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The radiative corrections to the photoeffect are evaluated for the K-shell of hydrogenlike atoms to lowest
order in the radiation field, The corrective matrix element is first discussed within the framework of the
bound-state interaction (Furry) picture. We then employ the relativistic Born approximation for the Coulomb
Dirac propagator and the final continuum wave function of the electron to obtain an expression which is
correct to lowest order in aZ, provided aZ/@&1, where P is the velocity of the ejected electron. The
renormalization program is carried out completely, and the lowest-order radiative corrections are given
explicitly in terms of the familiar first-order invariant functions of QED. The matrix element which results is
further analyzed in terms of invariant amplitudes which are expressed as sums of Feynman parameter
integrals. Finally, we evaluate the differential cross section assuming the polarizations of the electron and
photon are not observed. Infrared divergences are eliminated from this cross section by allowing for the
possibility that an unobserved soft photon is emitted along with the photoelectron. Although in general a
numerical evaluation is necessary, analytic expressions are given for the low- and high-energy limits of our
final expression for the radiative corrections to the photoeffect. We find that, while the corrections are small

at low energy, for incident photons in the range 1—10 MeV and for electrons emitted near the forward
direction (finite momentum transfer), the radiative corrections tend to reduce the photoeffect differential cross
section by 1.0 to 7.0%.

I. INTRODUCTION

The list of fundamental atomic processes for
which radiative corrections have been evaluated is
quite impressive. Bound-state energy calcula-
tions include the determination of the Lamb shift
and the radiative corrections to hyperfine struc-
ture splittings. Scattering processes for which
the radiative corrections have been obtained in-
clude Coulomb scattering, bremsstrahlung, pair
production, and Compton effect. Indeed, almost
the only basic process for which radiative cor-
rections have not heretofore been determined is
the atomic photoeffect.

It is not difficult to adduce reasons for the delay
in calculating the radiative corrections to the
photoeffect. Typically, for a given element, the
photoeffect amplitude is large only at low photon
energies. At higher energies, where radiative
corrections might be expected to become signifi-
cant, the photoeffect is considerably more diffi-
cult to observe. At the same time, the estimated
errors in the theoretical calculations of the basic
photoeffect cross section at high energy are of the
order of magnitude expected for the radiative cor-
rections. Hence, it has not been possible to sys-
tematically begin a search for possible radiative
effects in atomic photoeffect. Moreover, the
mathematical difficulties of a calculation of the
radiative corrections to the photoeffect appear
rather formidable. For processes such as pair
production or bremsstrahlung, which involve only

continuum state electrons, the radiative correc-
tions can evidently be discussed completely within
the framework of the Born approximation. There
is, thus, a definite and very successful theoretical
framework available. Similarly, radiative cor-
rections involving only bound electrons, for ex-
ample, the I amb shift, can be evaluated by means
of standard methods of perturbation theory. The
photoeffect, however, is a scattering process in-
volving both bound and continuum states. In this
case, it is not immediately clear to what extent
the Born approximation can be used or whether
more sophisticated procedures are necessary.

There are, however, valid reasons for consider-
ing the radiative corrections to photoeffect at this
time. With large computers, numerical calcula-
tions of the basic amplitude can be made with in-
cr easing accuracy. Advanced experimental tech-
niques allow more precise determinations of the
photoeffect cross section at high energies. The
point is being approached at which radiative ef-
fects in atomic photoeffect at these energies
should become apparent. It would thus be desirable
to have a theoretical insight into the magnitude of
these corrections in order to encourage their ob-
servation.

The current status of the theory of the atomic
photoeffect, for high incident photon energies, is
summarized in the review article by Pratt et al. '
The basic cross section for photoeffect cannot be
expressed in analytic closed form and numerical
computations are needed to treat the general case.
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Nevertheless, for light elements (nZ«1) and rel-
atively high photoelectron velocities (o.Z/P«1), Sau-
ter' has derived a relativistic analytic formula for the
cross section in a hydrogenlike atom which is correct
to lowestorder inaZ; i.e., u(nZ)'. More recently~
Sauter's result has been extended by Gavrila' (see also
Nagel'), who evaluated the first Born correction. The
Sauter-. oavrila formula, which has the correct
energy dependence, has been combined with an ex-
pression derived by Pratt, ' which gives the cor-
rect Z dependence at high energy, . to obtain a com-
posite formula which provides a basis for high en-
ergy predictions. At the same time, significant
theoretical insight has been gained from the reali-
zation that, for energies well above threshold, the
minimum possible momentum transfer to the nu-
cleus, q . , is of the order of unity (in units of
m,c) so that the most important regions of config-
uration space for the photoeffect matrix element
are of the order of the electron Compton wave-
length. This observation leads to the normalization
screening theory of atomic photoeffect at high en-
ergies and has important implications for the cal-
culation of the radiative corrections as well. In
addition to these analytic results, numerical eval-
uations of the total cross section, employing rela-
tivistic self-consistent-field methods, have been
given for a wide range of photon energies and
atomic numbers and are generally accurate to
about 1%. These results are in agreement with ex-
perimental determinations of the cross section in
this energy range which are of comparable accur-
acy.

