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Radiative corrections to the high-frequency end of the bremsstrahlung spectrums
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The connection b'etween the high-frequency end of the bremsstrahlung spectrum (tip bremsstrahlung) and the
photoeffect, which was first noted by Pano, is shown to be valid also when the lowest-order radiative
corrections are included. By exploiting this relation and by using results for the photoeffect given in the
preceding paper, we obtain an explicit expression for the corrected tip-bremsstrahlung cross section. Other
expressions derived previously for the radiative corrections to bremsstrahlung are not valid at the spectrum
tip. Limiting cases of low and high incident electron energy are presented and discussed.

I. INTRODUCTION

Some time ago Fano and collaborators" pointed
out that the cross section for bremsstrahlung at
the high-frequency end of the spectrum [tip brems-
strahlung], where virtually all of the kinetic ener-
gy of the incident electron is carried off by the
emitted photon, is closely related to that of the
photoeffect in the Sauter approximation. This con-
nection was subsequently further considered by
Pratt, ' who showed it to be valid including also
terms of relative order Z. In the present work,
we show that this relationship continues to hold
when one includes radiative corrections to the
cross section to lowest order in mZ. Thus, since
we have already evaluated the radiative correc-
tions to photoeffect to this order in the preceding
paper~ (hereinafter referred to as I), the connec-
tion between these processes allows us to write
immediately the corresponding result for the cor-
rected bremsstrahlung cross section at the spec-
trum tip.

Calculations of the radiative corrections to
bremsstrahlung have previously been carried out
by Fomin' and Mitra et uE. ' in relativistic Born
approxi. mation. The analytic expressions obtained
are rather complicated and no numerical evalua-
tion of these results is given. However, analytic
formulas were derived in various limiting cases.
The general expressions are valid provided o.'Z/p,
«1 and o!Z/P, «1, where P, and P, are the initial
and final electron velocities respectively. Because
of these restrictions, the results are not correct
at the spectrum tip (P, =0). In contrast to this,
our present calculation of the radiative corrections
expressly applies to the spectrum tip (P, =0) and
is restricted only by the condition o'Z/P, «1.

In Sec. II, we will review the arguments for re-
lating the high-frequency li.mit of bremsstrahlung

to photoeffect and show that this relationship re-
mains valid when the lowest-order radiative cor-
rections are included. In Sec. III, explicit results
are given for the corrected bremsstrahlung differ-
ential cross section in the neighborhood of the
spectrum tip. Finally, we present and discuss
the low- and high-energy limits of our expression
for the radiative corrections. Throughout this
work, the notation and units employed are those
of I.

II. CONNECTION BETWEEN THE HIGH-FREQUENCY
END OF THE BREMSSTRAHLUNG SPECTRUM

AND PHOTOEFFECT

Fano and collaborators have given two different
. proofs of the connection between the basic cross

sections for tip bremsstrahlung and photoeffect.
The first proceeds from the observation that at
sufficiently high energies it is only the neighbor-
hood of the origin which contributes in the integra-
tion over configuration space in the exact rela-
tivistic matrix elements of the two processes. In
this region, aside from normalization, the zero-
energy continuum wave function needed for tip
bremsstrahlung has the same shape as the bound-
S,&,-state wave function needed for the photoeffect
calculation. Thus, at sufficiently high energy
(ar ~ 1) the two matrix elements are proportional.
Moreover this result has been shown to hold not
only to lowest order, but also including terms of
the first order in &Z. It then follows that the
cross section for tip bremsstrahlung is propor-
tional to the cross section for photoeffect from
the & shell if quantities of order t'aZ) are ne-
glected. Now, the lowest-order cross section
for the K-shell photoeffect is given by the Sauter
formula (see I, Sec. II). The corresponding cross
section for tip bremsstrahlung turns out to be
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given by the limit as p, - 0 of the Bethe-Heitler
formula' multiplied by a simple factor. This fac-
tor, which is proportional to 1/P„ is essential in
order to prevent the tip bremsstrahlung cross
section from vanishing. ' Including terms of first
order in +~, a corrected expression for the K-
shell photoeffect cross section was derived by
Gavrila. ""This expression yields in the same
way a corrected cross section for tip brems-
strahlung. Beyond first order, the proportionality
of the two cross sections breaks down. Unfortu-
nately, this particular method of proof of the con-
nection between photoeffect and tip bremsstrah-
lung is based on a detailed analysis of the inte-
grands of the matrix elements and would be quite
difficult to carry through for the case of the radia-
tive corrections.

