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The presence of coherent radiation fields can modify various atomic, ionic, and molecular
processes. We examine cases where the changes can be effected without actual absorption or
emission of photons. The radiation fields cause optical Stark shifts of the energies and dress
the nonadiabatic couplings between states. Rates of processes such as dissociation, predis-
sociation, atomic and molecular collisions can be radiatively controlled. Formation of new

avoided crossings due to radiative interaction gives rise to new phenomena. We give both exact
numerical results from which the influences of the radiation field on arbitrary configurations
can be calculated, and simple but accurate analytic results, from which these effects can be
conveniently assessed. It is shown that the inelastic transition probability is decreased at a
true crossing and is increased at an avoided crossing as a result of the presence of the non-
resonant radiation field. Furthermore, for two parallel levels with constant nonadiabatic
coupling, it is shown that the amplitudes of the nonadiabatic transition are invariant, but its
flopping frequency is reduced by the field. Depending on final measurements with the field on

or off, general behaviors of the inelastic transition probability as a function of the field para-
meters and the charge-system parameters are predicted and the possibility of inversion
(from a field-free value of less than 1/2 to a value greater than 1/2) is demonstrated. Ex-
perimental investigation with iodine molecules is suggested. Comparison of our nonpertur-
bative results with those of stationary perturbation theory shows that the latter is inadequate
in an important parameter region where the field modification of processes is greater than

I. INTRODUCTION

In the abscence of laser fields, nonadiabatic
transitions during molecular dissociation, predis-
sociation or in slow collision of atoms, ions, or mole-
cules are known to occur predominantly in regions
where the relevant energy surfaces are lying close
together. ' These include the important cases of
avoided crossing (pseudocrossing), true crossing,
and parallel-level configurations.

With the application of a laser field whose fre-
quency ~ is nonresonant with these near-degen-
erate energy surfaces (including the optically in-
duced shifts), no actual absorption and emission
of photons can take place. We show in the present
work that an intense laser field can nevertheless
significantly modify these processes through
energy structural change and through dressing the
field-free nonadiabatic coupling. This work is
motivated by the anticipated use of intense laser
radiation to control chemical reactions (e.g. , to
enhance the production of electronically excited
species), to modify energy-flow pathways, and
to provide a means of controlling isotopically
selective intra- and intermolecular processes.

Molecular energy surfaces are significantly
distorted in the presence of a sufficiently intense
optical field. ' The field-dressed energy surfaces
are functions of the field polarizations as well as

the intensity and the frequency. Thus, for a di-
atomic radiative-dressed quasimolecule, ' the
electronic energy surfaces are not spherically
symmetric. Both the energy shifts and its polari-
zation dependence can have dramatic effects on
purely elastic processes. '

Energy level shifts and the polarization depen-
dence of the effective coupling are also important
for optically resonant processes. The actual loca-
tion of the resonance on the energy surfaces and
its relative energy structure (and hence the line
profile and center) can change as a function of the
laser intensity, frequency and polarization. "'
For atom-atom scattering in intense laser field,
:the polarization dependence in the couplings at the
two crossings (the "same" crossing traversed
twice during one collision) can be exploited to
enhance population in the excited state by single or
multiphoton processes. '

In general both optically resonant""' and

optically nonresonant inelastic processes can oc-
cur in a given charge-field system [see Fig. 1(a)].
The present analysis examines the extent to which
a coherent field can alter the latter processes and

thereby complements the earlier studies '3' in
which inelastic transitions resulting in real absorp-
tion and emission of photons were emphasized.
We also note that for a process of interest, the
charge-field parameters can be such that only
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FIG. 1. {a) Illustration of charge-field adiabatic energy
surfaces Eo&, E02, and E&2 as functions of the internu-
clear separation(s) 8. Photon absorption and/or emis-
sion are involved at charge-fieM avoided crossings A
and C. No real photon absorption or emission is involved
in the fieEd-dressed avoided crossing B. The change in
transition probabilities at B due to the presence of the
laser field with frequency cu is an example studied in this
work. +~thicker lines in the figure are intended to
make the two 'principal" surfaces outstanding. (b) Illus-
tration of situation where no resonant absorption or
emission of photon can occur between energy surfaces
Eo& and E02 at any R, but the intense laser fieM changes
the transition probabilities at D.

transitions at optically nonresonant energy regions
have to be considered [see Fig. 1(b)j.

In Sec. II, we give the general theory applicable
to analysis of nonadiabatie transitions between an
n-level charge system4 interacting with m field
modes. Formulas expressing transition probabil-
ities for representative field-dressed true cross-
ing, avoid crossing and the parallel-level configu-
ration are given. In Sec. III, many general rela-
tionships are demonstrated and numerical results
for the optical Stark shifts and field-dressed non-
adiabatie coupling are given for a two-level charge
system interacting with one field mode. These
numerical and analytic results can be used to eon-
struet the field modification of any arbitrary con-
figuration. In addition, we show that the configura-
tions noted above in the presence of a constant-
amplitude field have the same form as their field-
free configurations. Furthermore, we demonstrate
that the entire effect of the field can be reduced
to a single multiplicative factor, for which accu-
rate numerical values as well as approximate
analytic expressions are given.

In Sec. IV, we compare the transition probabilit-
ies in the presence of the field as against those in
its absence for both collisionless and collisional
~ocesses. Many behaviors of the transition prob-

II. GENERAL THEORY

The Hamiltonian for the entire charge-field sys-
t6m ls

(2 1)

where h and h' are the free-field and the charge-'y

field interaction Hamiltonians, respectively. The
adiabatic Hamiltonian A for the charge system'
is a, function of a set of dynamical variables r
denoting the fast motion of the charge system,
while also depending on a set of parameter(s) R
denoting the slow motions. Depending on the
(quasi)molecular processes of interest, i't may be
the well-known adiabatic electronic Hamiltonian
(including the nuclear repulsion terms) or the
electronic-vibrational Hamiltonian. ' The energy
surfaces se and interaction matrix elements be-
tween wave functions y are obtained from the
solution of the eigenvalue problem, "

(2.2)

or from experimental measurements.
The solution of the eigenvalue problem of the

n (~2) level charge system interaction with m
(& 1) oscillating modes,

H4 =RE4, (2 3)

has been given earlier. "' The wave function 4'

is expanded in terms of the y and the photon
number state Q(N —v) with N being the initial mean
photon number in the single coherent field mode
(the case explicitly considered here),

N
4' = p a„(p)y se' ""'Q(N —p), (2.4)

5=~

where the cutoff integer M«N and a,(p) is the
probability amplitude in the ysQ(N —v) state when

abilities under the influence of the field are pre-
dicted. It is emphasized that different final results
are obtained depending on the field and charge
parameters at which final measurements are taken.
In Sec. V, we show the inadequacy of the station-
ary perturbation theory for those interaction
strengths that give rise to significant nonresonant
effects.

In Sec. VI, we consider a charge system with
more than two levels which is of more general
applicability especially for intense radiations.
Some results for the two-level charge system be-
come qualitatively valid while others have to be
modified. Through radiative interaction with
other levels, two true-crossing levels can give
rise to a new avoided crossing even at low-field
intensity. Possible experiment with iodine mole-
cules is suggested as an example.
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the charge-field system is in the eigenstate 4.
With h' = h" (a —a+)," the substitution of Eg. (2.4)
into Eq. (2.3) gives

n

Eagu) =II'„(o)a„(e)+ G(o. , P) [a„,(P)+a„„(P)],
=1

-m- v- M, (2.5)

we obtain

d
pa pa pa Cpa p a +p aut p a

where

(2.10)

(2.11)

which are solved by numerical iteration. The
solution gives both the eigenvalue E and the expan-
sion coefficients a„(P) of the eigenstate 4. The
unperturbed charge-field levels W„(o.) and the in-
teraction G(o. , P) are given by

is the nonadiabatic coupling between the charge-
field adiabatic states. The nonadiabaticity arises
from the parametric dependence of 4z, on R(t),
with A(t) determined classically on the appropriate
field-dressed energy surfaces E.

Using Eq. (2.4), we obtain

and

W„(o.) = (w —vh (u)/h

(2.6)

I

Cp p, .= -i aP„' —aP"

G(&z, P) = —iN"'(y„, II"ps)/h.

The G(n, P) depend on the field intensity and polar-
ization. In our convention, energies are measured
from Nh ~ and in angular frequency. We label the
charge-field adiabatic eigensolution (E~„4&,)
such that as the interaction G(o., P) -0,

&pg
-wp(o'),

4~ -y, e' ~'~'Q(N —p) .
(2.7)

ih —e(f) =II@(t),d
dt

the following expansion of 4 (i) in terms of the
charge-field adiabatic eigenstates 4p, ,

4(f) = QBp ~~(t)4'p 0,
p a',

(2.8)

(2.9)

Classical or quantum treatment of the remaining
slow motion denoted by R should be based on the
charge-field energy surfaces E, whose dependence
on the field intensity, frequency, and polarization
(besides 8) can be significant for intense fields.

