b I ) = ( 1)'-"'(-1)'"-'-' [F'F&' N'N]"'I c(z' z)
iF' 1F

x[F'ff '&1V'N)' ' '
1 ¹

iA s A' F' I F

Z IM(5s. Ia.)I'=F~'N'Nlc(z'

Q I
M(&s &s ) I'=fit'N N

I
c(z z) I' =& ll.(»» I'. (58)

The SA formulas are easily derived using Eq. (55).

Equation (56) and (12) give

C. b ~~b&J transition

M(b b ) = (-1) '(-1) [ 'PPG 'N]'i Q (-1) J c(z', z) .
J' F' I J' E R J

In the case of SA transition, the use of Biedenharn and Elliott sum-rule relationship [Ed.(6.2.12)]
yields the simplest expression

(59a)

(N 1 N' N 1 N' F'
¹ G(» )=(-1)""'(-1)"'(-1)' TF Fi'GN N]' ' I . . . ((I-')A'I v,, l(I-)A).

In the general 3F case, we obtain

g IM(5„,5„)I'=Fp GN'N g z Ic(z', z) I'
E'

I I J J,
g I~(5», f„)I'=F z'GN'Ng ( 1)'-'~i,f s ~' s ~' *c(~',~,) c(~', ~),

O', J'

OX Z'1
(6la)
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2 I M(bs. &s.&
I'= —.&'N'& Z & I«&' && I'== Z IM.(»»l'

J' S z
(62a)

and in the SA case, we have

C GX'ZP

Q ISA(bus. ba. ) I'=&&'cN'N~
I

N s N s I&(I'&A'I i.l(I)A&I'
(A s -A'I

(6Ob)

glM~(b„, b„)l =f'zGNt'N ' N' &' ~'N'G
I&(I )A Ip, l(I.)A&l',

(A s -A'I S I J'

g IMsA(ba. »s.&l'==&'N I"
)

I&«'&A'I ~. l(I-&A&l' ==& IM.,-(b, »I'. (621)

When the "G components" are not observed, one can obtain some improvements of the formulas

g IM(bqs, b8~) I'=F'¹NQZI C(Z', J) I' =, JIM, (b, b) I'
F Q J' J

g IM(~a. b.&l'=IJ'N'Ng~lc(z, ~&l'=IglIiI. (b b)l'
F,F'G

and analogous expressions for the SA case.

(64)

D. bpN bpJ translton

The calculations are similar to those of the preceding case:
I

Jf
M(b N b ) ( $)2s+4( ] )2I( i)E+F 7'-zg[i'I'gi-giN ]&/2+I ''c(gi g)

E' I E S NK
and, using Ed(6.4.3),

(65a)

Z' I E'
¹m»(b», b„)= (-1)'"'(-1) ' -'-'(-1)"-'(-i)"'-'[z'vive ¹N]'"~ s z z &(I,')A'I q, I

(z, )A&,

N' N

(65b)

g IM(b, ~, b„)I'=Fi'siN'Npi lc(g', g) I'
F' S NK

S 1 K E'

QI~(b, „,b„)I'=I'v'zN'N Q z,z N N z z c*(z',z,)c(z,z),
J, J J I J~ I

K¹K¹

¹

SA( B&i B~~I'=+&'&N'NI
A s -A'j

N N S S

XZ'X J'
¹

QIM8A( a~»n. &I'= I'&'&N'NI
I

A»' s I&(I'»'I &.I(L)»l'.
F A s -A' I I ¹¹~

(66a)

(6Va)

(66b)

(6Vb)
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In both SA and SF cases, we have

/

A

M(b...b„) I
= —., JIM.(b, b) (66)

g M(b„, b„) =—glM, (b, b)l
F', F N

IM(b„, b„)I'=i+ IM, (b, b)
I

.
FtF;E

(69)

(VO)

E. b &~b &
transition

Equations (59a) and (12) yield

M(b b g ( 1)E'+ I s'(-1)N'+ N+A-l[PgIggggpg]y/2

(71a)

and in the case of SA transition, the use of Ed(6. 2.12) and Ed(6.2.9) gives

/N1 Ã') G y'