In this work, we calculate the radiative correc-
tions to K-shell atomic photoeffect assuming a
point Coulomb atomic potential. Although in prin-
ciple the bound-state interaction picture must be
employed, we consider that the relativistic Born ap-
proximation for the electron propagator and the
final continuum wave function can be used to ob-
tain an expression which is correct to lowest or-
der in o. Z, where n is the fine structure constant
and Z the nuclear charge. This expression for the
corrective matrix element is then valid provided
n Z/8«1, where P = ~p [/E is the velocity of the
ejected electron. This condition is necessary
to insure that the remainder is, in fact, of rela-
tive order nZ and is the usual requirement for the
convergence of the Born expansion. Thus, in this
instance, oui' result for the radiative corrections is
of order o. '(n Z)' and is directly related to the Sau-
ter cross section.

In the following section, we will review the der-
ivation of the Sauter approximation to the photo-
effect matrix element. This will serve to intro-
duce the procedure we will follow in evaluating
the radiative corrections. In Sec. ID, we will con-

sider the Furry diagrams for the lowest-order
(order n) radiative corrections to the photoeffect
process. These include all eff ects of the atomic poten-
tial and are exact in &Z. Employing the Bornapproxi-
mation for the final continuum wave function and the
electron propagator, an explicit expression for the
lowest order (inc. Z) radiative corrections to the
photoeffect matrix element is given in Sec. IV. This
result is then analyzed in terms of invariant ampli-
tudes which are given as sums of Feynman-parameter
integrals. Finally, in Sec. VI, we evaluate the
differential cross section, assuming the polari-
zation of the electron and photon is not observed,
and the relevant trace calculations are performed.
Infrared divergences are eliminated from the
cross section by allowing for the possibility that
an unobserved soft photon is emitted along with
the final photoelectron and adding the correspond-
ing cross section. Although in general a numeri-
cal evaluation is necessary, analytic expressions
are given for the nonrelativistic and high-energy
limits of the radiative corrections. In the follow-
ing paper, ' we will examine the connection be-
tween our results for photoeffect and the deter-
mination of the radiative corrections to the high-
frequency limit of the bremsstrahlung spectrum.

II. SAUTER MATRIX ELEMENT

Although the Sauter formula for the K-shell
photoeffect cross section in a point Coulomb field
has been discussed in several places, ' we wiO re-
produce here a derivation of' the basic matrix
element in order to illustrate the general pro-
cedure which we use to evaluate the radiative cor-
rections. Thus, following Qavrila, ' we employ
essentially the Born expansion to obtain the low-
est order in o, Z approximation to the photoeffect
matrix element. This result then yields the
Sauter formula directly.

The basic process of photoeffect can be des-
cribed by the Furry diagram of Fig. 1. The trans-
ition matrix element corresponding to this dia-

FEG. 1. Furry (bound-state interaction picture) dia-
gram corresponding to the basic photoeffect process.
The double line denotes an electron propagating in the
atomic field, while the wavy line corresponds to the
incoming photon.
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gram is given in momentum space by

s« ~@~)fs p, ((()g((q ,. (')-, (2.1)

Eg =Eg +(u, (2.2}

where Ez = (1 —P') ' ', with P the velocity of the
emitted electron, and E; = (1-a') '~', where
a =a Z. If the photon energy v is much larger than
the binding energy of the E-shell electron (which
is approximately Es =- 2a' for low Z), then (2.2)
reduces to

(2.3)Eg =1+m
'I

neglecting second and higher orders in nZ. For
the derivation of the Sauter formula and for our
lowest-order approximation to the radiative cor-
rections, this form (2.3) of the energy-conserva-
tion relation is sufficient.