To be useful, the above separation of the system
into a fast subsystem and a slow subsystem places
an upper bound on the motion of the latter. For
example, if the relative nuclear motions are
treated as slow compared to the electronic motion,
then the relative nuclear velocity v(10' cm/sec.
This is often denoted as slozv or near-adiabatic.
On the other hand, for the sake of simplicity (but
not essential, as noted above) we shall treat the
slow motion classically. This requires, generally
speaking, large quanta or De Broglie wavelengths
for the relative motions small compared to the
interaction scale length. " Such description is
adequate for a large class of (quasi)molecular
processes of interest, including atomic and molec-
ular collisions in thermal gases.

By substituting into the Schrodinger equation,

~ g a'„'(toa„'"'(P') (rps, q, ps'
(2.12)

which is pure imaginary if we choose ys's to be
real and the field polarization to be linear. By
hermiticity, Cp, p, =Cp, p, . The second sum

in Eq. (2.12) arises from field-free nonadiabatic
transitions which are now dressed by the field.
The first sum is nonadiabatic coupling through
interaction with the field, with the origin of the
nonadiabaticity being the slow motions of the

charge system and/or the nonadiabatic variation
of the field parameters. ' Because of the latter,
this sum may not be zero even when the slow mo-
tion of the charge system is negligible. On the
other hand, this first sum may be identically zero
because the radiation field does not xadiatively
couple the two charge-field adiabatic eigenstate

+~ and +p, i. An explicit example of this is given
in Sec. III. In the limit of zero interaction G(n, P)

0 C'p p
has the expected field -free value

—i(q„(d/dt)rP, i)5 pZi .
In general, Eg. (2.10) with the appropriate initial

values can be integrated numerically. On the
other hand, we expect that nonadiabatic transitions
occur predominantly where separations between
energy surfaces are small.

Earlier works have considered simultaneous non-
adiabatic transition between two ' or more' states
with photons emitted or absorbed, e.g. , between

%~ and 4p, ~ where p+p' and 0o'. Here, we

consider the class of situations for which p = p'
but 0 & 0', that is, transitions between states of
the charge system svithout real absorption or
emission of photons. We shall study in detail non-

adiabatic transitions between only two charge-
field states denoted by 4, and 4 „by examining
several important solutions of the coupled equa-
tions
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. dB)
ElBg + CluBN &

. dB„ —Eg Bg + Cgi B)
(2.13)

B„=0

Bq

with initial-value conditions

Bg=1, B„=O, at t=to. (2.14)

A. True crossing of field-dressed levels

One frequently encountered configuration in
field-free molecular energy surfaces is the true
crossing of two energy surfaces. For example,
a Z state may cross a 0 state with the nonadiabatic
coupling provided by the rotational motion of the
internuclear axis. ' In the presence of the field,
a field-free true crossing may remainasatrue
crossing under certain situations (see Sec. III).

A true crossing can sometimes be described by
the Landau-Zener model'4:

'o I

lat I

Bu= o2
= 0

Bu

v2 &)
I

I &t I

B =D)

Eu Et= at~ ~

C,„=const,

(2.15)

(2.16)

SR= D

'Pp

BR= D2

where u, is aconstant and v —= t —t, with t, beingthe
time at which the two levels E„and E, cross each
other. The solutions of Eqs. (2.13)with Eq s. (2.15)
and (2.16)are known. " The particular solution satis-
fying the initial-value condition Eq. (2.14) gives
the simple asymptotic formula,

(2.1V)

(2.18)

where

(b)

FIG. 2. (a) A field-dressed true crossing, and (b) a
field-dressed avoided crossing between energy surfaces
E„and E&. The B 's are probability amplitudes in E„
or E, . 7 is the time and e~ is the relative temporal
slope between E„and E&. H;& are the field-dressed
diabatic energy surfaces with the corresponding prob-
ability amplitudes D &.

where

if Eqs. (2.15) and (2.16) remain good approxima-
tion in the time interval v, to r such that Ia, I

ro'
»1 and lu, l

r'»1. This time interval defines a
corresponding "region of transition" on the energy
surfaces. See Fig. 2(a).

H=- U+
0

0

0

'I -t(C „d4,/dt)

(2.20)

-i(C „dO,/dt)
(2.21)

B. Avoided crossing between field-dressed levels

cfi —D = IID+ C".D,dt— (2.19)

For convenience of analysis of avoided crossing
between two field-dressed levels, we shall ex-
press Eqs. (2.13) in terms of radiative dressed-
cAQ5 Otic stQ/8 s 4j and 4 2 as basis

states�

. 0efining
e(t) =a, (t)4;+a„(t)4 „=D,(t)e, +D,(t)e, and hence
defining the unitary transformation U by B = UD,
we obtain from Eq. (2.13) the following equations
describing the coupling between the probability
amplitudes Dg D2 in the two radiative-dressed
diabatic states,

In arriving at Eq. (2.19), we have made use of

U+CU=zU+ —+ C" .+dU
dt

(a„If„)'+4';, = (Z-„-&,)'. (2.23)

The radiative-dressed diabatic states are defined
explicitly when U as a function of t is chosen.
Since the charge-field adiabatic eigensolutions

Furthermore, from the definition Eq. (2.20) we
can obtain relations between the II~~'s in terms of
the known quantities E, and E„:

H22+ Hll —Eg+ E (2.22)
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(&z„4P and (Ezi, i, kz, i) are uniquely given
whether p = p' (no real photon emission or ab-
sorption) or p 0 p' (actual photon absorption or
emission), the "perturbed states" defined in Ref.
6 may be regarded as a specific set of radiative-
dressed diabatic states which are already given
explicitly in the process of solving the charge-
field adiabatic eigenvalue problem.

The Landau-Zener model" for the radiative-
dressed diabatic states assumes that U is chosen"
such that

(2.24)

B,(v) =- (- n, sin —,'QT+ iQcos ~ QT)e 'A'~',
EQ

B„(T)=A(sin-,'QT)e '~"",

where

Q =-[~'+ 4Ic,„I']"', a =--i2c,„/Q,
A -=E„+E„and w=-t —to.

(2.35)

Returning to the general state 4(t} given by Eq.
(2.9), we note that the probability of measuring
the charge-field system in a, given state
cp e Q(N —v) ls

22 11 g

H„=const.

Then from Eq. (2.23) we have

(2.26)

(2.26)

(2.36)

Thus the probability P(p) of finding the charge
system in the state cp8 with all its sidebands is
given by

and

2H„=(E„-Z,) . ,

H22 —H„=a[(E„—E, ) —4H,'2]'~'.

(2.27)

(2.28)

(2.29)

It can further be shown from explicit expressions
for U;~ that as (H„—H„)'» 4H'„,

4&-4, and 0„-4„ for H„-H„&0,

(2.37)
2

&(P) = Q g B, , (&)a~ ' (P)
U p Q

It depends not only on time f through Bz, (t) but
also on the field parameters at t through the
a~ ' (P)'s. For example if the system is probed
after the laser field is slowly "turned off"
[G(a, P) -0], a~ '

(P) = 6z „5, q, and we have sim-
ply

4'2 and 4 -Ci~ for H22 Hll 0 (2.30) I'(0) = g I B.a(f) I'. (2.38)

[see Fig. 2(b)]. Therefore, the asymptotic formu-
la for the solution" to Eq. (2.19), satisfying the
initial-value conditions (2.14) and subject to the
approximations (2.24)-(2.26) over the entire time
mterval (7„T) such that ro'» Io., I

and 7
»n, ', is

(2.31)

III. TWO-LEVEL CHARGE SYSTEM WITH SINGLE FIELD
MODE

In Secs. III-V, we shall restrict ourselves to a
two-level charge system interacting with one field
mode. Equation (2.5) becomes

where

(2.32) [B —W,(e)]a„(o)= G(o., P) [a „, ,(P) + a „„(P)],
o. & p, e, (=1,2, -M~ v&M, (3.1)

P, = H'„/Io. .I
.

C. Parallel levels with constant nonadiabatic coupling

E„-E, =— 6 = const, (2.33)

C,„=const.

The solution to Egs. (2.13) and (2.14) for this
configuration is straightforward:

(2.34)

For special and limited regions of the energy
surfaces, the energies and the nonadiabatic coup-
ling may be approximated by

where G(o. , o.}contributing to the photoprocesses in
the slow motion has been neglected. ' The eigen-
value problem is completely characterized by only
two ratios,

G(1, 2)/&u = G(2, 1)/&u and W/&u, (3.2)

where W =—se, -u, is assumed to be =-0 without loss
of generality. Since nonadiabatic transitions are
expected to be important where zo, and u, lie close
together and since we are interested in changing
these transitions by optically nonresonant effects,
the range of parameters of interest is described
by W/&u & 1.