Ms~(bus bus) = ~«(-1)'(-1)"(-1)"''[F'FN'N]'I'I,
I ((L')A'I p,, I

(L)A), (71b)

leading to the selection rule 46=0.
The summation over F' does not lead to great simplification of the formula in the case of SF

transition. Using Y(A.6.12) or Y(A.6.47) we obtain

I I J J~

JIM(b„,b„)I'=EN'NG'" Q Q (-1)~' '~J',O',ZV S' J S' Z, C*(J'„J',)C(J', Z)
E N J~ E N J, ' 1

(72a)ol
c' g 2

JIM(b», b»)I'=~N'NG'Ggi g (-1) ' ~'~ Z' S' N' C(Z', Z)
Jg J' E N J J I E

(73)

with the SA hypothesis, we get a more simple ex-
pression

When the "6 components" are not observed in
one of the states, the SF formula becomes

--, (N 1 N' )2

Q IMSA(b», b»)
I

&«'I"N I—
x

I
((I,')A'

I p, I
(L,)A) '

= 6„,—JIM, ,„(b,b) I'.J

Q IM(ba bN )I'
F', C'

2

(75)ENJ
(72b)

The summation over F and E' leads to improve-
ments of the formula only in the SA case

--, -(N 1g IM8„( &z, »z) I

= 6«.G¹NI
F,F'

i, A s

&(I, )A
I „ I

(&)

=&« —- Q IM..-(b, »l' ~

J, J'
(V4)

M(b.„b.,) I
=- g IM. (b, b)l, (V6)

F~ F~y Cg C'
IM(bs. AN) I'=i P IM.(»» I'.

The SA formula is easily derived from Eq. (72b).
Finally, in both the SF and SA cases, we have
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F. b & ~b & transition

Similarly, we obtain the following formulas:

M(h h ) ( 1)22+A ( 1)E+r ( ] )2+2 / 1 [Fiyrf igNiNj1/2 Q Jij 'C(ji j)s'u'z' szz E'I y

Ma ~&n~i f)2~) = (-1)"'"'(-1)"' (-1)"'-'-' [F"'FZ'SiN'N j1/2 (V8a)

„()( ( ¹)j) i"
FIj¹i( iI' (VSb)

Formulas analogous to Eqs. (72)-(7V) are available, but are not given here for brevity's sake, and be-
cause of the rare occurrence of b~„coupling case.

G. b s b N transitionPS PN

Here too, some difficulties arise in the reduction of the formulas. We give the most important relations
with obvious notations and without comments:

M(Q b ) ( 1)2(+A 1( 1)1+K'g[iPE(GN)Nj1/2

xQ J'j
I

g(-() I'8
j Ij I

c(P,J), (79a)

M2A(b22 &2A') = (-1)" (-1)""'(-1)"(-1)"

(79b)

IM(b22, 52„)l'=EX'GN'N Q Q (-1) 1P1J1J'JC*(j'„j,)C(j',j)
gt J', J

(80a)

E S 1 K'
i 2

Z I ~ (f'22 &2 )I'=&If'GN'N
I I

N N Z f xl&(z (80b)

Z IM(f)()si&wr)l =&'&'GN'N Q Q (-1) '-
1( 1) 1j,'j,j'j-J' J J'. Jx' z

I E'Z~x«*(j,', j,)C(j',j) S j' S j', (8 la)
S' N' E' S' N' Z'

GN I'
G Z' N' '

Z IM2A( Bs 2~)l'=&K'GN, I I&(I. )/i. I„l(f)/, &I.

/N 1
I MBA(~28 f)2A() I

= PPI,I
—I((j ')/i'

I
/1

I
(I,)/i)

I

(81b)

E'
IM, (b, b)SI ~'J, J. (82)
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VI. ' CONCLUSION

With new experimental techniques, like satu-
rated absorption, interference spectrometers,

and spectroscopy by Fourier transform, a great
deal of accurate data in intensity investigation
will probably be available in the near future, and,
as seen in the introduction, such results may
provide valuable information on the quantum be-
havior of molecules.

Intensity investigation is a very powerful tool
for interpreting molecular structure. The for-
mulas presented in this paper, combined with the
data obtained from the usual line-position ana-
lysis, should provide a way to use this powerful
tool to the utmost.
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