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We suggest that the statistical properties of the scattered radiation in resonance-fluorescence experiments may

be affected significantly by the existence of atomic correlations. The scattered light spectrum from two- and

three-atom collective systems has been calculated and compared with the one-atom spectrum. The di6erences

are quite significant for weak fields, but become less pronounced as the intensity of the driving. field is

increased. In addition, we have calculated the scattered intensity correlation function for collectively

interacting systems, and found that its behavior is very different from that of the single-atom intensity

correlation function, both for weak and strong incident fields. The implications of our findings for the

observation of photon antibunching are also discussed.

I. INTRODUCTION

Resonance fluorescence, or the scattering of
electromagnetic radiation by resonant atomic
systems, is a familiar fundamental process, '"'
that has become the focus of considerable atten-
tion in the last several years. In particular, the
spectral distribution of the scattered light has
been the subject of numerous theoretical' "and
experimental""" investigations. At this time, it
is well established that for incident field strengths
below a certain threshold value, the scattered
spectrum consists of a single broadened line,
while, above threshold, it exhibits a pair of side-
bands in addition to the central component. The
ratio of the central line to the sideband peak-
heights is 3:1, while the linewidth ratio is 1:1.5.

A new interesting feature of the scattered light
has been discovered followirig a calculation of the
second- order field- correlation function":

G"'(t, t+ &) = (E,' '(t)E,' '(t+ r)E,"(t+ 7)E,"(t)),
(1.1)

where E,"and E,' ' are the positive- and negative-
frequency parts of the scattered electric field
operator, respectively.

It is well known that the second-order cor-
relation function G"' of the radiation emitted by a
narrow-band thermal source has a maximum for
7-0. This is, of course, a manifestation of the
familiar photon-bunching effect which is charac-
teristic of stationary thermal fields. " For in-

creasing values of the delay 7, G"' approaches
the constant value

In the case of resonance fluorescence, in-
stead, Carmichael and Walls have suggested
that antibunching should occur for sufficiently
small values of v.

More precisely, their calculations show that
at 7=0, the second-order correlation function
G"' vanishes identically. For increasing values
of T, G ' increases either monotonically, below
threshold, or with oscillations, . if the field
amplitude is larger than the threshold value. The
asymptotic value of G"' for long delay times is
IG"'(0)I' in both cases. The occurrence of photon
antiQunching has also been suggested in con-
nection with subharmonic generation. " In the
case of resonance fluorescence it appears that
the observation of antibunching effects should be
within reach of the available experimental tech-
niques.

A common feature of all the theoretical treat-
ments of resonance fluorescence is the assumption
that each atom interacts with the source field
independently of the other atoms in the surround-
ing space. Intuitively, this appears to be a good
approximation especially for fields as intense as
the ones that have been used experimentally to
observe the spectrum of the scattered light under
saturation conditions (i.e. , well above threshold).
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If the incident field is intense enough, and if the
atomic density is sufficiently small, one expects
the dynamical evolution of each atom to be governed
primarily by its interaction with the applied field
rather than with the reradiated fieM from all the
other atoms.

We suggest, however, that the higher-order
. correlation properties of the scattered light may
be affected significantly by atomic correlation,
even under saturation conditions. For this reason
we propose a model ca.lculation to analyze the
first- and second-order correlation functions of
the scattered field when a number of atoms are
undergoing correlated motion. Specifically, we
study the spectral distribution of the scattered
light from two- and three-atom systems in co-
operative interaction. We also calculate the
second-order correlation function for one- and two-
atom systems for various incident fieM strengths.

Qur results can be summarized as follows. Well
below threshold, the spectrum of the scattered
light from correlated atomic systems is signifi-
cantly broader than that expected from the indepen-
dent-atom model. For increasing fieM strength,
and especially well above threshoM, both collective
and independent- atom systems produce identical
spectra. Thus, well above threshold, we recover
the typical central peak and sidebands even in the
case of cooperative atomic motion. The peak-
height ratio of the central line to the sidebands is
still 3:1 in resonance, and the linewidth ratio is
1:1.5 as predicted by the various single-atom
models.