The second proof of the connection' employs the
continuity theorem for differential oscillator
strengths at the limits of continuous spectra.
(Fano refers to this argument as "detailed balanc-
ing". ) It is this argument which we will now ex-
tend to include the radiative corrections.

The continuity of differential oscillator strengths
when passing from the continuum to the adjoining
highly excited Rydberg states is a well-known and
general property. It is based on the similarity
of the wave functions for these bound states and
those of the low-energy continuum. It holds for
transitions originating in any initial (bound or
continuum) state and for any transition operator
(e.g. including radiative corrections). In our case
the situation is particularly simple since we are
dealing with a single election in a purely Coulomb
field, for which explicit analytic expressions are
known for the wave functions. "

Let us consider radiative transitions from an ini-
tial relativistic continuum state of asymptotic mo-
mentum p, energy E and polarization p. to a bound
state (recombination) or continuum state (brems-
strahlung) of lower energy with the emission of a pho-
ton of momentum k, energy e and polarization e. We
will label the bound states by their relativistic quan-
tum numbers n, j, l (angular momentum of the large
component) andm. The continuum states will be de-
scribed by e, j, l and m. Let the corresponding cross
section for the emission of a photon into the solid
angle dQ (summed over magnetic substates) be
d(r„,, /dQ and d'(r, „/d(odQ.

The continuity theorem for the corresponding
(generalized) differential oscillator strengths in
this cas e takes the form

ctGgg) /d Q . cPc'qy (lcm =bmg-~E ~, -E, g dcodQ

This equation is exact, in that it holds to all orders
in the external potential (i.e., o.'Z) and the radia-

tion field (i.e. , n), thus including all radiative cor-
rections. From Eq. (1) it follows that, by summing
over all j and l compatible with n and &,

where d'ore/d&udQ is just the tip-bremsstrahlung
cross section. In the following, we wi11 also as-
sume an average over the initial spin projections
has been performed.

Since recombination of an electron from the ini-
tial state of asymptotic momentum p, energy E and
polarization p, into the magnetic substates n, j, l is
precisely inverse to photoeffect from these sub-
states, it readily follows by detailed balancing that
for cross sections we have

d0'fly ) K do'yf Jg

dQ Ipl' dQ, '

where do„q~/dQ, is the photoeffect cross section. "
Combining Eqs. (2) and (3), we obtain

d2g~~ (g2 do&s/dQ

t

(4)

This is essentially Eq. (1) of Ref. 2. Note that
this Eq. (4) is still exact in the sense described
above.

I et us now consider the evaluation of Eq. (4)
to lowest orders in o.'Z, including radiative cor-
rections. Not all j, l values will contribute in this
case. It is known that for large photon energies
(&u & 1) do&ps/dQ, is of order (o.'Z)'"'." Consequent-
ly, the dominant contribution to Eq. (4) is given
by the j = 2, l =0 terms, the rest contributing
to relative order (o'Z)' or higher. Further, it has
been shown that, to first order in &Z inclusive,
the following relation holds for the basic cross
section (without radiative corrections)

do 1do, 1 der K

dQ, ~' dQ, n' dQ,

Here, dar~x/dQ, is the K-shell photoeffect cross
section correct to first order in &Z. Noting that
for n-~, E„,, —E„„,- (o.'Z)'[n 3+O((nZ)')], we
get from Eqs. (4) and (5),

do&s
$ 2 E'

d(udQ ' Ipf dQ

This is the result of Fano and Pratt. Moreover,
it is easy to check that Eq. (6) remains valid when
the tip-bremsstrahlung cross section is summed
over the polarization of the photon and averaged
over those of the electron in the initial state, while
the photoeffect cross section is averaged over the
polarizations of the photon and summed over those
of the electrons in the final state. In the following
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we shall consider that these polarization sums
have been performed for the cross section and Eq.
(6) should be interpreted accordingly.

