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Time and spectral resolution in resonance scattering and resonance fluorescence
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The theory of resonance Raman effect, resonantly enhanced two-photon absorption, and resonance
fluorescence —valid also for strong fields —is treated in a unified and simplified way. Dressed states, Bloch
equations, and perturbation theory are used to calculate line positions, and integrated intensities both for
steady state and transient excitation. The case of adiabatic following is solved explicitly; it occurs when an off-
resonance incident pulse is turned on and off slowly. It leads to the identification of Raman scattering, two-
photon absorption, and Rayleigh scattering with an adiabatic process while fluorescence and consecutive two-
photon absorption with nonadiabaticity. Time-dependent spectra are defined in a rigorous way. Our formulas
agree in the various limits with those that appear in the literature.

I. INTRODUCTION

Resonance fluorescence and Rayleigh scattering
were among the first problems treated by the
methods of quantum electrodynamics. The results
of this treatment can be found today in textbooks
such as that of Heitler. ' Recently, there has been
a revival of interest in the subject, because of new
experimental techniques for making strong, coher-
ent, narrow linewidth light sources that can also
produce short pulses: tuneable dye lasers. These
lasers have been used to produce nonlinear (multi-
photon) phenomena, to explore details of the scat-
tering very close to resonance, and to study the in-
fluence of collisions on spectra. In this process,
some lively controversies have arisen and some
misconceptions are still prevalent.

The present paper is an attempt to clarify some
of the concepts involved and to discuss some of the
expected effects, in a much simplified way using
the simplest possible level schemes, dressed
states, Bloch equations, and perturbation theory.
This way line positions, integrated intensities, and
time dependences (but not detailed line shapes) are
calculated. In parti. cular, it is shown how simul--
taneous time and spectral resolution can be used
to study the scattered light. We hope that our
treatment introduces a considerable simplification
into the theory of these effects.

We concentrate on the off-resonance (near-reson-
ance) case, where the scattered light can be mean-
ingfully resolved into time-dependent spectral com-
ponents. In particular, it is shown that when the
spectrum of the exciting laser pulse does not over-
lap the absorption line, the pulse satisfies the ad-
iabatic condition. As a result, in a collisionless
three-level system only Raman scattering is pres-

ent and the emission stops when the exciting pulse
is turned off. Fluorescence (hot luminescence)
is caused by nonadiabaticity, either because the
spectrum of the exciting pulse overlaps the absorp-
tion line or collisions "interrupt" ("switch-off-and-
on") the incident radiation. The fluorescence is
emitted near the transition frequency and it decays
with its own lifetime after the pulse is over. Thus
we associate Raman emission with adiabaticity
and fluorescence with the lack of it. Coherence of
the source plays only a secondary role. (Raman
scattering was studied with mercury lamps for
many years ).

In resonance scattering (two-level case), the sit-
uation is similar: the scattering at the frequency
of the exciting pulse, the Rayleigh scattering, is
adiabatic; the fluorescence is nonadiabatic, it has
the same causes and characteristics as in the
three-level case. In addition, a three-photon
Haman-type nonlinear process contributes to the
emission near resonance.

Detailed line shapes and nonlinear effects in
scattering from a two-level system in a strong in-
cident field in the absence of collisions-were first
calculated by Mollow' in 1969, using a classical
incident field. This is a problem of quantum elec-
trodynamics in which perturbation has to be car-
ried to "infinite" order. Later the calculation was
extended, "and also done using quantum-mech-
anical coherent states' ' giving the same results.
The problem was treated in terms of dressed
states by Cohen- Tannoudji. ' Our treatment was
inspired by his earlier work, "and it is also close
to Kazantsev's. '

The presence of collisions makes the theory con-
siderably more complicated. The low-field case
of the two-level system has been solved near line
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center (the impact limit) by Huber, "Omont ef al. ,
"

and Mukamel et al." The collisional aspects, in-
cluding the nonimpact and high-fieM regions, have
been treated by Yakovlenko and co-workers, ' and

by Kroll and Watson. " When the fields are not too
high, their results agree with a theory by Mollow, 4

who introduced phenomenological relaxation con-
stants into his treatment of the radiation problem.

The first experimental test of high-field colli-
sionless resonance scattering was by Stroud" and
has since been refined by Ezekiel" and Walther. "
Good agreement with Mollow's theory was obtained.
Gibbs and Venkatesan"'" have verified the old
prediction' that the unshif ted (Hayleigh) scattering
can be narrower than the natural linewidth. The
optical Stark effect, the shift of levels due to the
strong incident field, has also been studied. """"
Scattering in the predominantly eollisionally damp-
ed regime was studied by Carlsten and Szdke. ~

They made a detailed comparison with theory ob-
taining good agreement. Much better agreement
is obtained when the pulsed nature of the incident
radiation is properly accounted for, using the pre-
scriptions of the present paper (Sec. IV C).

In a three-level system, Raman scattering can be
seen without fluorescence, a fact discovered by
Raman, but worth remembering. The recent flur-
ry of activity started with a paper by Holzer
et ai. ,

' who observed a transition between reson-
ance Raman scattering and fluorescence in iodme.
This was followed by many papers attempting to
clarify the concepts involved. "" On the theo-
retical side Jacon and co-workers developed a
general formalism to deal with the transition. " It
was pointed out by Huber" and by Shen" that there
is a distinct difference between Raman scattering
and "hot luminescence" both in spectral and time
behavior. Our results are similar to theirs. Very
interesting experiments were conducted by
Rousseau et al. ,"who studied the time dependence
of the emitted light and who observed both a short
(prompt) and long (decaying) component. The
present authors commented on that work, "and this
article is, to some extent, an extension and con-
tinuation of that comment. More recently, Pros-
nitz et al."studied the high-field behavior of the
Raman emission and Liran et ai."studied the time
dependence of the spectral components and, indeed,
observed that it is the Raman (shifted) component
that is short and the fluorescence that is long.

Stimula, ted processes in a three-level system,
two-photon absorption, and Raman-type stimulated
emission including line shapes, have been studied
extensively by the methods of nonlinear optics'~ and

by the semiclassical methods of susceptibility, "
also including collisions. " Recently, Grischkow-
sky studied the time dependence of both two-photon

and sequential absorption, "a work that is particu-
larly relevant to ours. Also, Bjorkholm and Liao4'
studied the resonance two-photon absorption.

An important motivation for the present paper is
the large activity in the field. Moreover, the
theory is fairly complicated and, in the presence
of collisions, it is not fully understood. It seems
to us that an approach using simple concepts and
showing connections among various experiments
will help further development. In our paper we
consider various cases in parallel; all intensities,
line positions, and time dependences are worked
out. In Sec. II, the dressed states and the self-
consistent equations of motion are introduced for a
two-level system using the Bloch formalism. In
Sec. III, positions and intensities of the various
spectral components are calculated using first-
order perturbation theory. In Sec. IV the adiabatic
following approximation is discussed, the equa-
tions of motion are solved for an adiabatic "square"
pulse and time-dependent intensities are obtained.
Also, the steady state and a nonadiabatic pulse are
discussed. Section V presents a more rigorous
approach to the definition of time-dependent spec-
tra, using a filter function. A perturbation ap-
proach, giving our low field results very easily,
is relegated to Appendix A, and the steady-state
solution is displayed in Appendix B.