The situation is quite different with regard to
the second-order field correlation function. Here

. we have been forced to limit out numerical
solutions to the two-atom case, but a reasonable
extrapolation of the results indica. tes that, both
below and above threshold, the second-order cor-
relation function for cooperative systems differs
significantly from the one calculated on the basis
of the single-atom model. In particular, the anti-
bunching effect is considerably reduced and is
probably not observable if a sufficiently large
number of atoms are interacting collectively.

In Sec. II, we discuss the model adopted in our
calculation and outline the derivation of the steady-
state spectrum and of the second-order correla, —

tion function. In Sec. III, we present the results
of the numerical computations and discuss the
main effects of the collective atomic motion on
resonance fluorescence.

II. DESCRIPTION OF THE MODEL

We consider the collective motion of a small
sample of two-level atoms under the infIuence of

an external driving field in resonance with the
atomic transition. The small- sample model has
played a significant role in the early theoreti. cal
discussions of superradiance. " Here we consider
the joint effect of the irreversible collective atomic
decay in vacuum and of the pumping induced by the
applied fieM. Since much of the preliminary math-
ematical development is reviewed in Ref. 11, we
limit our considerations to the solution of the rele-
vant equations of motion.

The atomic sample is an open system coupled to
the second quantized radiation field. The initial
state of the field is the product of a single-mode
coherent state (the incident laser field) and of the
vacuum state for the rest of the modes. We assume
that the Rabi frequency of the applied field is much
smaller than the atomic transition frequency.

A fully quantum electrodynamic calculation shows
that the reduced density operator of the atomic
system satisfies the master equation"

8—= 2y(S pS' - & pS'S —2 S'S p) —ik"'tS'+ S,p]Bt

—iQ[S', p], 0= &0 —&~, (2 1)

where S' =Z; S'; are the collective dipole opera-
tors, 2y is the Einstein A. coefficient for a single
atom, and the coupling constant g equals
—& d go", with g,"being the amplitude of the
applied field. The frequency of the field is &&
and the atomic transition frequency &,. The
master equation (2.1) has been derived in the
rotating-wave, Markoff, and Born approximations.
Furthermore, the atomic density operator p
evolves in a frame rotating with the angular fre-
quency of the applied field.

Qur objective is to calculate the atomic steady
state correlation functions from the master equa, -
tions (2.1) following the'procedure outlined in Ref.
(11). The link between the atomic polarization
operators and the scattered field amplitude is
provided by the relation"

E'&(r„f)=E,'&(r, t),0»x{n x 8)S- f —,(2.2)c x c
where E" is the positive frequency part of the
total fieM operator, E,"is the corresponding
solution of the homogeneous wave equations, and
n is the unit vector in the direction of observation.

Since the source-field operators and the atomic-
polarization operators are directly proportional to
one another, we limit our considerations to the
atomic correlation functions

1 "&(f+ ~, f) = (S'(f+ 7)S-(f)), (2.3a)

r "&(&,i+ ~, i+ ~, t) =(S (:)S.(f+ ~)S-g+ 7)S-(t)).

(2.2b)
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The scattered-field spectrum is proportional to
the Fourier transform of Eq. (2.3a); the existence,
or lack, of antibunching effects is predicted by
Eq. (2.3b) for small values of the delay 7. Both
I "' and I'"' will be calculated under steady-state
conditions, i.e, , for t-~.

For the case of a single two-level atom, a.lalytic
solutions for 1""' and 1"'" can be obta, ined. %hen
collective effects are impo-tant, instead. an
analytic solution requires the diagonalization of
8:& 8 nlatrices (for the case of two two-level
atoms) and 15 x 15 matr!ces (for the case of three
two-level atoms). Hence, in what follows we first
obtain the spectrum 1n a form which can be
e"- sily adapted to numerical computations. AVe

~monsider explicitly the procedure for two-atom
systems and present numerical results. A similar
cal.culation has been carried out also for the
three-atom problem, but only the numerical solu-
tions will be presented.