By employing in Eq. (6) the explicit result for
the Sauter cross section [see Eq. (6.16) of I], we
find the lowest-order result for the tip-brems-
strahlung cross section averaged and summed over
the electron and photon polarizations respectively,

d de=' " i-

Hence, to lowest order in 2 it is generally true
that the matrix elements of the virtual-photon
radiative corrections to photoeffeet corresponding
to transitions from the state n, j = & differ from
those corresponding to the ground state by a fac-
tor n ' '. This implies that the cross sections
will be in the ratio n"' and thus Eqs. (5) and (6)
remain valid with the virtual photon radiative cor-
rections included.

III. CORRECTED TIP-BREMSSTRAHLUNG CROSS SECTION

We now want to include the virtual-photon part of
the radiative corrections. These are of order n
with respect to the basic cross section. For light
elements they are of essentially the same order
as the &Z corrections. Then, to order & and +Z
inclusive, we again need consider only the contri-
bution of the states j =-, , I =0 in Eq. (4). It thus
remains only to show that Eq. (5) is valid including
also the lowest-order (order o.') radiative correc-
tions.

To lowest order in +Z, the radiative corrections
to the photoeffect from the n, j=-,', l=0 states can
be derived using the Pauli approximation for the
initial state wave function. ' This can be written
in momentum space in the form

0, (q) =C„,(q)[I+-.q o'lu„, (8)

where n is a Dirac spinor, & are Dirac matrices,
and 4„0(q) is the nonrelativistic Schrodinger wave
function in momentum space for l = 0." It can be
shown that for nZ -0 the function 4„0(q) gives
rise to a & function according to"

lim — 4„0q =&q . (g)

For x = 1 this reduces to Eq. (2.8) of I.
Now, as in the calculation for the E-shell photo-

effect [cf. Sec. II of I], two possibilities occur
when evaluating the matrix elements of the radia-
tive corrections due to virtual photons. If the
momentum q which occurs in the wave function
Eq. (8) is fixed at some nonzero value Iq F» (nZ)'
due to the action of an explicit & function, then
one can neglect (o'Z/n)' in comparison to I q I' in

C„,(q). In this instance we have C„,(q) =n '~'C«(q)
and, consequently, g„~, (q) =n"'~'P, i,„(q). On the
other hand, if q is not fixed by the action of an ex-
plicit ~ function, but rather, is integrated over,
then using (9) the wave function p„l, (q) can be re-
placed to lowest order in &Z by

~g 3/2

P„„„(q)- m 5(q) u„. (10)

In this case also we see that g„i 0„(q)=n '~'g, & „(q).

d2&r P c & d2&(0)

dcodQ m ddQ
(12)

with &, , given by Eq. (6.7) of I.
Adding the real and virtual photon contributions

(11) and (12), we obtain the corrected tip-brems-
strahlung cross section,

d'o d'o"'
1+ —&

d dQ ddQ

where & is given explicitly by Eq. (6.15) of I with

the appropriate redefinition of symbols. Thus,
the lowest-order (fractional) radiative corrections
to photoeffect and tip bremsstrahlung are identical.
We note that for consistency in the case of light
elements we should also include the nZ corrections to
the basic cross section in (7). However, for
practical purposes it may prove more useful to
use the results of exact numerical calculations in