It can be seen from Eg. (3.1) that a„(1)for even
v, are coupled with a„(2) with odd vo only. Be-
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a„(n) =d„(n)a,(1), o. =1,2,
which implies

d, (1)=1.
For v&0, we let

d.(o) =- T,(a, P)d, ,(P), «P,

(3.3)

(3.4)

(3.5)

where v and n are of oPposite parities (even or
odd integers}, since we are solving for an odd-
parity solution. It can be shown from Eg. (3.1)
that T„satisfies the following scala~ recurrence
relation

G(~, P)
Z —W„(n) G(n, P)T„-„(P,o.)

'

cause of our convention Eq. (2.7), these are the
only nonzero coefficients in 4 z, where (-1)~"
= -1 and we shall call such charge-field adiabatic
eigensolutions "odd-parity. " On the other hand,
a „(1)'s are coupled with only a, (2)'s and they
together form the nonzero components of any
"even-parity" charge-field adiabatic eigensolution
4~ where (-1)~+'=+1. For the same reason, the
following method of solving Eq. (3.1) to obtain
(E», 4») or (Z0„40,) belongs to the nondegenerate
case, even when m, and so, are (near) degenerate.
The procedure is equivalent to that used by Kroll
and Watson. " To obtain all the numerical results
in Secs. IV and V, we require the eigensolution
(E», 40,) only, a fact that will be shown in sub-
sections A-D below.

To obtain (E», 4»), we let

for a sufficiently large positive integer v=—M+ 2

such that v» (E -zv )/&u and v»G(1, 2)/~. In
v & 0, the T'„(o., p) defined by

d, (o') =- T'.(a, P)d„,(P), (3.8)

satisfies a similar scalar recurrence relation
and limit for a large negative v= -M —2. The
eigenvalue E„is obtained by iterating the expres-
sion based on Eg. (3.1) for v= 0, @=1,

E, = W, (1)+ G(1, 2)[T',(2, 1) + T, (2, 1)j, (3.9)

where d, (l) =1 has been used. Thus, starting with

T„„=0 (T'„,=0) for an even integer M (-M),
we obtain all T„(T'„)for v& 0 (& 0), and hence the
right-hand side of Eg. (3.9). This iteration pro-
cedure gives both Epy and after normalization, the
eigenvector 4„=a through Egs. (3.3), (3.5), and
(3.8}.

All the nonperturbative numerical results given
below have been obtained by the above method
with M= 6. These results are accurate to at least
5 significant figures. For example, using M = 100
would not improve the accuracy of the results
shown. Table I gives the values of the shift

Z„-W,(1)
(d

For 0.55&G(1, 2)/~ &0.3, the results show that 5
increases roughly linearly with G(1, 2). The initial
trial value for iteration was generated by 5=0
for G(1, 2)/&o& 0.05 and by linear extrapolation for
larger values of G(1, 2)/ar. (Alternatively, the
result in Eq. (3.34) can be used. ) Convergence
became difficult for G(1, 2)/» &0.55 and W/~& 0.2.
We ascribe this to the necessity of treating the
W, (1) and W, (2) levels as near degenerate for such
strong interaction. This is reasonable because

TABLE I. Exact values of ac Stark shifts of energy level w~, (5/ =—[Eo~ —Wo(f)]/m, for a two-level charge system
interacting with single laser-field mode of frequency ~. G(f, 2)/v is the interaction and W/u —= (w2 —w&)/u is the field-
free energy difference between the two levels w& and w2. The energy shifts of energy level w2 is —6/u. .The notation.
A (n) means A& 10".

G(1, 2)/cu W/cu io-4 0.01 0.1 0.2 0 ~ 3 0.4 0.5

0.of
0.05
0.1

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

1.9998 (-8)
4.98V5 ( V)

1.98Oi (—6)
4.3998 (-6)
7.6856 (—6)
i.iv4o ( 5)
1.6443 (-5)
2.165v (—5)
2.v2so ( 5)
3.3001 (—5)
3.88O5 (—5)
4.4482 (—5)

2.0000 (-6)
4.9880 {—5)
1.98OS ( 4)
4.4ooi ( 4)
7.6863 (-4)
1.1741 (—3)
1.6444 (-3)
2-. 1658 (-3)
2.723f (—3)
3.3002 (-3)
3.88O6 { S)
4.4483 (—3)

2.0200 (-5)
5.0373 (—4)
1.9991 (—3)
4.4394 (-3)
7.7489 {—3)
1.1826 (—2)
1.6548 ( 2)
2.1773 (-2)
2.vs5o ( 2)
s.sii6 ( 2)
S.8911 (—2)
4.4573 {—2)

4.1662 (-5)
1.0385 (—3)
4.1165 (—3)
9.1244 (-3)
1.5888 (-2)
2.4179 (—2)
3.3732 (-2)
4.4249 (-2)
5.5420 (-2)
6,6927 (-2)
7.8454 (-2)
8.969S ( 2)

6.5924 (-5)
1.6421 { 3)
6.4941 ( S)
1.4343 (-2)
2.4862 (-2)
S.V644 ( 2)
5.2235 ( 2)
6,8159 ( 2)
8.4943 (—2)
1.0212 (-f)
1.1925 ( f)

9.5218 (-5)
2.3686 (—3)
9.3300 (-3)
2.0482 {-2)
3.52S9 ( 2)
5.2922 (—2)
V.28Si (—2)
g.42gi ( 2)
i.f66v ( 1)
1.S9S8 ( 1)
f.6188 (-1)

1.3329 (-4)
3.sovv ( 3)
f.2939 ( 2)
2.8116 (-2)
4.7800 (—2)
7.0904 {—2)
9.642V ( 2)
f,2349 ( 1)
1.5is5 ( 1)
1.7935 (—1)
2.0689 (—1)
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as W/&u approaches 1, W, (1) and W, (2) are degen-
erate for any G(1, 2)/(d. But for strong interac-
tion where the radiative interaction becomes com-
parable to the photon frequency (2G(1, 2) = &u), for
better convergent property, the new eigenvalue of
apparently nondegenerate level should be obtained
by the degenerate case in the charge-field adia-
batic eigensolution. "'

A. General relations

General relations exist among the eigensolutions
of the charge-field system that considerably sim-
plify the calculations. From Eq. (3.1), it can be
shown that'7'

(3.10)

the interaction between the two degenerate states.
Furthermore, one has the following relation for
the case S'=0,

(3.17)

for any G(l, 2). This can be shown by writing out
the explicit expressions for T02(P„n) and T0'(n, P)
and making use of Eq. (3.16). It is then obvious
that the equality, T„''(P, n) = T„"(n,P) immediately
implies the result of Eq. (3.17). Note that Eq.
(3.15), which is true for any W, is valid for W= 0:

(3.18)

This result and Eq. (3.17) imply the relation
a,"(P)= (—1)"a'„'(P) between components of 40,.

For G(1, 2)/(0~ 0.1 and W/(d ~0.\, it can be
shown that

a~"(n }= a„"„(n). (3.11)

a02(n) a01(J3)

and furthermore,

If p is even (odd), these relations give new eigen-
solutions of the same parity (different parities) of
the same o as (E„,4„). Another set of relations"
1S

a„"(n)=( 1)"a'„'(n),

within an uncertainty of a few percent.

(3.19)

E = MI2+ 28 —P0Q) —E00
(3.12) B. Simplification of field-dressed nonadiabatic coupling

(3.13)

where p0 is odd integer and 0 4 7'. For 0 = 1, these
relations connect even-parity solution (E,,„+,,)
with even-parity solution (E02,402) For o =.2,
they connect odd-parity solution (E, „qd») with
odd-parity solution (E02, 4»). As a consequence
of Eqs. (3.10)-(3.13), we have

EP 2
= 162+ 28~ —P~& —E0~ ~

p, = even integer, (3.14)

a„''(n) = (-I)"a", ,(P), n V P .
Thus, once (E», 4») is known, all other eigen-
solutions can be obtained conveniently by Eqs.
(3.10)—(3.15).

We now show that for a two-level charge system, a
true crossing remains as a true crossing for any
oscillating field strength, contrary to the case for
static fields. Indeed, at 8'=so, —M, =O,

(3.16)

for any interaction strength G(1, 2). This can be
seen by substituting explicit expressions of T„and
T„' into Eq. (3.9). Then the ansatz, E„=u)„ indeed
satisfies Eq. (3.9). Finally, use of Eq. (3.14) with

p, =O gives E„=ze,. This result is also expected
from consideration of the symmetrical nature of

Use of the relationships in the preceding sub-
section simplifies the expression for the nonadia-
batic coupling C„,,, given in Eq. (2.12). For the
case of a two-level charge system (P= 1, 2 only),

C„„=-t g a'„'(P)
d,

a'„'(P)
L Vg

+ Q a'„'(P)a„''(P') y(), pt), . (3.20)
vgg'

The first sum vanishes because one of the two fac-
tors in each term is identically zero. A similar
argument and use of (y„(d/dt)y, )= -(y„(d/dt)y2),
Eq. (3.15}with p, =0, and Eq. (3.3) enable us to
write the second sum in the following form:

lg0Co
—i(y „(d/dt) y, )

= la '(1)l'()+21 d„'(1)d"' (1)
V+0

+ 21, d„"(2)d" (2)) . (2.21)
V00'0

The factor x, therefore, denotes the ratio of the
field-dressed nonadiabatic coupling to the field-
free value. As the interaction G(1, 2)/(0-0,
a,"(1)-1,and d (P0)~2-0. Thus, r has the correct
limit of unity.