Tile startlr!g polrlt. Is tile Illas'tel'. equation (2.1)
which we now project into the Hilbert space of the
energy eigenstates ~g, m} withe =1, and m =-0, +1.
The matrix elenlents p. , (t) of the atomic-density
operator satisfy the coupledequations

8
rV V

l»/2 1
f!m;m —&&~m"I ~m.a» l,mm+I —-. ("m+ ~m )Pm, m

;~(V»/2
PK f&s Pffts»s ~" ms+»Pffft +lstjt

z,=, z., ~=. —,'s=(,—', —4p')'"j'. (2.9)

The characteristic structure of the scattered spec-
trum above threshold (&8. —,') can be traced to the
appearance of an imaginary part in z. , For t,wo--

. and three-atom systems, the eigenvalues of 1.
appear to be distinct for all values of P used in
our analysis. Still, in spite of the occurrence
of additional pairs of complex-conjugate eigen-
values, the scattered spectra from two- and three-
atom systems are chara. cterized by only two side-
bands symmetrically displaced around the central
peak, for resonant fields stI'Qngex' than the t:hx'es-

hold value. The reason underlying this behavior of.

the scattered spectrum is discussed in Appendix
B.

The atomic correlation function I"'"' and I'"' can
be cal.culated as a simple application of the re-
gression theorem. ""This theorem states that
if M, Q, and Ã are nrembers of a complete set
of system operators (M„) and if the one-time
averages can be expressed as

(2.8)

The result (2.7) yields all the one time expecta-
tion values. The time evolution of rj,.(t) depends
on the eigenvalues of the matrix (z I,). For the
case of a single atom, the eigenvalues are known
to be

»/2 V»/2
pl+»~ms, m+»

'
f1' P~s, m-» (2 4)

(M(f)) = g 0,(t, t'), (M„(&')j, (2.10)

7-2&i, 0=a/2y, -

wl'tll 0 (l', f ) c-null!her functiolls of tlllle, tlleIl two-
time expectation values take the form

V»= Vo=--Q (2.5)

(q(t')M(t)N(t')) = g 0, (t, t')(q(t')M„(f')br(t'}},

Upon identification of the eight independent-matrix
elelllell'ts of pmm, {I!) Willi the coInpollell'ts $;(f ) of
an eight-dimensional vector (see Appendix A), the
set of coupled equations (2)-(4) can be cast into
the xnatl ix folm

(2.8)

f & f'. (2.11)

In particular, Q or N can be identified with the
identity operator. The calculation of the first-
order atomic correlation funI:tion requires know-
ledge of the one-time average of the polarization
operators 8'

where the inhomogeneous term I has only two
nonzero components. (In the notation of Appendix
A, we have I,= —iP~2, I,=I,", I, = 0 for i ~ 7, 8. )'

The Laplace transform of &t&(t) is given by

(f)& = Tr(p(f)'s')

Vm+» P~ m+» ~~

&t&{z).=M(&(0)+z 'MI, M =- (., L) (2.7)

where I. is a nonsingular matrix with eight dis-
tinct eigenvab1es. The steady- state density oper-
ator follows directly from Eq. (2.7),

&t&(~) = lim z$7{z) = —L II,
8 0

(2.13)

Using Eq. (2. 'I), the Laplace transform of Eq.
(2.12) takes the form
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&s'&*)) f=~ "&s'&i)) si
0

Now, in the application of the regression theorem,
we need. to know the expectation value

= )t 2 Q (M~~+ MSJ) $t(t 0)

+ M2(ipv 2 ) z '(M48 —M~7+M„—M„) . (2.14)

To calculate the two-time correlation function
we apply the regression theorem to (2.14). We
illustrate the procedure for the j=2 term in
(2.14). We first write g, (to) as the ensemble aver-
age of the appropriate system operator

Tr(p (0&&0(s ) =&O~s p (0&

=W2 &1(p jO&

=v 2 )t, .

Thus the j= 2 term in (2.14) leads to

(2.16)

g, (to) =
p&) &)(t&))

=&oi p(t, ) (0&

=»(p(t.) Io&&o[). (2.15)

(M~+ M82) g, (t,) .

Using this procedure we finally find that the
Laplace transform of the two-time correlation
function, under steady-state conditions is

OO

I'"'(z) = d7'e "lim &S'(t+ r)S"(t)&g~

(2.17)

= [2(M~+M»)&t), (~)+2(M„+M„)g,(~)+2(M46+M86)kg(~)+2(Mg7+M87)4, (~)+2(M48™IIB)'4()].

+2(v 2 ip)z '(M48 M~7+MSB-M, „]()1),(~)+$,(~))

=A(z)+ B(z) .