II. DRESSED STATES AND EQUATIONS OF MOTION

Consider the nondegenerate two-level system of
Fig. 1(a), where the lower state is the ground
state. ~' The transition is dipole allowed, and the
system is excited by an optical pulse of carrier
frequency co close to the resonance frequency +»
with detuning

h '',

QJ

2 l

(o) (b)

FIG. 1. Three processes considered in the present
work: (a) Resonance scattering and fluorescence con-
sisting of (i) scattering from the ground state, (ii) scat-
tering from the excited state, (iii) a three-photon pro-
cess taking the system to the upper state, (iv) upper
state fluorescence. {b) Emission to a state 3 under
near-resonant-excitation of the transition 1-2. (c) Ab-
sorption to a state 3 in the same conditions.

CLl 4)g y ~

One is interested in the time and frequency depend-
ence of the scattered light and spontaneous emis-
sion. The system is assumed to be small in spatial
extent and optically thin, and no stimulated emis-
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sion is considered. Thus the emission can be cal-
culated as that from a single atom. The levels 1
and 2 with time-independent wave functions

I g, )
and

I g,) form the basis set of our description.
They are perturbed by the classical field

E =x $(t) cos(~t+ Q), (2)

that is taken to be linearly polarized; &d is con-
stant, 5 is slowly varying, and for the present
problem we consider only /=0. With the appro-
priate transition matrix element p. = p(o, + o ),
where P=e(P, Ir Ig,), the Hamiltonian matrix is

3C=-,'Se»(o, +I) —p, E, (3)

where the ground-state energy has been shifted to
a convenient value and the 2 && 2 Pauli matrices are
defined as usual'.

Schrodinger's equation of motion, iS(=RttI, is
transformed to a frame rotating at the field fre-
quency by the unitary transformation R
= exp[—,

' i vt(o, —1)]. The new Hamiltonian is

3CR %ARK%,R1+ik R %RI
Bt

= —-', Sa o, + -,' S(~„+~) ——,
' pS (o,+ o ), (4)

where p=p x, and where we have made the rotating
wave approximation which consists of neglecting
terms in e"'"'. This approximation is good near
resonance s

I

« ~» and for fields which are not
too strong pS/Sl «e». In the rotating frame,
Schrodinger's equation becomes iS("=Raga with

A second unitary transformation D is applied
which diagonalizes the Hamiltonian when 8 is con-
stant:

The angle 0 is between -~~ and+ —,
' g. The new

Hamiltonian RD is .

&D=E. I»&1 I+E-. I2)(2 I+,S(o o )

where

E1 = 5+ Pk~ ~

E,=g(d„-gS~,

(8a)

(8b)

and where 56 is the high-frequency Stark shift, '

5 = L(1 —cos8)/cos8 = 0' —a . (8c)

The eigenstates are

I
1)=

I
ttln) cos~ 8 —

I g) sin~ 8, (9a)

I2& =
I pic»na8+

I q2& cos-,'8, (9b)

and o, are still o.= I2)(1 I, o =
I 1

)(2 I. As seen
from Eq. (7), the new states [Eq. (9)] diagonalize
the Hamiltonian when 8 =0, which for slowly vary-
ing g amounts to the adiabatic approximation.
When the field varies slowly, transitions between
Il) and I2) whose rate is proportional to 8' can

be neglected. Thus these states can properly be
called adiabatic eigenstates. The conditions on 8
will be discussed in more detail below. These
states are also called "dressed" states as they
represent the eigenstates of the atom in the presence
of the strong monochromatic field. ' For a weak
field,

I
1) tends to the ground state

I
/~a), and

I
2)

to the excited state
I
|t2a). Note that the ground-

state energy includes the energy of one photon as
required from the full quantum electrodynamics
treatment. In that treatment the field mode cor-
responding to Eq. (2) is excited and the resulting
states, Il, n+1) and I2, n), are obtained by a
superposition of the atom-fieM product states

I
(~s, n+1) and

I gg, n) in a formula similar to Eq.
(9), where n is the photon number in the strong-
field mode. The energies of these states are

~D=cos-', 8+(o,—o ) sin-,'8,
with

E, „„=(n+ l)S~+-,'S6,

„=gpss) + g(d —2@5.

(Bd)

(8e)

ta,n8 =p8/S~ = n/~,
where

(6a.) Thus, it is seen that there is a large repetition of
levels, depicted in Fig. 2.

(6b)

is the Rabi frequency. For later reference we
also define

l2, n&

(1,n+1)

1/2n' =- ~[1+(n/~)2] (6c)

sin8 = 0/0',
cos 8 = a/Q' .

(6d)

(Ge)

a quantity having the sign of ~, and usually called
the effective field (in frequency units). Let us also
note that

)2, n-1&

l1, n&

FIG. 2. Part of the field-atom eigenstates ladder ob-
tained when interaction with only one mode is considered.
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In order to alculate emission into other modes
of the radiatio~ field, it is necessary to know the
population of these states, i.e. , the equations of
motion have t

' be solved. The rotating frame
equations of motion derived from Eq. (4) can be
written in the well-known Bloch form

—,
ds=sx E„,—I-. (s-s,). (10)

Here,

+(P12 P21) J(P21 P12) ~(P22 P11) &
(11a)

R,~f =M+24, (11b)

where 0 =pS/h was defined in Eq. (6b), p~ is the
density matrix in the rotating frame, and l is the
relaxation matrix caused by collisions and emis-
sion of radiation. The frame (x,y, 2) is an abstract
frame not to be confused with the spatial coordin-
ates. The effective field, E,«, has units of fre-
quency, and i;s magnitude,

l E,« l

= lQ'l.
The rela.xation matrix 1" will be introduced here

phenomenologically as

I' (S- S„~=iy,s„.+yy, S,+Py, (S,+I). (12)

We assumed that in the absence of the field the
atom relaxes to its ground state, S,=-z. The re-
laxation is cv~~sed, in general, by radiation and
collisions. In the case of pure radiative damping
it has been shown"~ that 2y, = y, = I/v, where r
is the radiative lifetime of the upper state. It has
been shown, e.g. , by Bloch,"that for coQisional
relaxation in the binary collision regime, a gener-
al f' encompasses all the phenomena. (Actually,
the description by a relaxation matrix applies to a
more general class of systems. ) It was pointed out

So & sin8 —z cos8

and

(14a)

~ ~

y, cos'8+ y, sin'8 0 (y, —y, ) sin8 cos8

r'= 0 y2 0
~ ~

(y, —y, ) sin8 cos8 0 y, cos'8+ y, sin'8

(14b)

In particular, p2, —p„=S,=Scosn, where S is
positive and n is the angle between S and the pos-
itive z axis in the dressed frame. Note that in the
rotating system n is the angle between S and E,«
and that for a system near its ground state o. =- p.
Thus, using p„+p22=1, one obtains fox the diagon-
al elements of p, i.e. , the dressed-state popula-
tions,

recently that in the presence of collisions I" de-
pends, in general, both on the detuning 6 and on
the field strength. ""'"This large and complex
subject will not be treated in this article. Note
that in the absence of relaxation the solution of
Eq. (10) for a constant g is a precession of S
around R,«at a constant angle o. and constant
angular frequency lE,«l. It is this visualization of
the solution that makes the model so useful (Fig.
3).