In order to evaluate the lowest-order contribu-
tion to (2.1), we use the Born expansion of the
final continuum wave function. Thus, we write

i)i(i))=iii()i) (n(p —I()i.g(p (() . —)
(2.4)

where uf(P) is a free particle Dirac spinor nor-
malized such that u~(P)u~(P) = 1, and

k(q) =r'(-n Z)/»' [q l' (2.5)

is essentially the Fourier transform of the Cou-
lomb potential. Q(z' and P~z'~ are the zeroth and

first Born terms, respectively. This approxima-
tion (2.4) for the continuum wave function is valid
provided n Z/8 «1.

For the bound-state wave function we use the
P auli appr oximation,

where the incident photon is specified by four-
momentum k& = (((), %), four-polarization e" = (e, Z),
and g=e ~ y=e„y" =e'y' —e - j, where the y& are
Dirac y matrices. (Our metric, y matrices, and
Dirac spinors are those of Bjorken and Drell. ')
g, (Q) is the initial bound-state wave function of en-
ergy E&, given in momentum space and normalized
such that f ( g, ~'d'(I = (2v) 3. gz (q) is the final elec-
tron wave function, which is characterized asymp-
totically as a plane wave of four-momentum

p =(Ez, p), plus an incoming spherical wave. e is
the magnitude of the charge of the electron in ra-
tionalized units. UVe also set h =c =nz, =1, so that
distances are measured in electron Compton
wavelengths, energies in units of the electron
rest energy, and momenta in units of m, c.

The amplitude (2.1) is subject to energy conser-
vation,

(2.6}

which describes the ground state for a Coulomb
potential neglecting terms of higher order in n Z.
In Eq. (2.6), N = (a/v)' ' is a normalization factor,
n =y'y and I)' =(1, 0).

In order to simplify subsequent discussion, we
note the following. Because of the particular ana-
lytic form of the ground-state wave function (2.6),
there may occur a lowering by one unit of the or-
der in n Z of an integral i.n which it appears. This
can be seen by observing that one of the repre-
sentations for the three-dimensional 5 function is
given by

lim —,
~

~. .. =5(q) . (2.7)

There are, in fact, two possibilities. If the mo-
mentum |Iwhich appears in (2.6) is fixed at some
nonzero value due to the action of an explicit 5

function, then provided ~q ~'»a' one may neglect
the a' term in the denominator. In this case the
order in nZ of the integral is its nominal order.
On the other hand, if Q is not fixed by an explicit
5 function, but rather is integrated over all val-
ues, then, using (2.7), the bound-state wave func-
tion can be replaced to lowest order, by the form

g;(q)=(nZ) 'v'N5(q)u;(1) . (2.6)

5'i",'= e(2ii)' ji)'e Vip (q)i(i), (q —k), (2.9)

where gz~" (Q) is defined by (2.4). The Sauter am-
plitude, which is the lowest-order approximation
to (2.1), is then given by

Sy) -Sy; +8~](o) (z) (2.10)

The integration in S&'; is immediate, due to the
6 function in )l)~z~. We find, neglecting higher-or-
der corrections' in a Z, the result

S'f; = -, u(0))/[1+ 2(p —k) ~ n] u, (l).
,(,) e(2w)'N

(2.11)

In this case, there is an additional factor of (n Z) '

which lowers the order of the integral in which

g;(q) appears by one unit. In these circumstances,
in order to evaluate the photoeffect matrix element
to a given order in a Z, all other quantities must
be expressed to at least one order higher. It is
for this reason that we include the first Born cor-
rection (l)&'~, in the final continuum wave function
(2.4).

To proceed, we consider the contribution of each
term in the Born expansion (2.4}of the final elec-
tron wave function to the matrix element (2.1).
We define
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(b)

FIG. 2. Feynman diagrams describing the Sauter
amplitude. (The cross denotes interaction with the po-
tential. )

(c)

For the leading contribution to 8&';, we use the ex-
pression (2.8) for the bound-state wave function.
Since gz('~(q) contains one power of the potential,
only this approximation for P, (q) is needed. The
result for Sz'; will then be of the same order as
for 8&'&. In this way,

S~ =e(2~)'(nZ) 'v'¹~Q)g(p-R)] gu;(I),

(2.12)

where we have used conservation of energy (2.3)
to rewrite the propagator in covariant form. It
is essentially trivial to verify that (2.11) and (2.12)
represent all of the lowest-order contribution to
the matrix element (2.1).