The Laplace transform has a contribution from the
pole at z =0. This leads to the coherent part of
the correlation function and should be subtracted
from the total correlation function. The inco-
herent part is defined by

—1 is —is)
L

I

2ip

&i- sis 0

(2.20)

sss

I",",,),~(z) = I'"'(z) ——lim z I'"'(z) . (2.18)

The second-order atomic correlation function
can be calculated as follows. First, we obtain
the single-time average

Hence, the incoherent part of the Laplace trans-
form of the correlation function will be

~~" oh. (z) =&(z)+2(~& ip)(&))$(~)+ P7(~))

x (3R ~ 3R4, +3R,8 3R,),
3R=- I. '(z —I-) ', (2.19)

where p~(~) (j=1,2, . . . , 8) are given by Eq.
(2.8). Since &S'(z)s ) is an analytic function of
zfor Bez ~ 0 the spectrum of the scattered light
is given by the real part of Eq. (2.19) after re-
placement of z with i(&u —a&z). Expression (2.19)
should be compared with the incoherent part of
the spectrum for a single two level atom given by

8P z'+ 2z + 1+2P
~inca)) ( ) (s+ 4p2)& det(z I,)

&S'(t)S-(t))= Tr[p(t)S S-]

= 2[4.(t)+ 4, (t)]. (2.21)

Next, we take the Laplace transform of Eq.
(2.21) and substitute )t, (z) with the solution given
by Eq. (2.7). The result is

&S'(z)S-(z)) = 2g (M„+M„))t, (t,)
J=j.

+ 2(W&i p)z-'(M„+ M„M„M„).
(2.22)

Finally, from the regression theorem, we obtain
the Laplace transform of the steady-state cor-
relation function
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1'(2'(z) = de "lim (S'(t)S' (t+ 7)S (t+ r)S (t))

1 "(z)= —+g(z),
g.

(2.24)

where A is a constant and g(z) is a regular func-
tion of s for Hez ~0.

More explicitly, in the single-atom case one has

r "&(z) = (tP)'z-'(L„-', L-,,')(M„M„), (2.25)

which, when inverted, leads to

1'(. i(7') = 1 —exp(—2 r) [(3/4b) sinks+ cosh'],
(2.28)

As shown in Ref. 25, Eq. (2.26) predicts anti-
bunching for sufficiently short values of the delay
7 [see Figs. 8-12, curve (a)]. The term A/z is
responsible for the coherent (time independent)
part of the second-order correlation.

lt is clear from Eq. (2.23) that, in the limit
t- ~, the steady-state (s.s.) correlation function
becomes

lim (S'S'(t)S (t)S ), , = limz(S'S'(z)S (z)S ), ,
= 4('ti~2) (Li7'+ L2v - Lis- L22)

x [g, (~)+ g2(~)], (2.27)

which, by using Eq. (2.7), reduces to

iim (S'S'(t)S S ), , =4[('g(~)+ 42( )]
g» oo

=(S'S )', , (2.28)

Hence, in our numerical analysis we refer to the
normalized correlation function

(2) (t)
( ( ) ( ) )aesop (2) (~) 1 (2 2g)

(S'S-).'. .
The inverse Laplace transform of Eq. (2.23) of-
fers technical problems. It cannot be performed
analytically because of the large size of the ma-
trix L. In addition, a direct numerical integration
appears to be unfeasible due to the enormous num-
ber of time-consuming matrix inversions that are
required for every value of s. We found it ex-

= 4{(M22+M») t/r, (~) + (M»+ M») P2(~)

+(M„+M„)g,( ))+4(~2&P)z '

x{M„+M„M„M„](y,( )+y, ( )),
(2.23)

where g&(~) is given again by Eq. (2.7).
As already observed, "the Laplace transform of

the second-order correlation function 1""'(7) can
be cast into the form

pedient to apply the theorem of residues. Thus,
the matrix elements (z —L) '„and (L '(z —1) ')~„
have been calculated as the ratio of the appropriate
cofactors and determinants. 1'he typical contribu-
tion of the pole ~, of the integrand reduces to

Cofactor(z( —L)„„
J2(

(2.30)
This process has worked well for two atoms, but,
unfortunately, has not produced useful results
for the three-atom case due to the large numerical
values taken up by the cofactors and the subsequent
loss of numerical accuracy.