Equations (10) and (11) can be transformed to the
dressed states by p =D'p D. It is easy to rec-
ognize that %tn is a rotation around the g axis that
causes the x component of the effective field to
vanish (Fig. 3). In fact, ttD is the spinor repre-
sentation of the rotation group around y. Thus,
S, which is expressed in terms of p by a relation
similar to Eq. (lla), is obtained from S by a rota-
tion -8 around y. It obeys an equation similar to
Eq. (10) with

ED„=-Nn'+ Yb, (13)

where O' = D/cos8 was defined in Eq. (6c). Using
Eq. (12), one also finds

p~i
= 2(1' —S cosQ ),

p2D, =-,'(I +S coso. ) .
(15a)

(15b)

FIG. 3. Rotating frame in the abstract space {x,y, z)
showing Eef& in the {x,z) plane with the definition of 6)

drawn for 4& 0 and the definition of ~'which is the
angle between E,z& and S for 6& 0, or that between
—Eeff and S for 6& 0.

In cases where a third level 3 is also considered
[Figs. 1(b) and (c)], it is assumed that this level is
connected to 2 by the dipole matrix element @23

=(F21 P I P3), ~h~~~~s (yil p,
I y.) =0. Also it is as-

sumed that the field acting on the 2-3 transition is
weak in the sense that

l p»8/5(~-&u») l
«I. The

definition of 'ns is extended to level 3 by g,. l%[„l p,)
~$3 The tran sformation to the rotating frame

then leaves all matrix elements involving level 3
unchanged. With a similar extension of 'K~, the
diagonalization transformation modifies the off-
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diagonal element %23 of the Hamiltonian in the
following way:

(2lx l3&=&2l~, x ~ l3&=x,', o —,'8, (18 )

(1 lxn l3) =-xg, sin-', 8, (16b}

but the wave function
l 3) equals

lpga&

and thus also
The energy of the third state [Fig. 1(b)J in the

presence of n photons of the exciting field and one
emitted photon in mode k is written E3 „„-=E3+s@(d
+ @(d~~.

In the first-order perturbation theory calculations
that follow, we prefer to calculate matrix elements
in the undiagonal. ized rotating frame using simply
the fact that the wave functions [Eq. (9)J are the
appropriate eigenstates. Identical results would,
of course, be obtained by operating with the diag-
onal basis using Eq. (16), but the derivations might
have somewha, t less intuitive appeal.

III. SCATTERING AND FLUORESCENCE

Scattering and fluorescence can be treated in a
simple and transparent way using perturbation
theory. This neglects important correlation ef-
fects" in the emission of sueeessive photons as is
particularly obvious from the ladder in Fig. 2, and
thus does not lead to the correct line shapes. How-

ever, if the various spectral components can be
resolved, their integrated intensities are obtained
correctly, as well as their positions and the col-
lisional contributions. There is a good reason
for this as will be shown in Sec. V.

In scattering and fluorescence processes, photons
are emitted into modes k of the radiation f ield
other than the exciting one. These modes are in

their vacuum state. The use of the dressed states
enables one to count the spectral components very
conveniently. As indicated above, all calculations
are made using the basis set of the rotating frame
wave functions and the treatment is restricted to
the off-resonance case. We start with the emis-
sion in the three-level system of Fig. 1(b).

The quantum-mechanical emission rate from
state

l
1) to l3) is calculated using Fermi's golden

rule. The emission rate per atom is

theses in the second expression above has been
replaced by 1/r» in the third expression. Here
'723 is the spontaneous lifetime for the transition
from 2 to 3. In the derivation of Eq. (17), the fol-
lowing relation was used:

(31 p l»=(3I p lt."&cos28-(3
I p lg& sin28

(d =4) +6+25. (18)

This is a Raman process, whose frequency tra, cks
the offset 4 of the incident field. It is shifted by
the displacement of level l1) caused by the high-
frequency Stark effect. For small 8, tan8«1,
Eqs. (1V) and (18) reduce to the usual Raman-scat-
tering formula linear in incident intensity ance at
high intensities, tang»1, Eq. (1V) predicts satura-
tion (sin~ —,'8- —,').

A similar calculation gives the emission from
state l2) to state l3),

W~ = p„[—,
'

(&u~/hc') p~»] cos'-,'8,
at the frequency

1= Q} —25.

(19)

(20)

This can be called fluorescence proper: it is shift-
ed only by the high-frequency Stark effect of level

l 2), and it reduces to spontaneous emission in the
limit 8«1. In the high intensity limit, tan8»1,
the states are mixed and the emission rate drops
by a factor 2 (cos'-', 8- —,'). It is already clear from
the above that the adiabatic states of Eq. (9) play
a crucial role in determining the spectral distri-
bution of the scattered light: the adiabatic ground
state causes only Raman emission and the adiabatic
upper state (state

l
2) & produces only fluorescence.

The emission obeys a sum rule. When e~ = co~-=&a» the total emission rate is, from Eqs. (1V)
and (19),

W = W„+W~ = (1/r»)(pP, sin'-,'8+ p2D, cos'-, 8)

= (I/2v»)(1+8 cosa cos8) = (1/r»)(p2s, ), (21)

= —f23 sln2 8

as seen from Eq. (Ba). The emission frequency re-
sults from the 5 function in Eq. (17) and it is cen-
tered on

R 23 ~2 sin2

((o )'1 .„,6
(17)

where the sum over modes (integral over final
states) is performed following Heitler. ' The spon-
taneous emission rate which appears in paren-

where ( ) denotes here a time average. Thus,
the total rate is proportional to the average popula-
tion in state

l (2s) (or in state
l p,&).

If the third level is above level
l 2), an absorp-

tion measurement can be made as shown in Fig.
1(c). When the incident light near the transition
to l3& is weak, the transition rate can be calcula-
ted using the golden rule. The absorption line
from

l 1) to l3) integrated over angular frequencies
is proportional to



TIME AND SPECTRAL RESOLUTION IN RESONANCE. . . 1593

which gives

4m izz3 . z e
QTPd&=mP» ~ 3

sin (22)

(ii) Scattering from ~2, n) to ~2, n —1,k) with

W~, = p„((u/(v„)'(I/r„)(2sine)',

and also,

(28)

(29)

(30)

where m is a polarization factor which depends on
the relative polarization of the strong field at ~
and of the probing field at co-„. The center fre-
quency of this absorption is at

(iii) A three-photon process from ~l, n+ I) to
~2, n, k) with

(/03 1 1 —cos 8

1—(d32 —6—2 ~
q (23) at the frequency

which is a two-photon (TP) absorption process.
From ~2) to ~3) one obtains

(u3 = 2(O —(d„+~ = ~+ 4+ ~ . (32)

with

p 4+ 923+ s d mp22 3~p
cos

"23
(24)

(iv) Fluorescence (spontaneous emission) from
~2, n) to ~l, &z, k) with

W„=pD, (1/7») [-,'(1+cose)]', (33)

1+S
= 6032 + 2 '5

y (25)

which is a sequential absorption to level 3 via
level

~
Pg). In the above calculations, possible

Stark shifts on level 3 have been neglected.
Our calculation is restricted to the case where

the lines are well resolved. Even in this case,
interference effects occur. This problem received
considerable attention because of the fine struc-
ture in Doppler broadened transition in the nonre-
solved case."'"'"