The expression (2.11}for Sz(';) can be further sim-
plified by employing the following relation, which
is valid neglecting terms of relative order (nZ}',

= v'(n Z) ' — g(p -k)u, (I) . (2.13)

With this result, S&'& can be written in a form
which is similar to (2.12), so that the Sauter ma-
trix element can be expressed in the symmetric
form,

S„=e(2w)'(n. Z) 'v'Nu, (p-)

x
( f(p —k)

+8 (f(P-TI)) M;((). (2.14)

This result, (2.14), is especially attractive since
the right-hand side is manifestly gauge invariant.

It is instructive to note that our final expression.
(2.14) for the Sauter amplitude is exactly that
which would be obtained by evaluating the Feynman
diagrams of Fig. 2 assuming the initial (bound)

FIG. 3. Furry diagrams which describe the radiative
corrections to photoeffect to lowest order in the radia-
tion field (order n).

electron were described by the wave function,

q; (q)=(nZ) 'w'i((75(q)u;(I) . (2.15)

III. RADIATIVE CORRECTIONS IN THE FURRY PICTURE

We will now discuss the radiative corrections to
photoeffect in the context of the Furry (bound-
state interaction) picture. In this picture, the
wave functions and electron propagators (Dirac
Coulomb Green's functions) contain all effects of
the potential so that the resulting matrix element
is exact in nZ. Including self-energy counter-
terms, there are eight Furry diagrams which con-
tribute to lowest order in the radiation fie'ld (or-
der n). These diagrams are shown in Fig. 3.
Writing explicitly the contribution of each dia-
gram to the photoeffect transition matrix element,
we have the following.

Diagrams (a) and (b) of Fig. 3 represent self-
energy corrections. Their contributions, subject
to energy conservation, are given by

This expression, aside from the normalization,
corresponds (formally) to the first Born term for
the wave function of a, free electron at rest. " Some
consequences of this point will be considered in
the following paper. '



&f» =e(2')'(~»»c»)(2»i)' )"d'Pid'&2»f'Pad'qD(q) tf(Pi)&S(E»t P, -k, P2) y"S(E» —q'; p, -q, p, -fI)y„y»(p, ).

In these equations, D(q) is the photon propagator, which has the form (3.2)

D(q) =D(q'; ID =(2„).—

and S(E;p, P') is the Dirac Coulomb Green's function. For our purposes the most convenient defi-
nition of S(E; p, p') is in terms of the following (iterated) integral equation":

(3.3)

(2»»}4 . P —I+ie P- I+is P'- I+is

+ 2. 1
. , I

d' qd' qp(Q, ) S(E; p —q„p'+q, )f'(q, ) (3.4)

where g(g) is defined by (2.5). However, we will
also have occasion to refer to the eigenfunction
expansion of S(E; p, p'), which can be written

(3.5)

Corresponding to each self-energy diagram, there
is a mass counterterm [diagrams (c) and (d) of
Fig. 3], where

R~t'»~ = —ie(2»»}'(-,'5m„)(2»»}4

d p, d p2$~(P, ) S(Ey,' P„p +R)gg»(p )

(3.6)

A»@;=- ie(2»») (
—'5m )(2»»')

&c d p, d p, gy(P, ) )S(E»,' P, —k, P2)»ii»(P~).

(3.7)

The use of different mass counterterms for
bound and free electrons in (3.6) and (3.V) re-
quires some comment. For a free particle, the
radiative corrections to the self-energy can only
lead to a change in mass. " For a bound electron,
however, interaction with the radiation field also
produces a change in the binding energy. This
correction is essentially the Lamb shift. For con-
sistency, this additional contribution to the self-
energy must be included in Sn~. Hence, we de-
fine

5m»» =-ivy(2v) d p, d p d qD(q)»ii, (P,)y"S(E» —q';p, -q, p, -q)y„y;(p, )

+i»»c»(2»»)' d'p, d~p, d4q5(qo)D(q)T»»»(p, )y»'»ii»(p, +q)Tr[y~S(E» p~ —|i,p2)]

= 5m~+DE~, (3.8)'

where 5m„ is the free-particle self-energy cor-
rection and AE~ is the radiative correction to the
binding energy, including both self-energy and

vacuum-polarization contributions. In a lowdst-
order evaluation of the radiative corrections, of
course, this point is somewhat academic since the
Lamb shift corrections are of higher order in aZ
and may be neglected. It is, however, important
for the general self-consistency of our formalism.
This can be seen from an examination of the self-
energy term, (3.2). [The following remarks also
apply to the vacuum polarization term, see Eq.
(3.10) below. ] In this expression, we have written
a factor, S(E;;P, —k, P,}, where E,- is the energy
of the initial bound state. However, from (3.5) we
see that the Dirac Coulomb Green's function has
poles at the bound-state energy eigenvalues E„so