The results of the calculation and the comparison
with the analytic solutions for the single-atom mo-
del are given in Sec. III.

III. FIRST- AND SECOND-ORDER CORRELATION
FUNCTIONS OF THE SCATTERED LIGHT

The linear relation between the scattered- field
operators and the atomic-source operators
[Eq. (2.2] implies that the atotn and field cor-
relation functions are directly proportional to one
another. We analyze first the numerical results
of the steady-state spectrum of the incoherent
scattered light. For convenience, the spectra have
been normalized to unity at (d = &, and the results
of the one-, two- and three-atom systems have
been superimposed in the figures. In the single-
atom case the (3 x 3) matrix L has three distinct
eigenvalues, two of them complex conjugates of
one another, above threshold. Thus, it is natural
to trace the origin of the three spectral components
to the poles of Eq. (2.20).

For two- and three-atom systems the situation is
more complicated. The corresponding L matrices
are (8 x 8) and (15 x 15), respectively. Our analysis
of the eigenvalues of L for different values of the
pump field strength reveals that they are distinct
and that their imaginary parts can be considerably
different from one another. Still the structure of
the scattered spectrum displays no additional
peaks. In fact, well above threshold, the shape of
the scattered spectrum for two- and three-atom
systems approaches the one predicted by the sin-
gle-atom model. This behavior can be understood
in terms of selection rules which are operative
for radiative transitions between different energy
levels of the collective atom-pump field states.
In the limiting case of intense incident pump fields,
the selection rules are derived and discussed in
Appendix B.

The results of our numerical calculations are
shownin Figs. 1-5 where half of the spectra are
plotted for different values of the resonant field
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0.20

0.40 0.80
I

I.20 I.60 2.00 0.80 I.60 2.40 s.eo 4.00

{& —+o) /2f

FIG. 1. Steady-state spectra of the incoherent scat-
tered light from (a) one atom, {b) two atoms, (c) three
atoms. The spectra are symmetric around (co—wp)/2p
=0. The applied field amplitude is proportional to P.
The value P= 0.1 corresponds to a field amplitude below
threshold for single-atom resonance fluorescence.

strength (the spectra are symmetric around the
central frequency ar = ~„as we have verified).
According to these results, the effect of corre-
lated atomic motion is especially pronounced for
weak applied field. The deviations from the pre-
dicted single-atom spectra may not be easily ob-
served because of unavoidable experimental un-
certainties with the absolute values of the mea-
sured linewidth. In addition, in our ca).culation
we have ignored the effects of the so-called first-
order dispersion forces" which, sometimes, may
be important.

It appears, instead, that intensity correlation
measurements of the scattered light should pro-
vide a more definitive test of the existence of
collective effects. As already discussed in Refs.

{v —(i), ) /2$

FIG. 3. Same as Fig. 1 but with larger applied field
(P = 1.00).

25 and 19, a striking property of the scattered
light is the predicted photon antibunching which
is expected for short delay times. Roughly speak-
ing, the existence of antibunching stems from the
fa,ct that, after the first emission process, the
atom requires a finite amount of time before being
excited again. If a larger number of atoms are
interacting collectively with the pump field, the
above qualitative argument does not apply. In
fact, for intense pump fields, the steady-state
density operator approaches the limiting form

Ip(")= . g!j (3.1)2j+ I ---~

where j is the usual cooperation number, and

!j,m) are the eigenstates of the collective atomic
energy operator S,. For small values of the delay
time v, the normalized second-order correlation
function y"'(T) [Eq. (2.29)] is different from zero.

I.OO
I.OO

O.8O 0.80 ]9' * 2.00

0.60
3 0.60

0.4 0 0.4 0

0.20 0.20

0
0 I.60

I.O 2.0 5.0 5.0

{(tl —tt), ) / 2 g

FIG. 2. Same as Fig. 1 but with larger applied field
(P =0.40).