The above approach also applies to resonance
scattering and fluorescence in a two-level system
[Fig. 1(a)]. In this case, the final states are also
dressed states. Here again we use the energy of
the quantum-field states of Fig. 2 and the Fermi
golden- rule calculation of the transition probabil-
ities. The initial states, ~1, n+ I) and ~2, n), are
given by Etls. (9a), and (Bb) in terms of g", their
energy is given by Eqs. (8c) and (8d), whereas
the final states are ~1,n, k) and ~2, n —l, k) with
one scattered photon in mode k. and one less photon
in the exciting field. They are also constructed
using Egs. (9a) and (9b) and their energies are

E, „g=n5(d+@e-„+2@(5

and

E,„,-„=(n —1)lz or + @&a»+@e„-- —,'@6,

respectively. Defining the rate

and the frequency

40 = (d —5= (d —6—~.21 (34)

l2, n&

I &, n+)&

(a)

iii iv

l2, n-1&

l&, n&

(b)

These four processes are drawn in Fig. 4(a), in
the appropriate order. It is easy to see that in
terms of the original states, they are represented
by the processes in Fig. 4(b). The first two pro-
cesses are Rayleigh scattering. The sum of their
intensities,

W = W, + Ws, = (~/&u„)'(I/7»)(-,' sine)', (35)

is independent of the state of the system. It is
linear in the incident light intensity (-e') for
8 «1 and, like all other components, it saturates

I/z» —
Y &zzP /|lc (26)

(2V)

with the frequency,

one expresses the emission rates of the various
processes as: (i) Scattering from

~
l, zz+ I) to

~
i,n, k):

Ws ~
=

PPz (4&/Q)») (I/z»)(p sUle)

i ii iii iV
I

FIG. 4. Parallel between the four processes in the
dressed-states ladder diagram (a) and the bare atomic-
states diagram (b).
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W = W„+W~+ W, = (1/r») —,(1+5 cosa cos 0)

= (1/7.,) (p..), (36)

with similar comments as those following Eq. (21).
This formula actually shows that our calculation
is consistent with the more fundamental deriva, —

tion of y, . For a weak incident field only 8'~ is
important, and we get the correct expression y,

L/ 21) r21'
When S'„+S'&0in the rotating frame, the atomic

dipole moment has a nonzero expectation value, ,
therefore it radiates coherently. (This is usually
called a classical or macroscopic dipole moment. )
The radiation rate can be calculated, e.g. , using
Heitler, ' and for a near constant $, =S sin6 it gives

at high intensities. It is known from the work of
Mollow' that at low intensities the scattering line-
width is as narrow as the incident light (see also
Heitler') and that at higher intensities it consists
of two components, the second one proportional
to the third power of the incident intensity and hav-
ing a linewidth of the order of 72y Our' treatment
gives only the integrated intensity of both the nar-
row and broad components which do not correspond
to W» and W» respectively (as discussed in
Sec. IV).

In the three-photon process (iii), two incident
photons are absorbed from the exciting field and
one is emitted at the "sideband" frequency, . leaving
the atom in the excited state. For weak exciting in-
tensity (8 «1) it is quadratic in the light intensity.
It should be noted that this is a resonant Stokes
Raman process, and as such it has gain. This
fact mas discovered already in 1961 by Rautian and
Sobelman, 4' and has been pointed out anew since,"
and observed experimentally. ~' The fluorescent
component is proportional to the dressed upper-
state population. The fluorescent lifetime is
lengthened in the presence of the strong field by
the factor [2/(1+ coso)]2. In the absence of col-
lisions, the only process that populates the upper
state is the three-photon process, therefore the
(time) integrated intensities of the three-photon
and fluorescence components are equal. There is
also the possibility of a four-wave parametric pro-
cess where two photons at ~ are absorbed giving
~, + co~." This is part of the cascades mentioned in
connection with Fig. 2. Such processes interfere
with those calculated using first-order perturba-
tion theory and modify the linewidth.

If (d =—co~ = (u3 a sum rule is derived, giving
the total rate for al.l processes:

tion, Eq. (37) has to be applied to each Fourier
component (see Sec. IV 0). Using the formula for
classical radiation damping it can be seen ea,sily
that y, = —,'y„sothis part is also consistent with
our earlier expression. It should be emphasized
that this coherent part is solely responsible for
the index of refraction of the medium. ' Also, in a
medium with dimensions much larger than the
wavelength, the amplitudes of the scattered fieMs
should be added with their proper phases, giving
rise to coherent phenomena42 (superradiance, pho-
ton echoes, self-induced transparency).

IV. PULSE AND STEADY-STATE SOLUTIONS

In this section, we will concentrate on the vari-
ous components of the emission when they are
spectrally resolved. In particular, results will
be obtained for their time evolution under pulsed
excitation. The condition for spectral resolution
is that the offset be sufficiently large ~A~ »y»
or, if this is not the case, that the Stark shift be
sufficiently large, which for ~ =0 gives 0 ++

as seen from Eqs. (6) and (8). In order to make
use of the expressions obtained above for the
emission rates, it is necessary to know the dia-
gonal elements of p . As pointed out before, the
Bloch equations with the proper inclusion of re-
laxation terms provide a, fully self-consistent pic-
ture, i.e., a picture which properly accounts for
the contributions to p of all relaxation and radia, -
tion processes. Our main emphasis will be on the
adiabatic approximation which provides insight
into the origin of the processes.

The adiabatic theorem states that for a pulse of
light off resonance, which is switched slowly
enough, the atomic system passes through a con-
tinuous succession of stationary states. "'" In the
vector model this implies that S and E,ff are near-
ly parallel (or antiparallel) in the rotating frame,
as can be seen from Eq. (15). [Actually cosa
=-sgn(a), i.e. , for b, &0, cosa =-1 and for a &0,
cosa =1.] We will concentrate on the parallel
case. Using the vector model, the conditions for
adiabatic following '"'"are seen in a pictorial
way (Fig. 3). The speed of S on the unit sphere is
QEeff and this must compensate for the motion of
E,f1 which is d0/dt. We demand a«0 which for
small 8 is stronger than ~«1. Thus

d8—= oSeff «0&.ff (38a)

which for 8 «1 reduces to

1 1 4p' co ' 1 Ssin& '
(37)

(38b)

For large 8 the condition is ~8 'd8/dt(«(b, 8/sin6~
which deviates appreciably from Eq. (38b) only at%hen S„,S, have a more complicated time varia-
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very large angles. A second condition is on the
magnitude of the relaxation. The same geometric
argument yields that the motion on 8 caused by
relaxation, ey„has to be compensated by oE,ff

iA/cos8i»r, . (39)

(More accurate calculations can be made using
the steady-state solution given in Appendix B.)
Thus, one has the general adiabatic condition that
the Fourier components of the exciting pulse
should not overlap appreciably the spectral com-
ponents of the absorption line. These results are
so important that they are derived again in Ap-
pendix A, from perturbation theory. It should be
noted that the adiabatic condition is precisely the
first condition for spectral resolution. In the case
where (b.~&r, , but where the Stark shift is suf-
ficiently large ~Ph/k~» r» it is possible to.attain
spectral resolution without adiabaticity; this is
usually called transient nutation.

In the adiabatic approximation ~cosa~=1 is a
constant of the motion and the equations of motion
reduce to a single one that we derive now. 8 is
the magnitude of S, which can be calculated di-
rectly from Eq. (10)

——(S') =S,S„+S,S, +S,S,

which for
~
cosa~ = 1 reduces to

dS = -(r, sin 8 +r, cos 8)S +r, cos8 .