It can be shown that the radiation field alu)ays
reduces the nonadiabatic coupling, i.e., x&1. Al-
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though the numerical results obtained for a wide
range of parameters G(1, 2)j(o and W/u& in Table II
substantiate this assertion, this fact can also be
established analytically for a more limited range.
For W/(d=0 and for any G(1, 2)/(d, use of Eqs.
(3.17) and (3.18) in Eq. (3.21) yields the rigorous
expression,

Since the important region of transition in the
Landau-Zener model for true crossing cor-
responds to small(W/(d, C,„ is constant over this
region if the field-free quantity -i(y„(d/(f&)(o, )
is also.

Values of the shift 6/&u in Table I show that there
is a range of W/(o (~0.3 for values of G(1, 2)/(o
~ 0.5 in Table I}over which for a given G(1, 2) j(d,

1+2' ~d'„'(l(~~' —2g ~d„",(2)~'j
~QP Pf)PP

&+ & 2 I&:',(o I'+ &Q ~d.",(&)~')
@+0 pphp

(3.22)

6/W const, (3.24)

to a very good approximation. " 'This can be seen
from Eq. (3.34b) below. Using this result and Eq.
(3.16) we can show that for the Landau-Zener mod-
el of true crossing.

where we have inserted the expression for the
normalization constant ~ao"(I) ~. It can be seen
that ~~1 always. Furthermore, as the interac-
tion G(1, 2)/(d becomes larger, there is more
probability P, in the sidebands (see Sec. V below)
with the leading term being 2

~

d", (2) ~', and hence
r becomes smaller. For G(1, 2)/(d(0. 1 and W/(d

6 0.1, use of Eq. (3.19}shows that the result
in Eq. (3.22} is approximately valid.

C. Invariance of the form of some configurations

Results for r in Table II for given G(1, 2)/(d,
but different W/(o clearly show that over a range
of W/(d~ 0.3,

x = const, (3.23)

to a good approximation. " This is shown in Eq.
(3.35b} below. Thus if the original near degenerate
levels 'zv, and zv, and field frequency falls within
this range, we should expect that the field-dressed
nonadiabatic coupling C,„will follow the variation of
the field-free nonadiabatic coupling —i(y „(d/dt)y, ) .

«Eoo —Eoi) o-Of)= = -Cga ~ (3.25}

where

(3.26)

and -not = dW/dt is the —relative slope of the field-
free true crossing. This and the result of the
previous paragraph lead us to the conclusion that
in the presence of a constant-amplitude laser
field, if the region of transition is within the
range of W/(o such that Eqs. (3.23) and (3.24) are
valid, then the field dressed co-nfiguration of a
field free Land-au Zener -true crossing is also a
Landau-Zenex true crossing.

For the avoided crossing, similar conclusions
can be drawn as well. Use of Eq. (3.24) shows
that (E„-E„)'is minimum where W' is minimum.
Furthermore, from Eqs. (2.27), (2.28), and (3,24)
we obtain

(3.27}

TABLE II. Exact values of r, the ratio of the field-dressed nonadiabatic coupling
i(4q, (djdt)4g to—the field-free nonadiahatic coupling —i(y(, (dldt) yt}, for a two-level charge

system interacting with a single field mode of frequency cu. G(1, 2)/co and W/e are defined as
in Table I.

G(1, 2)/ W/cu 10 0.0i. 0.1 0.2 0.3 0.4 0.5

0.01
0.05
0.1

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0.999 60
0.990 02
0.960 40
0.912 00
0 ~ 846 28
0.765 20
0.671 13
0.566 85
0.455 40
0.339 99
0.223 89
0.11.0 36

0.999 60
0.990 02
0.960 39
0.91199
0.846 26
0.765 17
0.671 09
0.566 81
0.455 36
0.339 95
0.223 86
0.11034

0.999 59
0.989 83
0.959 64
0.91045
0.843 84
0.761 96
0.667 32
0.562 80
0.451 45
0.33645
0.220 97
0.108 15

0.999 57
0.989 19
0.957 24
0.905 54
0.836 22
0.75195
0.655 69
0.550 55
0.439 62
0.325 91
0.212 32
0.10163

0.999 52
0.987 99
0.952 76
0.896 53
0.822 50
0.734 31
0.635 63
0.529 84
0.419 97
0.308 66
0.19830

0.99943
0.985 96
0.945 29
0.881 91
0.800 94
0.707 56
0.606 22
0.500 40
0.392 73
0.285 23
0.179 55

0.999 29
0.98249
0.932 99
0.858 91
0.768 76
0.669 64
0.566 44
0.462 14
0.358 47
0.256 47
0.156 94
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and hence,

-n = —OtD,0
a 6

(3.28)

(3.29)

(3.30)

Thus, a., is constant if n,' is. Therefore, if Eq.
(3.24) is valid over the region of transition, then
the field dress-ed configuration of a field-free
I andau-Senex avoided crossing is also a Landau-
Senex avoided cxossinf .

For the configuration of parallel levels with non-
adiabatic coupling that is not necessarily constant,
it is obvious that the energy levels will remain
parallel for a constant interaction G(l, 2) and ac-
cording to Eq. (3.21}, the nonadiabatic coupling is
scaled by a constant ratio. Thus, this configura-
tion will also remain invariant in form. Of course,
a configuration will not in general remain invar-
iant in form for an interaction G(l, 2) with varia-
tion due to field intensity and/or transition mo-
ments. '

D. Reduction of the formulas

The single parameter p, in the Landau-Zener
formula for field-dressed true crossing appear-
ing in Eqs. (2.17) and (2.18) can now be written in
the following form by use of Eqs. (3.21) and (3.25).

Pg-Pgqg ~

where

(3.31a)

(3.3lb)

is a rnultip/icative factor due to the presence of
the field and the quantity

is the field-free parameter that would occur in
the field-free Landau-Zener formula. Note that
q, approaches unity as G(1, 2) vanishes, as ex-
pected physically.

Similarly, the parameter P, in the Landau- Zener
formula for field-dressed avoided crossings ap-
pearing in Eqs. (2.31) and (2.32) can be written
as a product of the corresponding field-free pa-
rameter p,'-=W„'/4

~
n,'

~

and the factor

q. =D,

by use of Eqs. (3.27) and (3.29). That is

~a =Paqa ~

(3.32a)

(3.32b)

where 8' is the minimum value of 8'in the avoided
crossing and no is the relative slope of field-free
diabatic levels

D=x, (3.33)

with a relative difference less than 0.04 for W/v
~ 0.3 and with a relative difference less than 0.06
for W/&o» 0.5. The agreement between D and r is
actually better than the approximations (3.23) and
(3.24). We can derive Eq. (3.33) and at the same
time obtain approximate formulas for 5, D and r.
By keeping terms (a) of order G'(1, 2)/~' or (b)

in which q, has the expected limit of unity as
G(1, 2) -0.

Since 8'~25~0, q, =D is always «1. Thus,
the field-dressed parameter P, for avoided
crossing is always less than the field-free param-
eter p, . According to the Landau-Zener formula
Eqs. (2.31) and (2.32), for avoided crossings the
presence of the laser radiation alivays increases
the inelastic transition probability ~B„~' and de
creases the elastic transition probability IB
This can be understood as follows. For W&(d,
the two levels shift closer together such thai the
shift is larger for larger level separation W [see
Eq. (3.24)]. Therefore, the relative slope is re-
duced by a factor of D as shown in Eq. (3.29}.
However, the minimum of the level separation 8'
is also reduced by a factor of D in the presence of
the field as in Eq. (3.27). The latter mechanism
dominates over the change in relative slope be-
cause it is the ratio of the square of the level
separation to the relative slope that enters into
the Landau-Zener parameter p, Thus, it may
be stated for simplicity that because the laser
field shifts the energy levels of the avoided cross-
ing closer together, the probability of an inelastic
event is increased.

We have shown above in Eq. (3.22) that r»1. It
is shown immediately below that D=x as a good
approximation" at least over the ranges of pa-
rameters G(1, 2)/~» 0.5 and W/&o» 0.3. There-
fore, q, » 1 and the field dressed parameter p, is
always smaller than the field-free parameter p',
for true crossing. According to the Landau-Zener
formula Eqs. (2.17)- (2.18)for true crossing, the
inelastic transition probability ~B„~ is decreased
in the presence of the laser field while the prob
ability for the elastic process ~B,

~
is increased.

