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Compact and accurate integral-transform wave functions. II. The 2 S, 2 S, 2 P, and 2 P
states of the helium-like ions from He through Mg +
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The method of the preceding paper is used to construct compact and accurate integral-transform wave

functions for the four lowest excited states of the helium-like ions. Convergence studies of the energy and
various expectation values are presented for the 2'S and 2'S states of the helium atom. Parallelotope
parameters and energies are given for the 2'S, 2 S, 2'P, and 2'P states of the ions from He through Mg' +. A
brief discussion of the prospects for extending the method to many-electron systems is included.

I. INTRODUCTION y(~„~„~„)

In the preceding paper' (hereafter referred to as
I) we pointed out that a systematic collection of
compact and accurate wave functions expressed
in a relatively simple basis set would greatly fa-
cilitate the analysis of correlation effects in two-
electron atoms. We demonstrated that a suitable
variant of the integral-transform or generator
coordinate method can be used to provide such
wave functions, and a set of wave functions for the
ground 1'S state of the helium isoelectronic series
was presented.

It is the purpose of this paper to demonstrate the
usefulness of the method presented in I for excited
states, and to provide a set of compact wave func-
tions for the 2'S, 2'Sy 2 Pp and 2 P states of the
heliumlike ions.

A brief outline of the method, the ansatz of I for
S states, and a new ansatz for P states are pre-
sented in Sec. II. Convergence studies for the en-
ergy and a variety of other properties are pre-
sented for the 2'S and 2'S states of the helium
atom in Sec. III. Wave functions for the 2'S and
2'S states of the ions from I.i' through Mg"+, and
for the 2'P and 2'P states of the ions from He
through Mg'", are also presented in Sec. III. A

brief summary of results is presented in Sec. IV,
along with a discussion of the prospects of extend-
ing the method to many-electron systems.

II. THEORETICAL DETAILS

A full discussion of our method has been pre-
sented in I. Here we restrict ourselves to the
barest of details. The variational ansatz that we
use for S states is

N

=(4 ) 'g C,(1+P„)exp( —n x, —p, y, y, z„),

where P„ is the permutation operator defined by

12f (+1% +21 +12) f(+25 +1 t +12) '

For P states, the ansatz we employ is

(+17 +2) 17 2t 12)

(2)

= v 3 (4 v)
' Q C,(1+P„)

0=1

x [r, cos8, exp(- n~x, —p~x, —y~y»)].

n„= q [(A, —A, )(—,
' k(k+ 1)V2)+A,],

p, = q [(a, a, )(-,' I (a+1)&3)+a,],
y, =q[(G, —G, )(-', k(@+1)&5)+G,],

(4a)

(4b)

(4c)

for k= 1,2, . . . ,N. In the above (x) is defined to be
the fractional part of x. The parameters A„A.„
B„B»G» and G, define a parallelotope in ~- p-y
space and are chosen variationally to minimize the
energy. Since we are dealing with bound states we

In Eqs. (1) and (3), the plus and minus signs cor-
respond to the singlet and triplet states, respec-
tively. The linear coefficients are found by solv-
ing the usual secular equations, and the nonlinear
parameters are chosen to be the lattice points of
apseudorandomnumber quadrature formula (scheme
P in the notation of I). Specifically the nonlinear
parameters are generated by the following equa-
tions:
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impose the restrictions

min Qk ~0
~

k

min p~&0.
k

(6b)

As in I we allow negative values of y„and hence
to guarantee existence of all of the integrals re-
quired for the computatiori of the energy and other
properties we must impose the following con-
straints:

min (o.,+ n, + y„+ y, ) &0,
kg l

min(p, + p, +y, +y, )&0,
k, l

lllill (Dg+ pl+ yp+ yl) & 0 ~

k, l

(6a)

(6b)

(6c)

In Eqs. (4), l}= 1 in principle, but in practice l} is
chosen to ensure that our wave functions satisfy
the virial theorem (see I for a fuller discussion).
g does not differ from unity by more than 10 ' for
our wave functions.