(40)

(41)

This is an extremely simple differential equation
and the remainder of this section will mostly dis-
cuss its implications.

With the same approximation (~cosa~=1) one
should note that in the two-level case, Fig. 1(a),
there is an expectation value to the dipole moment
proportional to S sin6) which radiates classically.
The corresponding elastic Rayleigh component is
proportional to the square of the dipole and is thus
[see Eq. (37)]

(42)

This equation shows the well-known result that at
low intensity (~8~«1) the entire Rayleigh compo-
nent [Eq. (35)] is elastic "As th.e intensity is de-
creased, Ws,~,/W„decreases with S' whereas the
inelastic part W„.„=Wz-R~,&~ increases with
1 -S'. At saturation S= 0 and only the inelastic
component remains. It is then field independent
since sin'8 = 1. The inelastic part can be com-
pared to W» given by Eq. (29). One finds W»/
Wz „=[2(1+S)] ' —~ at low intensity.

A. Short adiabatic pulse

When the incident field is far from resonance,
it is easy to construct a pulse that is both adia-
batic and shorter than the relaxation time, i.e.,
it satisfies the dual condition ~b, ~» v~ » r» r»
where v& is the length of a "monochromatic"
laser pulse. To a good approximation, the solu-
tion of Eq. (40) is then S=S,=1. Note that 8 fol-
lows the pulse, 8 =are tan (Pg/ka). From Eq.
(15) one immediately gets p»=1 and p„=0.

In a three-level system, Fig. 1(b), we get from
Eqs. (17) and (19) that dming the pulse Wz =(&uz/
&o»)'7'„'sin'~8; W~ =0. After the pulse 8 =0, and
R~ =W~ =0. Thus, there is Haman emission that
terminates with the puj. se but no fluorescence at
all. This is the first example of the identification
of the Raman effect with the adiabatic component.
The absorption in the three-level system of Fig.
1(c) behaves similarly. There is two-photon ab-
sorption that follows the pulse but no sequential
(two-step) absorption.

In a two-level system, we find Hayleigh scat-
tering (all elastic) during the pulse, having the
intensity W~ = (e/&u»)'v, ,'(—, sin8)' and three-photon
scattering with intensity W, = (~,/Gled) 72' [2 (1
—cos8)]'. Within the approximation p2D2=0 there is
no fluorescence. (In fact, the three-photon pro-
cess populates the upper state and with a better
approximation one obtains from the Bloch equation
the correct p „self-consistently, as will be seen
later. ) Within the present approximation Wz
=r, ,' J W, dt =0. Both Ws and W, terminate with
the pulse. For small incident intensity 8«1, the
Hayleigh scattering is linear in the intensity and
the three-photon scattering is quadratic. For high
intensities, ~Pg/Sb, ~» 1, they both saturate.

In an earlier Comment, "we calculated these
basic processes for weak fields and coined the
Haman and Rayleigh components as "adiabatic"
parts. The three-photon component also shares
this property, as seen above. The above results
would also be obtained with an incoheymf; adia-
batic excitation. Thus, the recent observation by
Grischkowsky4' on a three-?evel system [Fig. 1(c)]
should be interpreted in terms of adiabaticity
versus nonadiabaticity rather than coherence
versus incoherence.

B. Steady-state solution

When the exciting light is on for a long time
(f » r, ', r, ') steady state is reached. The Bloch

equations have a well-known simple algebraic so-
lution for the general case, as shown in Appendix
B. Here, we prefer to concentrate on the adia-
batic case ~a~»r». Results obtained in this way
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are also valid for the other spectrally resolved
case (Q~»y, ,& (6(. This has to do with the fact
that S~ then becomes equal to the value of S cal-
culated in the adiabatic case (see Appendix B).
The steady-state adiabatic value of S follows im-
mediately from Eq. (40):

S = cose/[c os'8 + q sin'9]

where we introduced after Mollow, '
(43)

(44)

ye=3(y~+y ~) y2 =ys+yN +yr, (45)

where y~ is the radiative decay rate of the upper
state, y~ is the rate of quasielastic collisions, '4

and yl is the inelastic collision rate. In the col-
lisionless case, it was found for arbitrary fields,
that y1:2)~ &2=y„."' Thus in the collisionless
case q =2, while collisions make g &2.

The emission intensities will be calculated for a
two-level system using Eqs. (15), (31), (33), and

(35), and Eqs. (17) and (19) for the three-level
system. From Eq. (15), one finds using Eq. (43)
and (cosa) = 1,

1 cos8
cos'8 +q sin'0

This assumption is made in lieu of a theory, it is
a strictly phenomenological one. In the weak-field
case, near line center, Huber" and Omont et al."
found

4&3 1 & 1 —cos0

1 D 1 —cos8
R

—p 11
23 723 2

1 u& 6 +'gQ +AQ'

1 ~„'Q'[7i(Q'-~) +~]
4T23 (d23 Q (6 +'gQ ) (50)

(ii) Fluorescence:

ar, 1 6'+qQ'+AQ' (Q' —b, )'
(021 8721 6 +'QQ Q +Q

1 Q'(Q' —b, )[q(Q'- ~) +g]
Br„(Q' +b.') (qQ' +g')

These last equations [Eqs. (47)-(49)], are identi-
cal to those obtained by Mollow in 1969 for the pure
radiative case, ' q =2, and in the more general
case recently, " using a more fundamental
but less intuitive approach. Note that only q =y,/y,
appear explicitly in these equations. This is in
accordance with the adiabatic approximation. It
should be mentioned that for 7) =2, W~ =R'3 as ex-
pected from the discussion above, and when q &2
elastic collisions contribute to an enhanced flu-
orescence component. In recent work of Carlsten
and Sz5ke,"there is a detailed discussion of these
equations and they are compared with experiments.

In the three-level case [Fig. 1(b)] one finds using
Eqs. (17) and (19): (i) Raman emission:

1 z'+gQ'-aQ'
2 z'+qQ' (46a) 1 ~ 1+cos0 1 Q'[q(Q'+b, ) —6]

4~„Q'[~'+qQ']
1 Z2+gQ'+ZQ'

~11 ~22 2 g2 +gQ2

Rz = ———sine

QP Q

4T21 6021 0 +6

(ii) Fluorescence, from Eq. (33):

1 g) 1 +cos8
21

1 a'+qQ'-zQ' (Q'+a)'
87„~'+gQ' Q'+g'

(47)

%e first calculate the two-level case. The in-
tensities are: (i) Rayleigh, from Eq. (31):

(51)

In the pure radiative ease, q =&, the Raman emis-
sion is much stronger than the fluorescence which
is quadratic in the incident intensity for weak
fields. For elastic collisions such that y~ =y„,
and yl is negligible, one has g=1 and the Haman
emission equals the fluorescence- intensity. For
large q the fluorescence becomes much stronger
than the Baman emission. In the three-level sys-
tem, only the dynamics of the two levels connected
with the strong field are solved, the emission fo
the third level is considered to be a probe.

In the absorption case [Fig. 1(c)] similar results
are obtained; the appropriate integrated absorp-
tion lines have the same dependence of Q, Q', h,
and 7i as shown in Eqs. (50) and (51).