place of d'o'0'/d«dQ. These results also includs

Following the discussion of Sec. II we may em-
ploy results derived in I for the radiative correc-
tions to E-shell photoeffect to write the corrected
tip-bremsstrahlung cross section in the form

d o"' do 1+—&
d~dQ d~dQ

where d'a'"/d~dO is the Fano-Pratt result of Eq.
(7) and 5, is the virtual-photon contribution to the
radiative corrections contained (implicitly) in
Eq. (6.3) of I. We note that this expression (11)
is not yet the physical cross section. In order to
obtain a physically observable cross section we
must add to (11) the real (soft) photon contribu-
tion, which will also eliminate the fictitious photon
mass X still contained in &„„.

The physical process in which one additional
photon is emitted is double bremsstrahlung. We
will consider thig process for the case in which
the energy of the additional photon is less than
the energy resolution &E. We assume for con-
venience that 4E «1. The resulting contribution
to the cross section can be derived in a manner
similar to the discussion in Sec. VI of I. We find
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TABLE I. Values of —(cvlx)|5 &&10 in the low-energy limit for various values of the photon
energy a =electron kinetic energy (in keV), scattering angle 8 and energy resolution AE (in
units of the electron rest energy =511 keV). Note, 6(ur, cosa) —0.

po
0.001
90 180' 00

(~/~g x 10
0.0001

90' 180 po
0.000 01

90' 180

0.5
1.0
2.0
3.0
4.0
5.0

0.199
0.393
0.774
1.15
1.52
1.88

0.207
0.414
0.825
1.23
1.64
2.05

0.216
0.435
0.877
1.32
1.77
2.21

0.269
O. 532
1.05
1.56
2.07
2.57

0.277
0.553
1.10
1.65
2.19
2.73

0.285
0.574
1.15
1.74
2.32
2.90

0.338
0.671
1. .33
1.98
2.62
3.26

0.347
0.692
1.38
2.06
2.74
3.42

0.355
0.713
1.43
2.15
2.87
3.58

effects of electron screening which became impor-
tant in the case of heavier atoms. "

Incidentally, let us remark that as a by-product
of our derivation we find that the radiative correc-
tions to photoeffect from any nS, i, state are de-
scribed by the same expression 6 as for the K shell.
This is due to the fact that Eq. (5) holds with the
radiative corrections due to virtual photons in-
cluded and that the contribution of the real, soft
photons &„,is independent of the state n [cf. Eq.
(6.6) of I].

The explicit expression for the radiative correc-
tions is rather complicated so that a numerical
evaluation of 6 is necessary in general. Neverthe-
less, it is possible to extract analytic expressions
for the low- and high-energy limits. For the low-
energy limit (E = 1) we find [cf. Eq. (7.1) of I]

6 = - —', P'[—',,' —In2&E+2P InP cose]+O(P'), (14)

where P is the velocity of the incident electron and
cos6 =P'k. In the high-energy limit (E» 1) in the

ca,se of finite momentum transfers ip —ki, we
find [cf. Eq. (7.2) of I]

5 =2(in2&u 1)[In24E ——,
'

In2u&]

(15)

A brief summary of the behavior of & in the low-
and high-energy limits is given in Tables I and II.

IV. DISCUSSION

%e can now discuss the relation between our re-
sults and those of other calculations of the radia-
tive corrections to bremsstrahlung. "The work
of Refs. 5 and 6 represents a determination of the
radiative corrections in lowest-order Born ap-
proximation. This is equivalent to an evaluation
of the Feynman diagrams of Figs. 1 and 2. Al-
though these graphs are not directly relevant to
the case of tip bremsstrahlung, they do offer the
interesting possibility of checking our results.