This can be understood because the field reduces
the nonadiabatic coupling. Although the field also
reduces the relative slope (n = n,D), the parameter
p, in the Landau-Zener formula for true crossing
contains the ratio of the square of the nonadiabatic
coupling to the relative slope, so that effect of the
former dominates.

A comparison of the values of D in 'Table III with
the corresponding values of ~ in 'Table II reveals
the interesting fact that over the range of G(1, 2)/+
(» 0.5) considered,
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TABLE III. Values of D:—1 —26/W, the multiplicative factor measuring the change of energy
level separation or relative slope of energy levels under the interaction with laser field. Note
the (near) equality of D with the corresponding value of r in Table II. This (near) equality leads
us to represent the entire effect of field on several configurations by this single multiplicative
factor.

C (1, 2)/u &V/u 10+ 0.01 0.1 0.2 0.3 0.4 0.5

0.01
0.05
0.1

0.2
0.3
0 4
0.5
0.55

0.999 60
0.990 02
0.960 40
0 ~ 846 29
0.671 14
0.455 40
0.223 90
0.11036

0.999 60
0.990 02
0.960 39
0.846 27
0.671 12
0.455 38
0.223 88
0.11034

0.999 60
0.989 92
0.960 02
0.845 02
0.669 04
0.453 00
0 ~ 221 78
0.108 54

0.999 58
0.989 62
0.958 84
0.841 12
0.662 68
0.445 80
0.215 46
0.103 07

0.999 56
0 ~ 989 05
0.9/6 71
0.834 25
0.651 77
0.433 71
0.205 00

0.999 52
0.988 16
0.953 35
0.823 81
0.635 85
0.416 65
0.190 60

0.99947
0.986 77
0.948 24
0.808 80
0.614 29
0.394 60
0.172 44

of order (W Eo,)/~-in T, and T'» we obtain from
Eg. (3.9) the formulas for optical Stark shifts:

2W[G(1, 2)/(o]'
{1-—[G (1, 2)/(u]'] '+ 2 [G(1, 2)/&a)]'- ( W/(o)"

(3.34a)

0.5 ,

0.3

0.2

I I

(3.34b)2W[G(1, 2)/~]2
{1——,'[G (1, 2)/(o]'j' + 2[G (1, 2)/&u]'

'

and from Eq. (3.21) the formula for tbe ratio of
nonadiabatic couplings,

{1-—,
'

[G (1, 2)/(u]']'- 2 [G (1, 2)/(u]'- (W/(o)'

{1——,
' [G(1,2)/(u]'j'+ 2 [G (1, 2)/(u]'- (W/(u)'

0.3

~ ~ ~ ~ ~ P e ~ ~ ~ ~

~ ~ ~

-0.~

0.8

I ~
I

{1-—,'[G(1, 2)/~]']. '- 2 [G (1, 2)/(u]''"' {-l[G(, )/~Ã'+ I:G(1 2)/~j'

(3.35a)

(3.35 )
0.6

0.4
ln Fig.. (3), we compare values of these formulas
with the exact numerical results and found them
to be good approximations for W/ur ~ 0.3. Eels.
(3.34a) and (3.35a) are better approximations for
G(1, 2)/~ ~0.4 while Eqs. (3.34b) and (3.35b) are
better for G(1, 2)/&u &0.4. Using the definition for
D in Eg. (3.26) we obtain with either set of formu-
las the important result, Eg. (3.33). For [G(l, 2)/
~] ~ 0.35 and ( W/&u) —0.3, results of D based on
Eq. (3.34a) agree with the exact D value to the
same extent as the agreement between the exact
x and D values, namely with relative differences
less than 3%. For 0.5& G(1, 2)/+&0. 35 and W/&u
~ 0.4, calculated D values using Eq. (3.34b) agrees
with the exact D values within t/g.

Tbe significance of Eq. (3.33) is that D, defined
in terms of energies, is more easily and accu-
rately known than x, defined in terms of wave-
functions. Another important consequence is that
a single factor q accurately characterizes the en
tire effect of the field on both the true and avoided

0.2

-0.2
0

02
I

0.
l =XIQ'

0.1 0.2 0.3 0.4 0.5 0.6
G(1,2)/~

FIG. 3. (a) Comparison of the analytic results Eq.
(3.34) for the ratio of the optical Stark shift 6 to the un-
perturbed energy separation W between two levels, with
exact numerical results; and (b) comparison of the analy-
tic result Eq. (3.35) for the ratio of field-dressed non-
adiabatic coupling to its field-free value, with exact
numerical results. In both figures, the solid line shows
the behavior of the respective quantities, where their
approximately linear dependence on the interaction
G(1, 2)/co for values ~0.3 should be noted. To bring out
the differences, the dashed lines and the dotted lines
labeled by W/~ are plots of the expression [(analytic
value/numerical value) —1], for analytic values given
by Eqs. (3.34a), (3.35a), and by Eqs. (3.34b) and (3.35b);
respectively.
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crossings in tke Landau-Senex model. Therefore
we have

q:q =D=x=q&. (3.36}

A=DQp, (3.38)

where Qp is simply the field-free "flopping" fre-
quency,

2- X/2

Qp =— 8"+ 4 —i y„—y2"dt
and that the amplitude A of inelastic transition is
invariant in the presence of the field,

A =Ap =——i2 —i P~~ —P2 Qp.
d

"dt (3.39)

By Eq. (3.14), A = E„+E, = zo, + zu, Thus. if W/&o

~0.3, and G(1, 2)/or~0. 5, the amplitudes (coeffi-

We now have available an approximate expression
in the form of Eq. (3.35) which enables rapid and
reasonably accurate estimates of the q factor to
be made.

The solution, Eq. (2.35), for the configuration of
parallel levels with constant nonadiabatic coupling
can also be simplified. Similar to Eqs. (3.24), it
can be shown that

(3.3V)

where D is previously defined in Eq. (3.26). Use
of this and Eqs. (3.21}and (3.33) shows that tbe
field-dressed "flopping" frequency is reduced by
the multiplicative factor D(~ 1),

cients of sin20t and cos~Qt) in Eq. (2.35) remain
approximately invariant in the presence of the
nonresonant field, but the flopping frequency is
reduced by a factor D.

Finally, we point out that the many simple re-
lations in subsec. B-D remain to be valid for
larger G(1, 2)/co than those shown. However, the
corresponding region of W/&u will be smaller than
W/&o ~ 0.3.

E. Symmetries of the two states

In the above discussions, we have assumed that
the radiative interaction G(1, 2) between the two
states p, and y, is nonzero. Furthermore, ac-
cording to Eq. (3.21), the field-dressed nonadia-
batic coupling C„„for a two-level charge sys-
tem remains to be zero if its field-free counter-
part C,', »= -i(y„(d/dt)y, ) vanishes. Therefore,
if either G(1, 2) or C,', 02 vanishes in a particular
energy surface region, the presence of the laser
field does not modify the field-free transition
probabilities. We consider below the symmetry
properties of the two states such that G(1, 2) and
C,', „are nonzero.

For specific discussion, we consider diatomic
molecules. For simplicity we shall assume that
spin-orbit interaction is negligible. The above
theory is applicable to magnetic dipole and elec-
tric quadrupole transitions as well as electric
dipole. "' The selection rules for electron-radia-
tive interactions in diatomics are well known":

Electric dipole

g~u
g g~ u u

&A=O, +1

Magnetic dipole

g~gy u ~u

g7 u

bA=O, yl

Electric quadrupole

g~g~ u~u

~A=0, +1, +2

(3.40a)

(3.40b)

g~g~u~u ~

bA=O, +1.

(3.41a)

(3.4 lb)

For diatomics of unequal nuclear charges, a
true crossing is possible only for &AOO while
an avoided crossing requires ~A = 0. Correspond-
ing but different statements can be made for one-
electron diatomics. For other configurations, both
&A=O and &A40 are possible. These considera-
tions together with Eqs. (3.40b) and (3.4lb) lead
to the conclusion that for unequal nuclear charges,

where g and u stand for geode and ungexade sym-
metry for equal nuclear charges; and A is the com-
ponent of the electronic angular momentum along
the internuclear axis. Similarly, the field-free
nonadiabatic coupling is nonzero if

r

G(1, 2) (electric dipole or higher multipoles) and

Cpg p2 are nonz ero for a true crossing if '~A + 1
for an avoided crossing if &A=0; and for other
configurations if &A=O, +1.

For diatomics of equal nuclear charges, a true
crossing between two electronic energies is pos-
sible if &AWO or g u is true. If the relations
4A=+1 andg g or u u hold, then Cp', ,» is
nonzero and the radiative interaction G(1, 2) is
due to magnetic dipole or electric quadrupole. In
all other cases, C,', „=0or G(1, 2) =0. Tbe sym-
metries of the two states giving rise to an avoided
crossing must satisfy both EA=0 and g g (or
u —u). In such cases, Co» „is nonzero and the
radiative interaction is magnetic dipole or electric
quadrupole. For other configurations, C,, „and
G(1, 2) are nonzero if both AA=O, +1, andg g
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or u N hold true. Thus we see that in all cases for
a two-level diatomic of equal nuclear charges, the
radiative interaction is through magnetic dipole
or electric quadrupole if C'„„has to be nonzero.