The S-state ansatz of Eq. (1) was used in I, and
references to previous usage were given there.
The P-state ansatz of Eq. (3) has, to our knowledge,
not been used previously. The ansatz of Pritchard
and Wallis' is the most similar to Eq. (3) of all
those that we have found in the literature.

The methods we use for computing the requisite
integrals, for solving the secular equation, and
for optimizing the parallelotope parameters are
described in I. The angular momentum analysis
required for the P-state integrals is described
elsewhere. '

III. RESULTS

The 2'S state is not the lowest state of singlet
S symmetry. The second-lowest eigenvalue and
corresponding eigenvector, respectively, of the
singlet S-symmetry secular equation provide' the
desired upper bound to the energy and the approxi-
mate wave function for the 2'S state.

As we pointed out in I, separate optimization of
the parallelotope parameters is required for each
state of interest. For example, the second root of
the 60 & 60 secular equation with the parallelotope
parameters optimized for the ground state (Table
II of I) is —2.13 a.u. , as compared with the "exact"
result of —2.145 97 a.u. Hence the parallelotope
parameters that we present in this paper have all
been separately optimized for each state, ion, and
expansion length.

Table I lists the parallelotope parameters, 1 —g,
the energy, and various expectation values for a

sequence of wave functions with increasing num-
bers of terms, K, for the 2'S state of helium.
The quantities CE„and C«are measures of devi-
ations from the electron-nuclear and electron-
electron cusp conditions respectively. The defi-
nitions of these quantities may be found in I. For
an exact wave function, CE„should"' be equal to
the nuclear charge Z, and C«should""' be equal
to —'.

Note that the intuitive inequalities (based upon
hydrogenic ideas)

A, &-,'Z&A, ,

B,&Z&B, , (7b)

are satisfied in almost all cases, negative yk's
occur, confirming our arguments in I that they
should, and g is very close to unity, indicating
that our optimization of the parallelotope para-
meters was relatively successful in locating at
least a local minimum. It should be evident that
inequalities (7) are equally meaningful upon inter-
change of the A's and B's because of the spatial
symmetry of the wave functions.

The energies are seen to converge smoothly
toward the "exact" values of Pekeris' and Fran-
kowski. ' The 55-term energy is roughly 2 &&10 '
a.u. too large. Since no bounding principle is be-
ing used for them, the other expectation values
do not converge monotonically. (x ') and (l „'),
which are a part of (H), converge most rapidly,
and (l' ') and (l »'), which are a part of (H'), con-
verge least rapidly. The deviations from the cusp
conditions are larger than they were in the case of
the ground state (see I). The higher moments (r')
and (x~») also converge slowly, presumably be-
cause the diffuse distributions of the excited state
are harder to reproduce than the more compact
ones of the ground state.

A similar convergence study for the 2'S state of
helium is presented in Table II. The inequalities
of Eq. (7) are almost always satisfied, negative
yk's occur, and q is very close to unity. The 55-
term energy is only 2 &&10 ' a.u. too high as corn-
pared with the best available results. " The other
expectation values are converging fairly rapidly,
and the electron-nuclear cusp-condition deviations
are of the order of 0.0001. Since this is a state
of maximum multiplicity, there is no electron-
electron cusp.

The facts that the 2'S state is the lowest of its
symmetry type, that there is no electron-electron
cusp, and that the "open-shell" character of the
one-particle part of our basis functions is well
suited to describing the diffuse charge distribution
all help in making the functions in Table II more
accurate than our functions for the other states.
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TABLE I. Parallelotope parameters, expectation values, and cusp checks for the 2 S state of helium. The exact
values of CEN and CEE are from the cusp conditions, and all other "exact" values are from Ref. 8. Note that in this
table, as in Tables II—VI, all quantities are in atomic units and the exponent notation is 7.629—7 =7.629 X10

20 30 40 Exact

(rg2)

(r12)

(&f2&

(cosg&2)