{QJ —fdo) /2 f
FIG. 4. Same as Fig. 1 but with larger applied field

(P = 2.00).
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I.00

0.80 P = 3.00 ——
0.6—

0.60

0.40

0.20

0.
0 I.60

c)
/

3.20 4.80 6.40 8.0

0.4—

( (i) - (i)o) / 2 g

FIG. 5. Same as Pig. 1 but with applied field strength
well above threshold (P = 3.00). 0.2—

In fa,ct, at 7 = 0 and in the strong-field limit, y'2'

equals 0.75 for two atoms, 0.96 for three, and
becomes slightly greater than unity for a large
number of atoms (note that the v-~ limit of y"'
is unity by definition). Thus it appears that col-
lective effects shouM reduce the antibunching
drastically.

The stron -field limit of p(~) given by Eci. (3.1)
can be obtai ed from Eg. (2.14) if one expands the
steady-state solution in powers of P '. To zeroth
order in P"', one finds p„„=p, , for all I, if

FIG. 7. Time dependence of the diagonal density ma-
trix elements |tI&(v) =

p& &(w) and g2(v) = pp p('p) for the two-
atom system. The field amplitude corresponding to P=3
is well above threshold. The long-time limit of g& and

g2 is very close to 3. The time axis is measured in units
of (2y)"i [Eq. (2.4)].

0,6—

0.4-

P =2.0

the off-diagonal elements are zero to the same
order of approximation. The off- diagonal matrix
elements of p(~) can be shown to be zero for the
single-atom case. For the two-atom problem, the
above is supported by our numerical calculations
as shown in Figs. 6 and 7 and Table I.

A complete antibunching effect will be found

again in the case of the two- atom resonance
fluorescence if we examine the higher-order cor-
relation function

0.2—

I'"= (S'(t)S'(t+ 7,)S'(t+ r, + 7,)

x S (t+7', + r,)S (i+7,)S (&)). (3 2)

TABLE I. Steady-state values of the density-matrix
elements for the two-atom case.

Ol
0

FIG. 6. Time dependence of the diagonal density ma-
trix elements q$(T) = p/f(7) and y2(7) = pp p(7) for the two-
atom system. The time axis is measured in units of

(27) t Eq. (2.4)].

10 2
5

10
15

-0.1083
-0.0463
-0.0233
-0.0088

Re/3 —-- Im$5 ——Rett)7 = 0,

Re/5

-0.0383
-0.0065
-0.0016
-0.0003

-0.1219
-0.0473
-0.0234
—0.0155
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I.00 I.40

0.80

I.OO

0.60
OJ

0.40 0.60 P -"I.O

0.20
0.20

IO. IO

FIG. 8. The normalized atomic correlation functions
~(z), IEq. (2.29)], for (a) one and (b) two-atom sys-

tems plotted as functions of the dimensionless time y.

FIG. 10. Same as Fig. 8 but with larger applied field
(P = 1.00).

This correlation function, which is proportional
to the probability of detecting three photons, one
at time t, a second at t+ ~„and the third at
t+~, +7„vanishes for 7, = 7', =0 and thus shows a
complete antibunching effect. The mathematical
reason for such a result is the operator relation
(S')'= (S )'= 0 for a system of two two-level
atoms. The physical reason is that, in order for
the detector to detect three photons, the time
scales should be such that the atoms have a chance
to be raised into one of the excited states by the
interaction with the laser field.

The normalized second-order correlation func-
tion y"'(r) for the collective two-atom system is
shown in Figs. 8-12 for different values of the
pump field strength. For comparison the one-
atom second-order correlation function is also
shown. We observe that the oscillations of y'"(r)
are characteristic of the oscillations of the diag-

onal matrix elements p„„(r)as we can see, for
example, upon inspection of Figs. 12.and 7. The
reason for this behavior is that, when the applied
field is strong, then, to lowest order in the inco-,
herent interaction, the atomic system will be
found approximately in an "atomic coherent state, "
if it was in the ground state at the beginning. ' '"
The amplitude of the atomic coherent state is
jz i

= ~tan(gt) . Since the atomic expectation val-
ues are functionals of is i, they will tend to ex-
hibit the same periodic. behavior as uzi itself,
independently of the number of atoms.

In summary, our results indicate that corre-
lated atomic motion should cause a significant
broadening of the steady-state spectrum below
threshold, but should have little observable effect
well above threshold. Thus careful observations
of the spectrum below threshold should provide
another evidence of the superradiant effects. Such
observations would, of course, be free from the,
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FIG. 9. Same as Fig. 8 but with larger applied field
(P = 0.40).