I

that S(E„p,—%, p, ) is not, strictly, defined.
[Note that this infinity is in addition to the diver-
gence of 5m~. ] This difficulty is resolved by the
definition (3.8) of 5m~, since in this case the pole
of the Green's function which appears in (3.2) [to-
gether with the pole in the vacuum-polarization
term (3.10)] is canceled by the corresponding pole
in the mass counterterm (3.V). Thus, the sum of
these diagrams is finite. Effectively, then, for
those diagrams which contain a factor S(E,; p,
-R, p, ), this Green's function may be replaced
by a modified eigenfunction expansion of the
form (3.5) in which the bound state with n=i
is omitted.

Diagrams (e)-(g) of Fig. 3 comprise the vacuum-
polarization contributions to photoeff ect. Ex-
plicitly, these yield
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R; = —e(2]])3(—,'vo, )(2v)' d'p, d'p, d p, d'q5(q )D(q)p~(p, —q)y"S(Z~; p„p, +%)d](],(p, )Tr[y„S(&„p,—q, p, )],

Ri&]~ = —e(2v}3(-,'~a)(27])' d'p, d'p, d'p, d'q5(q')L](q)p&(p, )]qS(E„p, -%, p, )y"]t);(p, +q)Tr[y„S(E„p,—q, p, )],
(3.9)

(3.10)

Rr] = —e(ke) (-,
'

)e(kq) fed 'P d P d P d qn(re;P, —P )iPr(P )yer) (P )Tr[yed(q'+re;P„rryk)rrd(q';q P, —P, +P,)],
(3.11)

where, again, we note that, due to the definition, (3.8), of 5mB, only states with n ski contribute to the
Green's function, S(Z;;p, —k, p, ), which appears in (3.10).

Finally, the contribution of the vertex correction, diagram (h) of Fig. 3, can be written in the form,

Srkr e(qe)'( ,'=en)(qe)'-fd'p, d'l d'p, d'qn(q)qr(p, )y S(kr-q';p, -q p, 'k)a'Se(kr —q';p„p, -q)yeq(p, ).

(3.12)

The integrals given in Eqs. (3.1), (3.2) and (3.8),
(3.V), (3.9)-(3.12) represent the contributions of the
Furry diagrams of Fig. 3 to the radiative correc-
tions to photoeffect. The evaluation of these terms
including all orders in o.Z evidently presents for-
midable calculational diff iculties. For a lowest-
order calculation, however, it is sufficient to em-
ploy the Born approximation for the electron pro-
pagator and final continuum wave function. In this
way, one can evaluate explicitly the contributions
of these diagrams. In the next section, we give
our result for the lowest-order radiative correc-
tions to the photoeffect matrix element obtained
in this manner.

We note that, it should not be too surprising that
Born-approximation techniques can be employed
in this case„even though the electron is initially
bound. Re have already indicated that the prin-
cipal contribution to the photoeffect matrix ele-
ment comes from the region of configuration space
on the order of the electron Compton wavelength.
Thus, it is the small-distance behavior of the
components of the matrix element which plays the
fundamental role. In these circumstances, one can
generally argue that the use of the Born expansion
is appropriate. As an example, it may be re-
marked that the difference betmeen the evaluation
of the Lamb shift, where an expansion of the pro-
pagator in a Born series is not appropriate, " and
the formally identical calculation of the radiative
corrections to hyperfine structure, where the
Born expansion can be employed, '~ is due to the
fact that in the Lamb shift the typical distance
is the Bohr radius, whereas in the case of the
radiative corrections to hyperfine structure it is
the electron Compton wavelength which sets the
scale. In our calculation of the lowest-order rad-
iative corrections to photoeffect we will see that
the introduction of the Born expansion for the
.Dirac Coulomb Green's function and the final con-

tinuum wave function does not induce any patholo-
gies which may indicate a failure of this approxi-
mation. Spurious lower-order terms or gauge
noninvariant contributions, such as are encoun-
tered in the attempt to use the Born expansion for
the evaluation of the Lamb shift, ' simply do not
arise.