( &(ri&&

CEN

«( &&))

CEE

0.3670

1.1340

1.8750

2 ~ 3310

—0.3250

0.5940

—1.939—5

2.145 966 060

8.293 565

2,270 803 15

5.947 0617

32.19986

216.517

1658.3

0.143 891

0.249 674 17

5.270 599 9

32.323 57

224-.424

1744.2
—0.146 529 77—1

1.309 260

1.999 718

0.008 818

0.429 167

0.5180

0.9310

2.0140

2.0360

—0.3710

0.8800

—1.354—6

2.145 971291

8.293 697

2.270 814 69

5.945 950 8

32.172 73

216.006

1649.5

0.143 766

0.249 686 80

5.269 4547

32.296 51

223.918

1735.4
—0.146 572 61—1

1.309 248

1.999 403

0.008 700

0.470 780

0.4743

1.2430

1.9530

2.0920

—0.4729

0.5630

7.629 —7

2, 145 972 811

8.293 430

2.270 816 14

5.945 856 8

32.173 26

216.036

1650.2

0.143 775

0.249 686 66

5.269 458 4

32.297 43

1736.2
—0.146 635 52—1

1.309 189

1.999 439

0.008 707

0.469 962

0.5133

1.4077

1.9962

2.0708

—0.2107

0.7688

8.023—7

2.145 973 824

8.293 566

2.270 815 51

5.946 077 0

32.177 62

216.107

1651.3

0.143 743

0.249 683 38

5.269 657 4

32.301 60

224.018

1737.3

-0.146 588 52—1

1.309 272

1.999 626

0.008 679

0.479 629

2.145 974 04

5.946 12

32.1782

5.269 69

32.302

1.309 45

0.008 65

0.5

In view of the current interest" in the interpre-
tation of Hund's rules, we remark that (x~») (for
@=1,2, 3, 4) is larger in the singlet than in the
triplet, and that the interelectronic repulsion is
greater in the triplet than in the singlet. The
fact that (r,,') does not follow the above trend
merely reflects the aphorism that a few moments
are not sufficient to characterize a distribution,
and reminds one of the local nature of the Pauli
principle. We shall defer further discussion of
these points to a later paper, where the full elec-
tron-electron distribution functions will be ana-
lyzed in detail.

In I we pointed out that the simple ansatz of
Thorhallsson, Fisk, and Fraga" (TFF& for the
perturbative correction to the wave function in

the presence of an uniform static electric field
was not suitable for the excited states of helium.
This is borne out by our calculations of the dipole
polarizability using the wave functions of Tables
I and II as the unperturbed functions and the TFF
ansatz for the perturbative correction. The re-
quired formalism has been outlined in I. The re-
sulting polarizabilities of 170 and 334 a.u. for 2'S
and 2'S states respectively are completely ruled
out by Weinhold's lower bounds' of 315 and 792
a.u. for the O'S and 2'S states, respectively. This
is not particularly surprising, since the TFF an-
satz weights regions of space close to the nucleus
and is therefore not suited to describing distortions
of the diffuse charge distributions of the excited
states of helium.
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TABLE II. Parallelotope parameters, expectation values, and cusp checks for the 2 3S state of helium. The "exact"
value of CEN is from the cusp condition, and all other "exact" values are from Ref. 8. Note that units and exponent nota-
tion are the same as in Table I.

20 30 4Q

A(

A2

Bg

B2

Gg

(y 2)

(y')

(&'&

(~'&

(g4)

(Yg2 )
(g-1)

(r12)

(~)2)

(&432&

(4 4g

(COS 042&

(e (r&»