FIG. 11. Same as Fig. 8 but with larger applied field
(P = 2.00).
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I.60

1.20

)P3 3.0

While the correspondence (Al) is entirely arbi-
trary, the calculations developed in Sec. II depend
on it. Thus we find that the vector equation

—= L111+Idg
dt

(A2)

0.80

0.40

FIG. 12. Same as Fig. 8 but with applied field strength
well above threshold g= 3.00).

usual complications arising due to geometricai
effects and propagation effects. In addition,
the second-order correlation function shows that
the scattered radiation from collectively inter-
acting systems has quite a different statistical
character from the field scattered by uncorre-
lated atoms. We find that correlated motion tends
to eliminate antibunching for weak fields and to
reduce it considerably for more intense pump
strength.

Note added in proof After su. bmission of the
manuscript an important contribution by Bonifacio
and Lugiato was brought to our attention. In the
context of their analysis of optical bistability these
authors [Opt. Commun. (to be published)] have
clarified several aspects of the steady-state be-
havior of resonance fluorescence from a collection
of two-level systems.
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APPENDIX A

We consider the coupled differential equations
(2.4) for the matrix elements of the atomic density
operator. We identify the eight components P, (t)
of the vector P as follows:

(AS)

The inhomogeneous term of Eci. (A2) is a vector
I with components

I,= —ipse 2, f6 =ip&2, I, =0, i 75.7, 8.
Note addedin Proof. On introducing the vari-

ables

P3 i4& 3 47 Pg t 3 P5+~6

Xi P3+i4& Xg ~7+igt X3 i5
(A5)

we find that Eels. (AS) can be divided into two in-
dependent sets, i..e. ,

24, +g'4, -,

&.=24, —24. -g'(4, —4,),
4, =-24, - g'(24. -24, —4,),
4.= 24, —4. g'(4. 4P.-24, ) --2g;—

4, =-4, -g'(4, —4 )

and

(A8)

X, —-2X, +g'X3 j

X2 Xg Xg ~ X3 y

X3= —X3 —g "(Xg —Xi) &

where

g'= tP&2.

(Av)

It is easy to show that the steady-state solution
of these equations is unique and is

X~- X2- X3-O y

is a compact representation of the following eight
coupled equations:

g, =- 2t/, —iP&2($4 $-3),

4.= 24, 24.-iP~-~(4. + P. 8. —0,)-,

g, = —2g, - i' 2 (g, g, g),
24. -iP~&—(4.+ 0, —0,),

iP~-&(4, 4.)—,

iP~~—(4. k.), —

4, = 24. 4, —iP~&-(k, 0, —2—4.) - iP~~,

4.=24.—4. iP~—&,(24. 4.+—0,)+iP~~

Pi 1 Pit

Pi»0 43&

P 41 i6&

PO, O 43& P 4 1-k-g=l- it'1--43-&

PO»1 . i4& Pi» 1 i5&

PO» 1 i7& P 40 Pg

(Al)
gIQ

j.

4 = 'g'('-g") 4 =2g"
(A8)

g"(l —g")
D
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Cr,c)

(i) (iit) Oi)

Cr, c-i)

where

D =3g'4 —2g" +1, Ds 0.
It is clear from Eq. (A8) that in the limit of
strong field, g'»1, the only nonvanishing com-
po'nents of T)) are

g, =g, = B, g'»1. (A9)

Equation (A9) confirms explicitly our relation
(3.1). The time dependent solution of Eqs. (AV) is
straightforward, however the system of equations
(A6) presents technical difficulties because of
problems in solving a fifth-degree polynomial
equation. For our numerical. work, we have
chosen to use the original set (A3).

APPENDIX 8

The mathematical origin of the three peaks in
the spectrum of resonance flaorescence from a
single atom has been traced in the main text to
the three distinct eigenvalues of the (3 x 3) matrix
L.

Above threshold, one eigenvalue of L is real,
while the others are complex conjugate of one an-
other. The imaginary parts of the eigenvalues
determine the l.ocation of the center of the spec-
tral components, while the real parts give a mea-
sure of their width. It would be incorrect to gen-
eralize this argument to the case of resonance
fluorescence from collective atomic systems.