IV. RESULTS FOR FIELD MODIFICATION OF
COLLISIONLESS AND COLLISIONAL PROCESSES

Collisionless and collisional processes may in-

volve only a single transit of the crossing region
per elementary event, as often the case in dis-
sociation, predissociation and in molecular col-
lisions. In atomic collision, however, at least
two crossings are involved. Application of an in-
tense laser can change these processes as shown

by numerical results in this section and gives rise
to new processes due to formation of new cros-
sings (see Sec. VI). Based on analysis of the pre-
vious sections, we will compare the various
probabilities of processes taking place in presence
of radiation field with the probability for the same
process in its absence. The difference is a func-
tion of both the interaction parameter G(1, 2)/&u

and the field-free Landau-Zener parameter P„
which may be evaluated as either p,'- for true
crossings or p,o for avoided crossings.

A. Processes with single crossing

Based on the Landau-Zener formulas Eqs.
(2.17)-(2.18) and Eqs. (2.31)-(2.32), we define

S»=e "~~», i—= t or a (4.1)

-27rP p
p

(4.2)

For true crossings (i = t}, S, =—[B,[' is the proba-
bility of the elastic process, and T,

—= 1 —S, is the
inelastic tr ansition probability. For avoided

crossings (i=a), S, = [8„['is the inelastic transi-
tion probability, and 7;= 1-S, is the probability
of the elastic process. Sp and Tp= 1 S'p are the
corr esponding field-fr ee probabilities. Note that

(4.3)

Although we use either q, or q, in the actual eval-
uation,

St =Sa~ (4.4)
/

because q, =q, =—q to a good approximation. Thus,
the results for one kind of crossing are applicable
to the other with the above interpretation.

The dependence of S; on the field intensity is in

general exponential, not linear. Furthermore,
for a given interaction strength G(1, 2)/~, the ef-
fect of the field can be strongly amplified by the
multiplicative factor 2wpp appearing in the expo-

nent. Thus for given G(1, 2)/u& (that is, for a
given laser intensity, polarization, and frequen-
cy), the other experimental conditions can be
chosen such that pp is of the right magnitude in

order to see the desired effects of the field. When

2wp, (hence 2',q;) is small, only the following

quantities are linear in (G(1, 2}/u}' when (G(1, 2}/
~)2« 1 '

S) ——1 —2', +8', [G(1, 2)/(u] ' = 1 —T),

S( —So = 8vPo G'(1, 2 )/(o' = —(T). T~),. —
(4.5)

where Eqs. (4.1), (4.2), (3.32) or (3.31), (3.37),
(3.26), and (3.34) have been used. Thus the net

effects of the field, (S; —S,) or (T, —T,), would be

proportional to the laser intensity, the square of

the cosine of the angle between the polarization
and the transition moment, and (for given intensity)

inversely proportional to the square of the laser
frequency, only if 2wP, and [G(1, 2)/&u]' are both

small compared to unity.
Table IV gives the numerical results of the field-

, free probability S, and the field-dressed proba-
bility S,(=S,= S,). Although these results were
computed from values of r and D for a given value
of W/v = 0.1, their values for any other W/&u ~ 0.3
could have been used [cf. Eqs. (3.23) and (3.24)].
The ranges of parameters G(1, 2)/&o and P, are
chosen to give an indication of some regions where

the presence of the field increases S, by more
than 1/p. For a given P„S,. increases as the in-
teraction G(1, 2)/e increases. In all cases,
S» ~ Sp. Furthermor e, the region where S» & 0.5
while S, &0.5 means that the inelastic transitions
at avoided crossing is inverted due to the applica-
tion of the intense field. It is seen that for given

G(1, 2)/&u, the multiplicative exponent 2vP, cer-
tainly amplifies the effects of the field many fold.
The range of P, illustrated is that typically en-

countered in molecular systems: e.g. , for a min-

imum energy separation of avoided crossing= 0.1
ev, a force dW/dR at the crossing =0.1 eV/a„and
a thermal relative velocity of 10' cm/sec, P, = 2.

If the charge system is measured after the field
turns off slowly, Eq. (2.38) indicates that P(2), the
probability of finding the charge system in state
y„equals S, for avoided crossings and equals
1-S, for true crossings. For this case, Table IV

indicates that the influence of the field on cros-
sings is less than 1% if both P, ~ 0.1 and G(1, 2)/e
~ 0.05 are valid. To obtain the intensity I corre-
sponding to the dimensionless quantity G(1, 2)/&o,

the following relation is useful,

G(1, 2)/&u= 5.8577x10 'Xpf' ',
where the wavelength X is in gm, I is in W/cm',

and p. in atomic unit is the appropriate dipole or
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TABLE IV. The Landau-Zener probability S; (=e" '~&) in the presence of the field for various
interaction G(1, 2)/cu and field-free parameter po. S; is the elastic probability for field-dressed
true crossing or the inelastic transition probability for field-dressed avoided crossing. So
=e ~o is the corresponding fieM-free probability. S; always ~S 0. Values marked with an
asterisk are those S; & 0.5 for which the corresponding Sp & 0.5. Notation A (n} means A. x 10".

PO sp 0.05 0.1

t"(1,2)/u
0,3 0.45 0.50

o.i
0.10
0.12
0.15
0.26
0.50
1.0
3.0
5.0
7.5

10

0.939
0.533
0.470
0.390
0.195
0.43 (—1)
0.19 (-2)
0.65 (—8)
o.2s ( is)
o.s4 ( 2o)
0.52 (-27)

0.940
O. 537
0.474
0.393
0.199
O.45 ( 1)
o.2o ( 2)
o.v9 ( 8)
o.si ( is}
0.56 (-20)
o.98 ( 2v)

0.942
0.547
0.485
0.405
0.209
0.49 (-1)
O.24 ( 2)
0.14 (—7)
o.82 ( is)
0.23 (-1.9)
O.6V (-26)

0.959
0.658
0.605*
0 ~ 534*
0.337
0.124
0.15 (—1)
0.36 (—5)
O. 82 ( 9}
o.24 ( is)
O.69 ( 18)

0.979
0.810
0.777+
Q.729+
0.578*
0.349
0.122
O. 18 ( 2)
O.27 { 4)
o.14 (-6)
0.71 (—9}

0.986
0.871
Q 847+
0.813+
0.698*
0.501*
0.251
O. 16 ( 1)
O.99 (—3)
O.si (-4)
0.98 (—6)

0.993
0.935
0.922*
0.903*
0.839*
0.713*
0.508*
0.131
o.ss { 1)
0.62 (-2)
o.ii ( 2)

G(1, 2)/(u 0.05 0.3 0.5

P, (at W/(u =0.5) 0.9891 0.'t45V 0.5363

While P,(2) for true crossings equals 1-P,(2), the
following table of P,(2} for avoided crossings il-
lustrates its dependence on G(1, 2)/~ and p, :

G(1, 2)/

0.05

0.5

0.01 0.1 1.0 5.0

0.930 0.536 0.013 0.011

0.535 0.527 0.482 0.464 .
We note that P, (2) decreases as P, increases but

quadrupole transition moment defined by G(1, 2)
=-', ep/5 with e being the physical electric or mag-
netic field amplitude. ' '

If the charge-field system is measured in the
presence of the field, 'the probability of finding it
in a state qr~ of the charge system is given by P(P)
of Eq. (2.3"t). Assuming that only the two charge
field adiabatic states C„and 402 are populated af-
ter the crossing(s), we obtain

P(2) = [B„['P,+ [B„['P,=1-P(1),

where P, =—~ [a„"(2)[' is the probability of finding
the charge system being in the state y, if the
charge-field system is in the state 0», and P,

[a,"(2)[' is that in the state 4„. By Eq.
(3») P.=Z..Ia",.(1}I' and P, =Z., Ia,(1)[' ~d
thus p, +p, =1. After one true crossing, [B»['
=1- [B»['=S„' and after one avoided crossing,
[B»['=1—[B„['=S,. For example, if P(2) is mea-
sured at the same G(1, 2)/&u value as when the crossing
is traversed but at W/&u = 0.5, we can calculate P, (2)
and P;(1) (i =t or a} with the following values of

P, and the S; values corresponding to the same
G(1, 2)/e given in TaMe IV.

it can increase or decrease if G(1, 2)/&o is in-
creased. More important is the fact that for
given G(1, 2)/+, P,(2} is smaller than S, (and S,}
for small P, and can be many times larger tha, n

S, (and hence S,) for large P,. ThusforP, =5, the
field-free inelastic transition probab'lity for avoid-
ed crossing S, is small (i.e. , 2.3.&10 ")and

so is its field-dressed value 8, =3.1&&10 '4 for
G(1, 2)/&u =0.05. But if the probability P, (2)
is measured in the presence of [:~e field, it
is significant (i.e., 0.011) due to the contribution

P, from the sidebands y,Q(N- v) in''„bystate mixing.
Thus, our general conclusion is that for a, given

field frequency and polarization, the intensity at
which influences of the field are important is a
function of'the field-free parameter p, and of the
field parameters at the time when a process
takes place or is measured, as well as those
field parameters when the inelastic transitions
occur.