CEN

0.4930

1.0200

l.9220

2.2290

—0.1320

0.2520

7.684—8

2.3.75 229 193

8.340 935

2.309 328 28

5.100 902 9

22.928 19

130.423

856.68

0.889 077—1

0.268 198 17

4.447 514 8

23.045 73

136.734

916.23

—0.158 391 81—1

1.320 389

2.000 093

0.4860

0.8910

1.9230

2.2420

—0.2150

0.5580

3.746—8

2.175229 343

8.340 915

2.309 328 34

5.100 907 3

22.928 17

130.421

856.65

0.889 065—1

0.268 198 00

4.447 517 5

23.045 75

136.734

916.25

—0.158 393 77—1

1.320 370

2.000 027

0.4490

1.1110

1.7370

2.5750

-0.2330

0.4220

—4.900—9

2.175229 363

8.340 904

2.309 328 29

5.100 930 8

22.928 84

130.435

856.91

0.889 061—1

0.268 19786

4.447 540 5

23.046 40

136.748

916.50

-0.158 392 28—1

1.320 369

2.000 053

0.4280

1.2059

1.9360

2.1574

-0.1728

Q.4819

4.179—9

2.175 229 376

8.340 900

2.309 328'31

5.100 924 6

22.928 63

130.430

856.81

0.889 060—1

0.268 197 87

4.447 534 5

23.046 19

136.742

916~ 39

—0.158 392 24—1

1.320 364

2.000 032

2,175 229 378

5.100 925 4

22.928 64

4.447 535

23.046 20

1.320 355

Tables III and IV list parallelotope parameters
and energies for the 2'S and 2'S states of the ions
from Li' through Mg'". As can be seen from the
6 = (E —E,„„,) x 10' values, the functions for the
2'S state are more accurate than the correspond-
ing functions for the 2'S state. The 40-term func-
tion for 2'S Li' has an energy error of 13 &10 '
a.u. The 20- and 25-term 2'S functions for the
rest of the ions have energy errors of the order of
10 ' a.u. All of the 2'S functions for the ions have
20 or 25 terms and energy errors of the order of
10 a.u.

In Tables V and VI we present parallelotope
parameters and energies for the 2'P and 2'P
states of the ions from He through Mg"'. The
helium functions have 30 terms, and all the rest
are 20-term functions. The energies for helium

have errors of roughly 5 x 10 ' a.u. , and the ener-
gies for the other ions have errors of the order of
5 x 10 ' a.u. The somewhat larger errors for the
2'P functions for Be" and Ne" reflect conver-
gence problems with the optimization process.
Note that inequalities (7) are generally satisfied,
that g is close to unity, and that negative Z~'s oc-
cur.

We searched for and did not find a bound 2'S,
2'S, 2'P, or 2'P state for H .

IV. DISCUSSION

In Sec. III we presented relatively accurate func-
tions for the four lowest excited states of the he-
liumlike ions. They are also very compact. For
the 2'S state of He, our 55-term energy lies be-
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TABLE III. Parallelotope parameters and energies for the 2,~S states of the ions from Li
to Mg~ . . K=10 (E-E„„,), where the "exact" values are from Refs. 8 and. 9. Units and
exponent notation are as in Table I.

A2

40 . 2.772 3.522
25 3.402 4.925
25 4.810 5.236

6 25 5.477 6.893
25 6.750 7.299

8 25 7948 8081
20 8.392 9.072

10 20 9346 10076
11 20 3.174 10.925
12 20 2.998 16.837

0.748
1.341
1.915
1.841
2.889
2.724
2.195
2.510

10.532
11.922

2.605
3.621
4.956
6.625
6.909
6.402
8.471
9.392

10.764
12.045

-0.747
-0.081
-0.104
-0.161
-0.123
-0.614
-0.234
—0.261
-0.350
—0.803

1.027
0.595
0.972
0.537
1.272
2.687
1.152
1.257
0.379
1.312

5.0.09—8
1.525—5

4.516—7
2.693—8

-2.260—7
3.7'02 —7

-5.388—8
-5.201—8

6.702—8
j..234—5

5..040 875 42
9.184858 00

14.578 519 9
21.222002 5
29.115404 8
38.258 744 8
48.652 0116
60.295 287 4
73.188 527 6