FIG. 13. Schematic energy-level' diagram showing
typical downward spontaneous transitions for a multi-
atom system initially prepared in one of the states of the
(r, c) multiphyt. Transition (i) occurs with the emission
of a quantum of energy equal-to the atomic trgnsition en-
ergy. Transition (ii) is responsible for the appearance
of the downshifted sideband of the spectruin. Transition
(ih) contributes to the upshifted sideband of the spec-
trum. The energy levels ip both multiplet are nearly
equispaced for large values of c (incident field strength
well above threshold).

7he purpose of this appendix is to show that, due
to selection rules which become operative for
multiatom systems, the spontaneous radiative
decay of N two-level systems in resonant inter-
action with an applied field al,so gives rise to a
three-peak spectrum. The sidebands are sym-
metrically displaced around the applied driving
frequency by the same amount predicted in the
case of single- atom resonance fluorescence. Our
considerations are valid in the case of strong
applied fields and explain some of the quantitative
features of the numerical results displayed in
Fig. 5. (P= 3 corresponds to a sufficiently intense
applied field so that our perturbative argument
can be safely applied).

We consider the exact eigenstates of a coupled
system comprised of N atoms and a resonant sin-
gle mode of the applied field. Furthermore, we
assume the atomic system to be prepared in a
collective state of cooperation number r. If we
neglect counterrotating terms the Hamiltonian of
the system is

H = a ra+ S,+K(at S=+ aS'.), (HI)

where 8' is the atom-field coupling constant. Its
eigenstates can be classified into multiplets la-
beled by the indices r (the atomic cooperation
number) and c (c =n+ m where n is the field exci-
tation number and m is the eigenvalue of S,).
Both r and c are good quantum numbers in the
absence of symmetry breaking mechanisms. If
the applied field is sufficiently inten'se (c» r), it
has been shown in Ref. 36 that the eigenstates of
the Hamiltonian (Bl) have the structure.

r
)r, c, m)= P d~" .(

—))r, m'))c m'), (B2)
m'=-r

where d„'".(Bw) are the matrix elements of the
rotation operator exp[i(Bw)S„] in the representation
in which S, is diagonal. ".The states j r, m') and

~c —m') are the eigenstates of S' and S, and of
a~a, respectively. The index m of the eigen-
states takes on 2 r+ 1 integral on half-integral
values with ~m

~

&r. The energy corresponding
to the mth eigenstate of the (r, c) multiplet is

E„=c+2Kvcm, (m( r. (I)
A system described by the Hamiltonian (HI) is

now coupled to the vacuum of radiation. We are
interested in evaluating the transition amplitude
for spontaneous emission of one photon. into an
arbitrary mode of the vacuum. While this pertur-
bative argument cannot provide information on the
details of the emitted spectrum, , it will provide us
with the appropriate selection rules for the
spontaneous radiative transition.

With the added symmetry breaking contribution
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of the atom-vacuum interaction, c is no longer a
good quantum number. The cooperation number
x is assumed, instead, to be conserved during the
collective decay of the atomic system. Thus, the

required transition amplitude between the initial
state ~vac) ~r, c,m, ) and the final state
~0, . . . , l. . . 0. . . ) ~r, c', m, ) is proportional to the
matrix element

r
(r, c', m,

~
s~r, c, m)=a.., . g s'"', , (

—)s'„"'„,(
—)[(r+m)(r m, +)—)]'~'.

$3

The sum on the light-hand side of Eq. (B4) can be easily carried out if we observe that

r
d( ) 7T g(r) '

y ] /2 y ~ ef8'/2Syg e "jg/3$y

m3= r
=m, ()„——,

' [(r- m, ) (r+m, +1))'t'()

(B4)

Equation (B5) provides the required selection
rules. With the help of Fig. 13 the physical situa-
tion can be understood as follows: The multiplets
(r, c) and (r, c- 1) are radiatively coupled to one
another. For c»x, the energy levels of each
multiplet are equally spaced by an amount 2K'.
The only possible transitions correspond to (i)
m, =m, (m, 10) with the emission of a quantum of

energy equal to the single-atom level spacing,
(11) m2 = m + 1 wl'tll the emission of a quantum of
energy 1 —2K' (in units of atomic transition
energy), (iii) m, = m, 1 with the emission of a
quantum of energy 1+2K' c . All other transitions
are forbidden. These results are independent of
the cooperation number.
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