B. Processes with two crossings

%e consider here field modification of processes
involving two crossings. For example, in atom-
atom scattering, the same true or a sided cross-
ing is traversed twice. In the same ~ense as ex-
plained in Eq. (4.4), we shall not distinguish true
crossing from avoided crossing. Indeed the dif-
ference would not have shown up in t';e graphical
results of this subsection.

Aside from an interference factor ~etv, een the
two crossings (which would be averaged out in the

integration over impact para. meter to obtain the
total cross section), the final inelastic transition
probability after traversing two crossings approx-
imated by the I andau-Zener model is
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f —s 2&P (1 s-2 FP )'~e-21fP (1 -2ÃP)

in the presence of the laser field, and is
-2wPO(1 -2wPO)

(4, 6)

(4.7)

without the field. Here p and p' are in general
different because even though the laser intensity is
the same when the two crossings are traversed,
the angle between the field polarization and the
transition moments of the charge system can be
considerably different at the two crossings along
the orbit. Hence, the coupling parameter G(1, 2)/&u

is different at the two crossings. Thus in the pre-
sence of the field, the inelastic excitation proba-
bility f can be & —,', while if p =p', f must ~ —,'.
Similarly f, ~ —,'.

When 2', (and hence 2vp and 2'') is small com-
pared to unity, it can be shown that

f—= 2'(1+p'/p), (4.8)

emP2-s+-2 w t '
(4.10)

and f, =4wp, . Thus in this region of small 2wp„

(4.9)

since it is always true that p, &p or p'. Eq. (4.8)
shows that cohen 2', «1, an increase in the in-
teraction G(1, 2)/ur always decreases f. On the
other hand, when 2vp and 2wp' (hence 2mp, ) are
large compared to unity,

V. INADEQUACY OF STATIONARY PERTURBATION
THEORY

In this section, we compare quantities evaluated
by standard stationary perturbation theory" with
the exact values obtained by the above nonpertur-
bative theory. The perturbative results for a
charge system of two levels used by us are the
energy shift

5 =—Eo, —Wo(1) = 2WG (1, 2)/((u —W ), (5.1)

0-

~ 0.8

0.6
CL"

0.4 0.5 0.56

are as expected from the above analysis. Figures
4(b) and 5(b) also illustrate regions in which f&

for the case G'(1, 2)/G(1, 2) =0.1. For comparison,
the field-free inelastic transition probability f, is
plotted with a dashed line in Figs. 4(a) and 4(b).
It is seen that the presence of the laser field
greatly favors transitions for those encounters
with larger P, and to a smaller extent, suppresses
those with the smaller value of p, . Thus, the
choice of appropriate parameters Po and G(1, 2)/co
is important for the desired behavior in experi-
ments using intense laser to control processes.

and f, = 2e '"~0, thus indicating

(4.11)

o4
t—

&o2

G{

Equation (4.10) indicates that when 2' and 2''
»1, an increase in the interaction G(1,2)/~ in
creases f. The maximum f, occurs at

po = (1n2)/2w = 0.1103. (4.12)

p. =p.'/e», (4.13)

When PcP', the value of P, at which the maximum
of f occurs can be found by graphical solution.
However, when P =P', then the maximum of f oc-
curs at

0
10-3

U

I-
g 0.8
CO

& 0.6
{b)

z'.

2 o.4—
G{1

Z
& o.2—

10-2 10 1

Pp

1.5

where Eqs. (3.31a), (3.32b), and (4.12) have been
used. As q, becomes smaller at larger interac-
tion G(1, 2)/&o, the value of P becomes larger and
is inversely proportional to (1- 25/W).

Figures 4(a) and 4(b) plot f as a function of P,
for several values of G(1, 2)/&u for the cases
p =p' and pep', respectively. Fig. 5(a) and Fig.
5(b) show the variation of f as a function of
G(1, 2)/co for several P,. As the interaction
G(1, 2)/~ increases, the decrease of inelastic
transition probability f for small values of 2'„
the increase of f for large 2mP„and the shift of
location of the maximum of f toward higher P,

0
103 10-2 10-1

po

FIG. 4. For processes involving two Landau-Zener
crossings with interactions G(1, 2)/cu and G'(1, 2)/~
respectively, the final inelastic transition probability
f is given as a function of the field-free Landau-Zener
parameter Pp for several values of G(1,2)/~. The
corresponding field-free inelastic transition probability
f p=2e "(1-e" "~P) is drawn in dashed line for
comparison. The maxima of f are shifted toward
larger Pp for greater G(1, 2)/co. (a) For G(1, 2) =G'(1, 2),
f ~ 2. (b) For G(1, 2) =10G'(l, 2), f can be greater than

12'
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o 0.6—
Pp = 0 10

0.15
0.05
0.26

0.35

0.005 0.01 0.02 0.05 0. 1 0.2
G(1,2)

(a)

I II

05 1

o 0.6—
O. 10

z 0150 0.4—
0.05
0.26

+ 0.2 —
035

I—

0.05 0. 1 0.2
G(1,2)

I I I I

(b)

I I I

05 1,0

FIG. 5. For processes involving two Landau-Zener
crossings with interactions G(l, 2)/~ and 6'{1,2)/cu
respectively, the final inelastic transition probability f
is given as a function of the interaction Q(1, 2)/~ for
several values of pp. The intercept at ordinate axis
gives approximately the corresponding field-free value
fp. It is seen that for some values of pp, f always de-
creases while for other pp, f increases and (should)
eventually decrease again. (a) For G(1, 2) = G'(1, 2);
(b) for G(1, 2) =10G'(1,2).

and the expansion coefficients in the charge-field
adiabatic eigenstate 4p

a", (1}= 1.0,

Col(2) = G ' Col (2) =—G(1, 2)
(d +%'

G'(1, 2) „G'(1,2)
2&@(+-W) ' ' 2u&(u+W)

(5.2)

correct to second order in G'(l, 2)/uP. The cor-
responding coefficients in the charge-field adia-
batic states 402 are given by

a,"(a}=(-1)"a"„(tl), flan, (5 3)

similar to Eq. (3.15).
A measure of the deviation from the perturba-

tive assumption is the total probability in the side-
bands, P,. If the charge-field system is in the
adiabatic state 4„, the probability in all the side-
bands of W, (1) is given by

P, —= Q la„"(o.) I'=1 —la,"(1)l' .
7/ vip

a=is 3

The exact value of P, is evaluated using the nor-
malized a„(o.) given by the nonperturbative theory
and is given in the last column of Table 7.

The following quantities, which were defined
earlier, are now evaluated using the perturba-
tive results in Eqs. (5.1)-(5.3) and distinguished
by a tilde (-}over them'.

D =1 —4G~(1, 2)j(uP —W'),

r =1 —2G'(1, 2)/(uP —W'),

q, =r'/D,

(5.4)

(5.5)

(5.6)

j&, = G2(1, 2)/(&u —W} +G'(1, 2)j(e +W}', (5.7)
2 7I Pp ft

t (5.8)

The ratio of each quantity to the corresponding
exact value is given in Table V and Table VI. It
is seen that stationary perturbative theory over-
estimates x, P„and the shift 5, and hence under-
estimates D. Contrary to thecorrectlimit25/W&1
expected in the nonperturbative theory, the sta-
tionary perturbation result gives the limit 25 /W& 1
for large G(1, 2)/cv. Thus, D can be negative and

this represents a complete breakdown of the sta-
tionary perturbation theory (see Table V).

The inaccuracy in the overestimated q factor
leads to values for S, which are too small, as
shown in Table VI. Although this table is evalua-
ted with values for the case W/&u =0.1, using
values of any W/&u & 0.2 gives approximately the
same results, since the statements of Eqs. (3.23)
and (3.24) are valid for the perturbative results
as well. Since D D, 8„ the inelastic transition
probability for avoided crossing calculated using
perturbative result, would be greater than the true
value S,.

From Table VI, we may conclude that the results
of stationary perturbation theory applied to analyze
nonresonant field modification of I andau-Kener
crossings contain relative error less than 1% if
both G(1, 2)/&o &0. 1 and P, & 0.1 apply. But as
stated in the last section, this is also the param-
eter region where nonresonant field modification
of inelastic processes is less than 1%.

Contrary to Eq. (3.33), the results of Eqs. (5.4)
and (5.5} show that D cr By further . taking nor-
malization of the a„(o.)'s in Eq. (5.2) for the eval-
uation of r, we can improve the agreement be-
tween D= r = 1 —4G(1, 2)/&u' valid for small W/~.
However, this result is in poor agreement with the
exact values in Tables II and III. It is much in-
ferior to the formula given by Eq. (3.35).