C. Adiabatic square pulse
Q'(Q'+~)[q(Q'+~) —~]a~„(' Q+') (qQ'+~')

(iii) Three-photon scattering, from Eq. (35):

(48) I.et us introduce the concept of an adiabatic
square pulse. It has rise and fall times that are
long compared with ~a~ ', but a duration vz that
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is long compared to the rise and fall times. The
detuning [b,

~
has to be larger than y, , During

the pulse itself, the field amplitude g is constant.
Many experimental situations are well approxi-
mated with such a pulse. It can be easily con-
structed, e.g. , by gating a cw dye laser. In fact,
for a sufficiently large ~ it is hard to visualize an
experimentally made pulse that does not satisfy
the adiabatic condition. (To the best of our know-
ledge, the power spectrum of all gated optical
pulses falls off in the wings at least exponentially. )

The great advantage of the. adiabatic square pulse
. is that the equations of motion are easily solved in
the general case. During the risetime 8 =1, and 8
increases to its value given by $. These are then
the initial conditions for the solution of Eq (4. 1):

W))

Tp

WF

cos8
1

cos8
cos*e +q sin'ii

+ coS'0 +q Sin'ii )
x exp[—y~(cos g +17 sin g)t] (52)

where

8(t) =arctan(pS/e~), O &t & ~, .

During the fall time of the pulse S =S(r~) and 8 de-
creases to zero. After the pulse, 8 decays to its
steady-state value:

S(t) =1+[S(r~) - 1] exp[-y, (t rp)]-
with

8(t}=o, t &~, .

(53)

S(t) =—1 —(n --')8'[1 —exp(-y, t)], O- t 7, (54)

if the pulse is also short, S(t) = 1 —(q —2)8'y, t,
for 0 ~ t ~ g~. The Haman signal follows the pulse,

These equations (52) and (53) give the explicit
time dependence of S(t). Remembering that cosa
is a constant in the adiabatic approximation, Eq.
(15) can be used to obtain p~», p~„and the emitted
intensity calculated using Eqs. (31), (33), and (35)
for the two-level case, and Eqs. (1V) and (19)
for the three-level system. Rather than doing
this, a qualitative discussion will be given of the
general features of the time dependence of the
various spectral components and some illustrative
examples will be provided.

First, it should be noted that various regimes
exist for Eqs. (52) and (53). These are: (i) weak .

pulses (~8~&&1) versus strong pulses; (ii} short
pulses [y,(cos'8+@sin'8)v~«1] versus long pulses;
(iii) saturating pulses [cos8/(cos'8 + t) sin'8) «1]
versus nonsaturating pulses. For weak pulses, the
saturation condition is g8'» 1. For strong pulses
it can be written g sin'8» cos8.

Let us now consider the three-level system,
Fig. 1(b). For a weak, nonsaturating pulse,

7p

FIG. 5. Time-dependent three-photon scattering and
fluorescence produced by an adiabatic square pulse of
duration y&. Hayleigh component is not shown and

simply follows the pulse: {a)weak short nonsaturating
excitation with g = 2. {b) strong long saturating pulse
with tan 8=3, y&q. =3, g=3.

as pD =—1 and is proportional to (&8)'. The flu»-
escence from Eq. (19) is proportional to q —2,
which is the nonradiative part of the relaxation; it
vanishes for radiative decay only; it integrates the

pulse and decays slowly afterwards. " This be-
havior is illustrated in Fig. 5(a). That figure is
actually drawn for the resonance fluorescence case
[Fig. 1(a)] but the Raman case [Fig. 1(b)] is qualita-
tively similar. For q =1 the integrated Raman
signal equals the integrated fluorescence signal.
The ratio Wz(7J)/Ws =2v~(2y, -y,) for v&«y„'. It
is independent of the detuning 6 as long as g is in-
dependent of ~, explaining the results of %williams

et g/. " For large detunings, collisions become
less effective to supply or absorb the energy re-
quired to produce transitions between the dressed
states ~2, n) and ~l, n +1)."'" If the weak nonsat-
urating pulses are long, p22(v~) =- —,'(q ——,')8', and

W.(..)/W. =(2y. y,)/y, -
For strong pulses, there is a sudden increase

in fluorescence when the pulse terminates. Indeed

p22 does not change rapidly, but the doxy rate of
state ~2) suddenly increases when 8 returns to
zero at v~, as seen in Eqs. (19) and (33). This ef-
fect is particularly strong for the resonance fluo-
rescence case of Fig. 1(a) and is seen in Fig. 5(b)
for the case of a strong, long, saturating pulse.
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A

V)k

(b)

FIG. 6. Nonadiabatic excitation by a weak step. Mo-
tion of S is pictured by following the intersection of S
with a plane tangent to the bottom of the Bloch sphere
and designated by (x,y). (a) Step is turned on; (b) step
is turned off after a long time.

In the case of resonance scattering [Fig. 1(a)],
both the Rayleigh component and the three-photon
component exist only during the pulse. " The inte-
grated intensity of the Hayleigh component is con-
stant, but its coherence and spectral composition
will change with time as predicted by Eqs. (41)
and (42). This will be particularly strong when
the pulse is sa, turating* For weak, nonsaturating,
shor t pulses

1 g4
3. 16

whereas

W~. (v~) = I/2(q -2)8 y, v~ for q&~

This gives

D. Nonadiabatic excitation

As it was pointed out in the beginning of this
section, if the pulse has spectral overlap with u»
nonadiabatic excitation results, and there is emis-
sion around . This sufi) ect has 1 ecelved de-
tailed attention in a number of theoretical papers. '

In principle, the Bloch equations [Eq. (10)] have
to be solved, and this can be done at least numer-
ically. As an illustrative example, we investigate
the application of a, weak (0 « I) step pulse and the
switching off of such a pulse after a long time.
Consider the rotating coordinate system in Fig. 6.
When a step pulse is applied nonadiabatically, I:,«
moves to its new position suddenly and stays
there. S starts precessing around it, and it spi-
rals in a time comparable to y.„asdepicted in
Fig. 6(a). It is easy to see that there is initially
an equal amount of Rayleigh scattering and fluo-
rescence. Considering the quantities S„S„and
their time dependence, it is also easily seen that
there is a coherent emission both at + and at v,.„,.
The coherence of the emission shows up i.n the
definite phase relation between the two emitted
fields, and the fact that in a macroscopic system
(with dimensions»A) the emission at both fre-
quencies is directional. In addition, there is a
side emission coming from density fluctuations.

When the pulse is suddenly turned off, after
having been on for a long time, S starts free pre-
cession and it emits at &» a decaying exponential.
This emission is also coherent (super-radiant) in
the same sense as above. These, and similar ef-
fects in the optical spectrum have been studied by
Brewer and co-workers in elegant experiments. ""'

Also, very similar considerations give the results
of Refs. 51.

The above example illustrates again that it is
the adiabaticity that distinguishes Raman emis-
sion, two-photon absorption, Bayleigh, and three-
photon scattering from fluorescence and stepwise
absorption. %hen the adiabatic condition is not
satisfied, coherent emission may result at the
resonance frequency u,„.

For long pulses

and thus

The short-pulse case is represented in Fig. 5(a).
Again, by a relative measurement of the two side-
bands observed in resonance scattering specific
information can be obtained on the dependence of
y, on detuning.