TABLE II. Values of -(e/x)6 in the high-energy limit for various values of the photon energy
~ =-incident electron kinetic energy (in MeV), scattering angle 8 and energy resolution ~ (in
units of the electron rest energy =511 keV). Note, 6(a, cos8) (O.

po
0.100

50 10 00

—(0./vr)6
0.010

5 10 po

0.001
50 10

3.0
5.0
7. 0

10.0
15.0
20. 0

0. 018
0. 028
0.035
O. 043
0.052
0.059

O. 020
O. 033
0.042
O. 055
P. 071
O. 085

0.023
0.039
0.050
P. 065
0.084
0.099

0.034
0.049
0.060
0.071
0.085
0.095

0. 036
0. 054
0. 067
0. 083
0.104
0. 121

0, 039
O. 060
0. 075
0.093
O. 116
0.134

O. 049
O. 070
O. 084
O. 100
O. 117
0. 131

0.051
0. 075
0.092
0. 112
O. 137
0. 157

0. 054
0.081
0. 100
0. 122
0.149
0. 170
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FIG. 1. Feynman diagrams which describe the lowest-
order bremsstrahlung matrix element for the process
in which the incident electron has 4-momentum p~, the
emitted photon has 4-momentum k~, and the electron
has final 4-momentum E~.

It was noted in Sec. II of I that the Sauter photo-
effect matrix element, Eq. (2.14) of I, can be
written in the form

S = m (&Z/~)'~'Uq~, ,

where U&„represented by the diagrams of Fig. 1,
is the lowest-order Born-approximation matrix
element for bremsstrahlung evaluated for the ease
in which the electron is left at rest in the final
state (I= 0). Similarly, by examining our expres-
sion for the corrected (renormalized) photoeffect
matrix element [Eq. (4.18) of Ij one can readily see
that it can be written in the form,

A~)—- 7l(nZ/m)3~ W~~), (17)

where W&, , represented by the diagrams of Fig. 2,
is just the lowest-order Born approximation for the
radiative corrections to bremsstrahlung evaluated
for the case in which the final electron is left at
rest.

Now, the corrected bremsstrahlung cross sec-
tion can be related to its matrix element M by

-iri d d did =2~~ '~'
~

where M~ is given to lowest order in nZ by the
Feynman diagrams of Figs. (1)and (2) and the sum in

(18) is taken over the polarizations of the electron
in the initial and final states. dQ' denotes the ele-
ment of solid angle for the final electron. The
normalization factors contained in M are fixed
by the condition that, at the tip of the spectrum
(~f~-0), M - U+ W, with U and Wdefined by Eqs.
(16) and (17). Since the right hand s-ide of Eq. (18)
is finite at the tip, the left-hand side must also be
finite. Taking into account Eqs. (16) and (17) and

Eqs. (6.1) and (6.2), of I we can write the follow-
ing relation, valid to lowest order in aZ, between
the cross sections for photoeffect and bremsstrah-
lung, both including the radiative corrections due
to the virtual photons to order a:

" = 8m'(nZ)', lim — —,. (19)
dQ, aP g~., t )

d&udQdQ'

FIG. 2. Feynman diagrams which describe the
lowest-order radiative corrections to bremsstrahlung.
Diagrams which only contribute to the renormalization
constants have been omitted.

Since a similar connection holds in this approxi-
mation between our cross section for Compton
scattering from the K shell and double brems-
strahlung, Eq. (19) will also be valid for the phys-
ical corrected cross sections. We infer that the
fractional radiative corrections 5 to the photoeffect
cross section can be obtained from the fractional
radiative corrections to bremsstrahlung evaluated
in the limit

~
I ~- 0. Hence, we can directly com-

pare our expression for 5 with the ones derived
in Hefs. 4 and 5 when the final electron is taken
at rest.

In the general case of arbitrary energy and mo-
mentum transfer, unfortunately, it is not possible
to compare results due to the complexity of the
respective expressions and the lack of definite
numerical evaluations of ~. However, in the low-
energy limit (E = 1) we note that our expression
(14) does agree with the one derived from Fomin's
result [Eq. (57) of Ref. 4)." Our particular high-
energy limit (E» 1 and finite momentum transfer)
was not considered in those works.
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