Inclusion of perturbative terms higher in order
than G'(1, 2)/&a' further increases the discrepancy
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TABLE V. Ratios of results (denoted by -) of stationary perturbation theory to exact results
for various G(1, 2)/cu. 5 is energy shift, D= 1 —26/W, x is ratio of field-dressed nonadiabatic
coupling to the field-free nonadiabatic coupling, q&

=—r /D is the multiplicative factor repre-
senting the entire effect of the field on a true crossing, and P~ is the probability in all the
sidebands of Wo(1). The symbol "c.b." stands for "complete breakdown" of perturbation theory
for G(1, 2)/~ g0.5.

G(i, 2)/m D/D

0.01
0.05
0.1
0.3
0.4
0.45
0.50
0.55

1.0001
1.0026
1.O105
1.0987
1.1818
1.2353
1.2980
1.3710

1.0000
0.9999
0.9995
O.9511
0.7804
0.5384
c.b.
c.b.

1.0002
1.0052
1.0210
1.2261
1.4991
1.7563
2.2399
3.5958

1.0004
1.01-04
1.0429
1.5804
2.8795
5.7288
c.b.
c.b.

i.oooi
1.0029
1.0115
1.1062
1.1929
1.2475
1.3105
1.3828

0.206 08 (-3)
0.514 09 (-2)
0.204 26 (-1)
0.17145
0.287 50
0.351. 50
0,417 75
0.484 97

between the perturbative results and the exact re-
sults. For example, the next higher order
[~G'(1, 2)/~'] corrections to the energy shift 5 in
Eq. (5.1) and the ratio r in Eq. (5.5) are both pos-
itive, thus higher-order perturbative theory fur
ther overestimates the shift 5 and the ratio r.
Thus, the conclusions of this section are not limi-.
ted to second-order stationary perturbation theory
but apply to higher order as well.

VI. CHARGE SYSTEMS WITH MORE-THAN-TWO LEVELS

We return to Sec. U to discuss a general n-level
charge system where n &2. At higher field inten-
sity, radiative interactions G(o. , P) between many
more states become important. For charge sys-
tems with "even-odd" symmetry (like parity for
atoms, gerade-ungerade symmetry for diatomics
of equal nuclear charges), it was shown in Sec.
HIE that a two-level model excludes electric di-
pole interaction if there is nonzero nonadiabatic
transition. lt is expected that the effect on the two
close-lying levels due to electric dipole interaction

with other levels is in most cases more important
than the higher-multipole interactions between
two such levels.

Many simple. relations for the two-level charge
system no longer hold rigorously for (n&2) dis-
crete levels. ' Equations (3.12)-(3.15)are not valid
so that both eigensolutions involved in the non-
adiabatic transition have to be found explicitly as
shown below. The general result in Eq. (2.12) in-
dicates that the simple result for field-dressed
nonadiabatic coupling COl, 02

-rCol, 02 for a two-
level charge system does not hold in general ex-
cept when there is no effective radiative coupling
between E„and E,2 and when one field-free non-
adiabatic coupling C'„„dominates. However,
many of the statements remain valid to first or-
der. One exception is the formation of new avoid-
ed crossing analyzed below.

A. Formation of new crossings

For both the case of unequal nuclear charges and
the case of equal nuclear charges, a true crossing

TABLE VI. Ratio of Bt, the result of perturbation theory, to the exact S& calculated by non-
perturbation theory. Perturbation theory underestimates S&, the elastic probability for true
crossing and hence overestimates the inelastic transition probability.

(1,2)/cu 0.05 0.1 0.3 0.45 0.49

0.01'

0.05
0.10
0.50
1.0
3.0
5.0
7.5

10.0

0.999
0.997
0.994
0.968
0.937
0.824
0.724
0.616
0.524

0.997
0.987
0.974
0.879
0.772
0.460
0.274
0.144
0.753 (-1)

0.976
0.886
0.784
0.297
0.883 (-1)
0.688 (—3)
0.536 (-5)
0.124 ( 7)
0.287 (—10)

0.905
0.608
0.369
0.687 (-2)
0.472 (—4)
0.105 (—12)
o.235 ( 21)
0.361 (-32)
O. 554 ( 43)

0.582
0.665
o.443 (-2)
0.170 (—11)
0.290 (—23)
O.245 ( 7O)
0.221 (-117)
O.3O ( 176)
0.42 (-235)
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can become an avoided crossing. For example, a
true crossing between a Z (Z~ ) level and a II (II~)
level becomes an avoided crossing due to electric
dipole interaction with another Z' (Z+ ) level.
With formation of new crossing, the influence of
the nonresonant field is significant at much lower
intensity than those shown in Sec. IV."

Unlike the case of a two-level model, two close-
lying levels that are both interacting with other, but
the same, levels should always be treated as
nearly degenerate in the solution of the charge-
field adiabatic eigenvalue problem. '' In the no-
tations of Refs. 3 and 6, we need to have (E~„
4'~, =a" ) and (E„„4'„,=a"') where p=g. The
simplifieations now are that T„and T,' are found
by recurrence relations without any interruption
from v=M to v= p+1 and from v=-M to v= p —1
respectively. With known values of dz(o) =1 and

d~(~) =0, the other (n —2) d~(o. )'s with n o o, 7 are
obtained by solving the (n —2) inhomogeneous
linear equations with n co, y resulting from the
(v =p) th set. Similar procedure can be carried
out to find s„(o.)'s with known values of s~(o) = 0
and s~(~) =1. Actually there is no need to find the
V„and V,' separately, since V, = T„ for M ~ v & p and

V,' = T,' for -M& v& p. The eigenenergies E„and
E, have a separation,

[[W'(~) -W'(o)] +24G )2i/2
i (6 1)

where W' are the perturbed energy surfaces and G

is the effective coupling. Thus, even when the un-
perturbed levels W~(r) and W~(cr) are degenerate
(for example at the crossing point), the effective
coupling Q between the two states resulting from
radiative interaction with other levels and between
them[if G(o, 7) 4 0] isnonzero and, therefore, anew
avoided crossing is formed at any fieM strength.
This analysis also shows that an avoided crossing
will remain as an avoided crossing in the presence
of the field. In the analysis of the transition proba-
bilities across the field-dressed avoided crossing,
we may use the perturbed states and energies 8"
as was done explicitly in Ref. 6, or preferably the
field-dressed diabatic states and energies as
shown in Sec. II above. New transition channels
can be open due to formation of new avoided cros-
sing. 2'

B. Suggested system for experiment: iodine

Molecular iodine (I.,) exhibits crossing pheno-
mena which are very sensitive to perturbing
influences arising either from. collisions or small
internal couplings. " From the perspective of the
previous analysis, we can regard an externally
applied radiation field as simply another form of

perturbation. An observable alteration of the
fluorescence intensity in experiments examining
the effects of magnetically induced predissocia-
tion of I, was caused by state-mixing due to a
static magnetic field of -10' Q. A magnetic
fieM of this magnitude in an optical wave corre-
sponds to an intensity of -108 W/cm', a value
achieved at 10 p. m with CO, lasers. Also the work
of Broyer et al." suggests that an internal en-
ergy of -1 eV is controlled by a small perturba-
tion with a magnitude of -4~10 ' eV. We suggest
here the possibility for observation of the optical
analogue of these effects. Sidebands with relative
intensities given by Eq. (2.36) and frequencies
displaced a ve from the main transitions can also
be detected. For diatomics of equal nuclear
charges, as well as for atoms, detection of side-
bands with Odd v gives a measure of nonadiabat-
icity. To conclude, we point out that application
of the laser fields would enable rapid switching of
material properties in large volumes at a rate
limited only by the speed of light.

Note added in proof. It is well known that some
field-free true crossing becomes field-free
avoided crossing with a small energy gap when
higher-order interactions, hitherto neglected, are
taken into account. In Sec. III D we conclude that
when compared with their corresponding field-free
values, the inelastic transition probability for a
field-dressed avoided crossing is increased where-
as for a field-dressed true crossing it is de-
creased. This may seem at first to suggest that
our results depend critically on the true or avoided
nature of the field-free crossing. In fact it is not
so. As seen in both Figs. 2(a) and 2(b), starting
with the same initial-value conditions at 7„ the
positive-time (r& 0) asymptotic probabilities in the
higher-energy state in both cases, S,= exp(-2', q, )
for true crossing and S,= exp(-2', q, ) for avoided
croSsing, are increased. Furthermore, our re-
sults in Eqs. (3.36) and (4.1)-(4.4) show that quan-
titatively the same final probability in the higher-
energy state is obtained whether we analyze the
same crossing as a true crossing or as an avoided
crossing with a small energy gap. The conclusion
in Sec. III D, still valid, is due to our labeling of
~B„(~)~

as the inelastic transition probability in
both cases.
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