V. RIGOROUS CALCULATION OF TIME-DEPENDENT
SPECTRA AND SUM RULES

Time-dependent spectra can be defined rigor-
ously in an operational manner. In the absorption
case of Fig. 1(c), one can measure the time depen-
dence of the intensity of a weak monochromatic
probing beam of tuneable frequency near (d 32.
Sequential absorption and two-photon absorption
will be seen, caused by the pulse of carrier fre-
quency &u. In the emission case of Figs. 1(a) and
(b), spectral definition will be achieved by means
of a spectroscopic instrument. Using a, sufficiently
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e((d) = E(t) e'"'dt .

Let f(((})be the transfer function of the spectro
meter. This acts on the signal amplitude, giving
R filtered field

wide bandwidth (with a sufficiently wide slit in the
spectrometer), the're remains information to be
gained from the time evolution of the intensity
transmitted by the spectrometer. Qn this basis,
one can develop a rigorous description of. time-
dependent spectra. We shall concentrate here on
the emission case.

Let. E(t) be the amplitude of the emitted field,
which is in the form of a, pulse. It is Fourier
transformable, at lea.st in the sense of generalized
fu flct, ion s giving

is the Fourier transform of the filter function f((d).
Causality demands that F(t t')-in Eq. (5V) be
zero for t'&t. The simplest possible filter is thus

F (t)
—(}e l Gl ( i Ix i O (t )

f((!!)=u/[ex +i(a, —e)J, (59b)

d(d=PQ . (59c)

whereo(t) is the unit step starting at t=0. One
sees that 0. determines the width of the transfer
function about its center frequency &, , and its peak
transmission is unity. The integrated transmission
of the filter for white light is proportional to its
width,

g! ((u) .=e(e)f(((}),

F(t) =- —— f(~)e '"'d~
27l .

(56)

(57)

The response to white noise is a Lorentzian
spectrum centered on ~, . The use of other similar
filter functions would not qualitatively modify tile
considerations made below and thus we shall limit
the discussion to the above filter.

The intensity detected after the filter is, using
Eqs. (5't) and (59a)

I(t; e(, n) =
l
V(t)

~

E(ii)g 4(tl )e-I(iw +n}(((-i'} e (i&a}"o'}{i i" }O(t-tt) O (tl tie ) dti dtll (60a)

'3."he upper ].imit of integration is actually t, and
the (t', t") plane is divided into two regions char-
Rcteri..~ed by t'- t" and t' ~ t" respectively. With
an irlterchange of the integration variables in the
second region, followed by a change of variable

+ 7 One obtRins

1I(~,) =-lim I(t; u&„(}.) = ~e(—(d, ) ~'.
(3.~O (ot'

(62a)

For a. stationary field, i.e., when the correlation
fu, .ction, E(t) E*(t—r) depends only on the time
difference, r, from Eq. (61) we get the usual def-
inition

I (t; (v„(}.)
=- 2c}. 2 dt&e""G. (t-t~ ) E(t') E*(t' —v.) e '"i'd7 . (62b)

OO

x Re E(t')E ~(t'- r)e'"('-"dr.
0

(61)

The lns}tRntRneous lll4~i1sj. ty j.s RlwRys flnlte for a,

pulse. Using the Fo"Ir.i.er trRI&sform relation,

I(t;(i!„c()=-
~
V(t) ~"

d» d(&' V(a) V "(w') e """"

d. (d
~

e(4&)
~

f((A!)
~

a(id the normalizati. on, Eq. (59c), t)}e power spec-
trum can be defined as

We will rather be interested in the other extreme,
i.e.„0'.large compared to y» and 7&'. Referring in
particular to the case of Fig. 1(a) contact is made
with MoBow's theory when one notes that, in our
~.;-ota,tion,

(E(t')E*(t' —=)) (o.(t' —r) o (t'))=-g(r;t'- 7).

(63)
The Heisenberg operators 0., and 0 will be taken
in the rotating frame so that all frequencies will
already be shifted by &. In particular, the filter
frequency ~, is the offset with respect to &. It
should first be noted that Eq. (61) can reproduce
the steady-state result of Mollow. Let g(t) be an
adiabatic pulse applied around t =0 and consider
I(t) at large t. Let o also be small but such that
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I(ur, ) ~Re g(r;-t) e '"1'dr, (64)

nt»1. Then the range of t' ig. the first integration
in Eq. (61) is from -t- (2n) ' to t. The range of
7 in the second integration is from 0 to -& '. Over
this range Eq. (63) depends only on the time dif-
ference 7. and one finds

of Eqs. (65), (10), and (11). Specifically, the equa-.
tions of motion are Laplace transformed and the
resulting algebraic equations are solved for ps(s),
where s is the Laplace variable, in terms of the
initial values p"(t'). A comparison with the matrix
elements of Eq. (65) gives all the Laplace trans-
forms, Z[U,&'U»]. In particular, one finds

p"(t) = U(t, t') p'(t') U'(t, t') (65)

g(T; t') = (c,(t') 0 (t)) = tr[p" (t')V, U '(t, t') (r U(t, t')]
= P12(t') Uil U21+ P22(t') ~11 U22 (66)

The needed values of U, which depend only on the
time difference 7, are obtained from a comparison

where ihe initial values for the correlation function

g in Eq. (64) are the steady-state values. This is
just the spectrum as a function of &„ascalculated
by Mollow. '

Now, let us consider the general transient case.
The expression for g(r;t') is obtained following
Mollow. 2 One uses the evolution operator U(t, t'),
where t —t'=r&0. One has

( ) [, ]
iQ (s +y, )(s +y 2+i n)

ll 21 sf(s). (6Va)

b( ) —g[U U ]
'+( +y )( +y. + )

where

f(s) -=(s+y, )(s+y, +in)(s+y, —in)+Q'(s+y, ) .
(67c)

For simplicity's sake we have defined the quantities
a(s) and b(s) whose inverse transforms A(7) and
B(r) enter in Eq. (66). One thus has

g(7.;t')=p,",(t')A (i1.)+p,',(t')B(i). (68)

By combining Eq. (68), (63), and (61) one obtains
the time-dependent spectrum

I(t; (di, n) = 2n 2 dt' e
m OP

p,",(t' —7)A(7)e ' '"1"d7-
t 00

dt'e '~" ' ' Re P2a2(t' —r)B(7)e '~ '"1"dr.
OO 0

(69)

Let us now concentrate on situations where the
time evolution of p~ is slow compared to & '. This
corresponds precisely to a measurement of the
individual spectral components in the adiabatic
case as discussed in the previous sections. In
such circumstances, p~ can be considered as con-
stant over the relevant range of 7 in Eq. (69), and
thus can be pulled out of the second integral. Sim-
ilarly, it can be considered constant over the rel-
evant range of t', and one ends up with

I(t; ~„n)= n p,",(t) Rea(n —i~, )

+ n p,",(t) Reb(n —i~,), (70)

where we have used the definitions of the Laplace
transforms a(s) and b(s), and where we have re-
marked thai p„is real in the adiabatic case
(S,=—0). In fact, using:Eqs. (11) and (6), pis2

=-2Ssin8 and p„=—,'(1-Scos8). Finally, it
should be remarked that within the same adiabatic
approximation, 0 can be considered as a slow
function of 8 in a(n —i&a, ) and b( in(u, ) In order.
to follow the time evolution produced by relaxa-
tion, it is necessary to have n «y, „and, in order
to achieve spectral resolution, it is necessary to
have n ~~

I +I or IQ'
I

where Q' was defined in

I

Eq. (47). Under such conditions, it is easy to cal-
culate Eq. (70) using the above approximations
together with Eq. (6V). One finds a three-peak
spectrum with peaks at ~ = 0 and rv =+0'. With the
broad slit (n»y, ,) the value of I(t;&„n)at the
peak is the integral of the spectrum over the peak
width. What one finds is summarized in Table I.
The last line in this table is obtained from the two
previous lines using sin8=Q/Q', cos8=n, /Q', and
the values of p12 and p„given above. The result
is proportional to the rates given in Eqs. (35),
(31), and (33). The only difference is that the fac-
tors in (&u/e»)' have now disappeared. This is a
minor change for the shifts of usual interest.