87.3318119

13.2
159
80.9

152
109
125
500
526

tween the 47- and 98-term energies of Fran-
kowski, ' who used logarithmic terms in his ansatz,
and between the 308- and 444-term perimetric
coordinate method-8 wave functions of Pekeris. '
For the 2'S state of He, our 55-term energy is
better than the 98-term energy of Frankowski's
function' (- 2.175 229375 a.u. ), and lies between
the 252- and 444-term method-B energies of
Pekeris. '

The fact that our 55-term 2'S function for heli-
um is better than Frankowski's 98-term function
containing logarithmic terms is probably largely
due to the use of a single exponent in the latter.
For the 2'S state of Li', our 40-term energy lies
between the 125- and 203-term method-B energies
of Pekeris, ' and between the 19- and 47-term en-
ergies of Frankowski. For the 2'S states of Be"
through Ne", and the 2 'S states of Li' through
Ne", our 20- or 25-term energies all lie between
the 19- and 47-term energies of Frankowski.

For the 2'P state of He, our 30-term energy
lies between the 120- and 165-term energies ob-

tained" with a standard Hylleraas basis, and be-
tween the 69- and 111-term energies obtained by
Schwartz" with a Hylleraas basis augmented with
fractional powers of r, +r, . The 30-term energies
for the 2'P and 2'P states lie between the 56- and
120-term energies obtained by Pekeris with peri-
metric coordinate wave functions having two vari-
able exponents (method D in his notation). Com-
parison with Pekeris's convergence studies indi-
cates that our 20-term energies for the 2'P states
of the ions from Li' through Ne" lie between the
20- and 56-term energies of Pekeris. Our 20-
term energies for the 2'P states of the ions from
Li' to Ne" have nonuniform errors; some of them
are better and some are poorer than the 20-term
results of Pekeris.

Note that for the 2'S and 2'S states of He our
55-term energies are better than the 84-term en-
ergies of %inkier and Porter. " The latter used
exponents only from the totally positive octant of
the n-P-y parameter space. This demonstrates
once again the importance of optimizing the par-

TABLE IV. I'arallelotope parameters and energies for the 23S states of the ions from Li
to Mg . 6=10 (E-E,„„q), where "exact" values are from Refs. 8 and 9. Units and ex-
ponent notation are as in Table I.

Z N A&

3 25 2 993 3 102
4 25 3 900 3 990
5 25 4.634 5.685

5.671 6.275
7 25 6.653 7.294
8 25 7820 8 316
9 20 8.938 9.154

10 20 9.906 10.092
11 20 10.960 11.134
12 20 11.794 12.452

1.275
1.710
1.949
1.965
2.471
3.143
4.288
4.700
5.249
4.926

2.025
2.360
3.307
3.073
3.563
3.807
4.500
4.889
5.691
8.081

-0.210
—0.210
—0.137
—0.648
—0.770
—0.320
—0.300
-0.300
-0.942
-1.569

G2

-0.029
-0.050

1.012
1.578
1.776
1.834
0.308
1.392
1.732
2.351

6.412—8
-4.999—7

3.571—8
4.915—9
5.115—9

-2.007—8
-1.720—7
-6.244—8
—5.133—8
—2.168—10

5.110726 94 4.26
9.297 165 90 6.78

14.733 897 2 1.26
21;420 755 7 1.47
29.357 681 6 1.47
38.544 647 2 1.28
48.981636 8 15.0
60.668 646 0 5.24
73.605 666 4
87.792 696 1
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TABLE V. Parallelotope parameters and energies for the 2 ~P states of the ions from He to
Mg . 6 =10 (E -E««~), where the "exact" values are from Ref. 8. Units and exponent nota-
tion are as in Table I.

Z N A( A2 B, Gg

2 30 0.067
3 20 0.700
4 20 0.751
5 20 1.532
6 20 1.528
7 20 1 874
8 20 2.220
9 20 2 564

10 20 3.448
11 20 3.991
12 20 3.723

1.202
2.685
3.424
3.317
5.052
5.885
6.707
7.526
6.467
9.624
9.713

1.496
2.661
3.402
4.805
5.366
6.314
7.261
8.203
8.934

10.347
11.133

2.164
3.660
4.625
5.151
6.794
7.866
8.934

10.000
10.476
12.382
13.137

-0.232
-0.175
-0.096
-0.389
—0.187
-0.221
-0.253
—0.284
-0.765
-0.967
—0.405

0.687
0.409
0.735
1.459
1.191
1.423
1.655
1.889
3.000
2.099
2.621

-4.005—7
5.293—7
5.671—8
4.791—8
4.716—9
1.999—9
3.397—9
1.713—9
2.524—9
1.338—8

-2.008—8

2.13316372
5.027 712 41
9.174970 16

14.573 1338
21.221 707 7
29.120 498 7
38.269 419 7
48.668 424 3
60.317485 4
73.216 587 6
87.3657198

4.72
32 .7
29.9
38.9
30.1
30.0
30.0
30.0
34.6

allelotope parameters.
From the above discussion it is evident that we

have largely succeeded in providing a systematic
collection of compact and accurate wave functions
expressed in a relatively simple basis set. These
results and those of I' provide a set of such wave
functions for the five lowest states of the two-elec-
tron ions. As discussed in I these functions should
now be analyzed in order to gain further insight
into the electron correlation problem. Analysis of
the electron-electron distribution functions is
underway in our laboratory.

An intriguing possibility is the extension of these
methods to many-electron systems. Full opti-
mization of the parallelotope parameters for an
explicitly correlated wave function for an atom
with three or more electrons would be prohibi»
tively expensive. The ideas of Somorjai and Grim-
aldi, "and Kukulin" seem to offer promising pos-
sibilities for overcoming these problems. We feel

it would be worthwhile to devote some effort to the
exploration of the usefulness of such ideas in the
construction of wave functions containing inter-
electronic coordinates. Clearly small atomic sys-
tems, such as Li and Be, are natural starting
points. We hope to be able to report such calcula-
tions in the future.

ACKNOWLEDGMENTS

This work was supported in part by a grant from
the National Research Council of Canada. We wish
to thank Professor G. L. Hofacker for his hos-
pitality during our stay at the Technical Univer-
sity. We also wish to thank Dr. E. Trefftz and
Dr. G. H. Diercksen for their hospitality at the
Max Planck Institute for Physics and Astrophysics
in Munich, where the initial stages of this re-
search were carried out.

TABLE VI. Parallelotope parameters and energies for the 2 ~P states of the ions from He
to Mg' . 4=10 (E-E,«,t), where the "exact" values are from Ref. 8. Units and exponent
notation are as in Table I.

Z N Ai A2 Bi Gi

2 30 0.282
20 0.773

4 20 0 357
5 20 0.225
6 20 0.372
7 20 1.680
8 20 0.827
9 20 3.575

10 20 2.783
11 20 4 285
12 20 1.282

1.851
2.210
2.923
4.505
5.512
5.700
7.283
6.697
7.323
9.162

11.493

1.608
2.668
3.940
3.723
4.412
5.629
5.696
8.482
9.685
9.117
8.614

2.836
3.751
3.980
5.437
6.549
8.172
8.810
9.866

11.144
15.118
13.205

-0.174
-0.342
-0.300
—0.548
-0.680
-0.220
-0.942
-2.426
-3.162
-1.858
-1.445

0.287
0.682
2.050
1.716
2.123
1.998
2.943
4.372
4.010
3.454
4.543

3.977—7
6.172—8

3.019—5
—1.275—7

1.372—8
—9.082—9
—2.427—8
—3.847—10

1.603—9
8.672—10
1.611—7

2.123 842 65
4.993348 12
9.110727 39

14.477 277 7
21.093 326 2
28.959 1100
38.074 728 2
48.440 238 2
60.055 656 0
72.921046 7
87.036 381.1

4.38
29.5

442.
55 4
60.6
64.2
69.9
61.0
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