The sum rule is established directly from
(63).' "'" The instantaneous total intensity is
proportional to the equal-time correlation function

(v.(t) n (t)) =t,r[P"(t)
I C}(pil gi)(g I] = p (t) (71)

which should be compared to Eq. (36).

APPENDIX A: ADIABATIC APPROXIMATION IN PERTUR-

BATION THEORY, DISPERSION FORMULA

In this appendix the adiabatic approximation for
weak fields will be derived. This is interesting for
several reasons. First it makes connection with
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TABLE I. Calculations for the spectral components virith wide slits.

'Position
Process

Re a(n-i~))

~Re b(n —i~)

ur =0
Rayleigh

~QE
0'2+ n2

2
—'0 +n

0'2+n 2

u=Q'
Three-photon

QQ'(0'- g)+n'0(Q'+ ~ b, )

(0 2 + n 2) (40 2 + n 2)

20I (Qi g) (Qi 2+ n2) 020s2
(0'2+ n2) (40'2+n2)

(d= —0
Fluorescence

00'(0'+ 2 )+ n'0(Q' —-'4)
(0 2+ n2) (40 2+ n2)

20'(0'+4) (0' +n )-0' 0
(0'2+ n2) (4Q'2+ n2)

I(t;re&, n) for

+, 'o 2(-02+ 0'2+ n2)
(0'2+ n2) (40 2+ n2)

+, 'n2(—'02+ 0'2+ n2)

(0 2+ n2) (40 2+ n2)

o. «ini
S,nd/or i

0'i
-(2 sin 8) (l + S) [2 (l —cos 8)] -2(l —S) [2(l+ cos 8)]

4(f) =b, (t) 0, +b.(f) 4. , (A1)

well-known results showing in particular how they
are modified in the adiabatj. c case. As perturba-
tion theory formulas were used in the initial steps
of many papers, it is then very clear how to speci-
alize the final results of those papers for the
adiabatic case. Second, several recent authors have
have not gone beyond the weak field case, and it
is quite instructive to derive the adiabatic limit of
their expressions. Third, the spectra of light
sources are not Lorentzian in most experiments;
resonance lamps have exponential wings, the
spectrum of a gated monochromatic laser follows
the spectrum of the modulator which is typically
exponential (6-12dB/octave).

In first-order time-dependent perturbation
theory-, the time-dependent solution of Schrd
dinger's equation, g(t) of the Hamiltonian, Eq. (3),
is expanded in the wave functions of the atomic
states (without the field)

(f}
~ e((gl)e-t4l~td~ l

S(&o —~»+iI'/2) 2m

) i2E(&)
5((d —402& + ail }

(A5)

it cari be seen that the upper-state amplitude fol-
lows the incident field adiabatically. A more ac-
curate solution can be obtained by expanding the
denominator:

under the condition that $(t) drops to zero fast
enough when t —-~. The adiabatic approximation
is valid when the Fourier components of the field
do not overlap the absorption profile. If the mean
frequency of the field is denoted by as above and
4e is the "range" of values of ~' where ~e(&') is
large, then the adiabatic condition means

~
+ —+»

~» 6+, I". Under these conditions, in first approxi-
mation the denominator in Eq. (A4) can be taken
as ~- ~„+iI',a constant, giving

where at t--~ the atom is in its ground state,
b, =1, b, =o. We follow Heitler's notation. ' The
incident field is expanded in a Fourier integral,

(d —(d + &gP 40 —4) + &/I'
1 ~ 1 ~

(A6)
00

z(f) =8(t}e
2w

~((gl) e Oil td(gl (A2)
giving, after some rearrangement,

For every Fourier component, the steady-state
solution in first-order perturbation theory is given
by b, =l,

b, (&') = p»e(ur')/h(&u' —~|2+—,
' il") . (A3)

where we introduced a Weisskopf-Wigner- type
relaxation rate, I'.' Therefore the general solution
of b, (t) is given by Fourier transformation:

b () P.»&(f)e-' '
S(&u —~» + -',i 1 )

i P,„dg(f)—
@( i,~), df

e '"'+ ~ ~ ~ . (A7)

This shows that the critical parameter in the ex-
pansion is

b, (f) ==1

1
21T

(~l) IQI kd~l

p e (~l )~ @lit

tl(&'- ~„+-,' iI'} (A4)

id8(t)/df i

|(d- CaP~, )

also that sharp derivatives cause nonadiabaticity.
The second term is out of phase. It should be noted
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I (t)-
I
P„P„/5,6I'I (t) . (A8)

that it was implicitly assumed that the spectrum of
the field e(&') is nonLorentzian.

There are several simple generalizations of the
above. The formula for the resonance Raman ef-
fect from second-order perturbation theory can be
treated similarly, giving, in the adiabatic approxi-
mation

t

4,(t) = d7 dkA»
w OO

x exp[--.' I (t —r)+t(Z, a—)(t —r)]

A» exp[i(E, —&)t]
t(z, —I )+-.'r~

~

a formula similar to Eq. (A4), it can also be
treated similarly.

(A12)

Similar extensions can be done for the two-photon
absorption and the Kramers-Heisenberg dispersion
formula. It should be noted that aO our results in
the main part of the paper can be reproduced in the
low- field limit.

Another extension can be made for the quantum-
electrodynamic formalism introduced by Kroll. '4

Using the formalism of Mukamel and Jortner" one
can obtain the formulas for the pulse:

y(t) — dye ei(»-»)t (A9)

e,(t) = dye(t) exp[-—' I'(t —7) —ir»v]. (A11)

The detuning 6= (k —E,)/h. Substituting Eq. (A9)
into Eq. (All), we get

where A~ are the quantum-mechanical field opera-
tors (vector potential). The photon counting rate is

& = I'&.(t) = I
I v,.I'I o.(t) I' (A10)

where
I V, I' is the matrix element, and the "exact"

solution is

gD —SB

SD= —(cos8)(6'+ y,'+Q')/(a'+y, '+r)Q') .
(B2)

It can be seen that for 0' » y, both g~, gD «]. Also
note that for a «y» and Q»y„y (strong field, on
resonance) the largest component is S", , it is of the
order y, /(r)Q), therefore a highly nonadiabatic sit-
uation prevails, o'. —= 90'.

APPENDIX B: STEADY-STATE SOLUTIONS OF

THE BLOCH EQUATIONS

For reference we list here the steady-state solu-
tions of Eq. (10). In the rotating frame:

Ss= ~Q/(~'+y, '+qQ'),
Ss = -y,Q/(~'+ y,'+ qQ'),

S,"= -(6'+ y,')/(n'+ y,'+ gQ') .
In the dressed-state frame,

SD = (S„"cos8 —Ss sin8)i+Ssy+ (S"„sin8+Sscos8)p,

glVU'lg

S~ = (sin 8)y 22/(~ '+ y,'+ rlQ'),
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