IV. LOWEST-ORDER RADIATIVE CORRECTIONS

With the introduction of the Born approximation
in these circumstances, the calculation of the low-"

est-order radiative corrections to the photoeffect
matrix element is straightforward. As a prelim-
inary step, we replace the exact Green's functions
which appear in the contributions of the Furry
diagrams (a)-(h} by the first two terms on the
right-band side of Eq. (3.4}. That is, we set

,)
-» &(p —p }
(2v)4 P —1+ie

1
+p —(+r'e ~ p'

)(' —(+ie) '

(4 1)
Cross terms in the resulting product which in-
volve more than one power of the potential and all
higher-order corrections to the electron propa-
gators are neglected. At this stage, however, no
approximations are made for either g~(q) or g, (q);
the exact wave functions are retained. Since a
separation of zero and one potential terms from
the many potential contribution to the propagator
would have to be done in any case in order to ef-
fect the renormalization program, it is evident
that at this point no essential approximations mill
have been made; those terms omitted can be con-
sidered at a later stage. Moreover, since all in-
finite renormalization effects are contained in the
zero and one potential terms, the remainder mill
be finite except for possible infrared divergences.
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At the same time, due to the 5 function which ap-
pears in (4.1), a number of momentum integrations
in the resulting expressions can be done explicitly.
Also, the integration over the 4-momentum of the
virtual photon can be accomplished by the usual
Feynman techniques. Finally, ihe remaining in-
tegrations involving gz(fi) and g, (q) can be effected
by means of the procedure outlined in Sec. II. It
should, of course, be apparent that an expansion
of the transition operator in powers of the poten-
tial does not correspond directly to an expansion
of the matrix element in nZ. This is due to the
particular analytic structure of the bound-state
wave function which was noted in the derivation of
the Sauter amplitude. An integration involving

g;(q} may involve a lowering by one unit of the or-
der in eZ of the integral in which it appears, with
the result that both the zero and one potential
terms contribute to lowest order in n Z. How-
ever, since only one power of a Z is involved,
it is relatively easy, in the case of the radiative
corrections to photoeffect, to extract the lowest-
order term in nZ from the Born expansion of the
transition operator. Moreover, zeroth order in
the potential only contributes to zeroth order in
n Z so that there are no spurious lower-order
terms. We may also remark that higher-order
terms in this series will involve logarithmic con-
tributions which come from higher-order terms
in the expansion of the wave functions and the
transition operator. These logarithmic terms,
however, are not relevant to our discussion of the
lowest-order radiative corrections.

With the substitution of the form, (4.1), for the
exact Dirac-Coulomb-Green's functions and the
elimination of explicit 5 functions, the contribu-
tion of the zero and one potential terms to the
diagrams (a)-(h) of Fig. 8, after renormalization,
can be written in the form

FIG. 4. Diagrams which correspond to the zero-po-
tential contribution M(p&) of the electron propagators.
Contributions due to the mass counterterms are not
shown.

given below.
ForM(p, ), we have

M(P, ) = A(P„P, —u) e —C(P, )g'- )t'C(P, —u),
(4.3)

where A&(p, p') and C(p) are the usual vertex and
self-energy functions of QED. They are defined
as follows (for a discussion of these functions and
the vacuum polarization correction, see Bjorken
and Drell, Ref. 8, Ghap. 8):

(2v)4=
4, , (8 -[Z -1+C(p)](p'-1)$,

,
(4.4)

where M(p)C(p) =C(p}u(p)=0, if p'=1, and

2' '=,„.[(Z-,'- l)~" +A"(P, P'}~, (4»

where u (P)A" (P, P)u(P) = 0, if P' = 1. Z, and Z, are
the propagator and wave-function renormalization

n=~)()»)' ( ~'), t, )i,)M)),));% -&)

+ &'P&).Crt )&ID P,,))';(i,)) .
(4.2)

In this equation, p),'=(E~, p, ), p,"=(E„p,), and k"
= (&u, k) is the photon 4-momentum. The zero po-
tential contribution M(P, ) arises from the product
of the zero-order terms in the expansion of
B(E;p, y ), and is equivalent to the diagrams
of Fig. 4. N(P„P,} comprises the one-poten-
tial contribution and originates in the cross
terms between the. zero- and the one-potential
parts of the electron propagators. 'The dia-
grams corresponding to N(P„P, ) are given in
Fig. 5. The explicit results for these terms are

FIG. 5. Diagrams which correspond to the one poten-
tial contribution N(p&, p2) of the electron propagators.
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constants. By Ward's identity, "Z, = Z2. A. is a small photon mass which is necessary to prevent
inf rared divergence.

The one potential contribution is given by

1 1
N(P„P, )=C(p, )Ap, -p, -k)P „P I &+I

P k
I-@ui-p, -k)C(P2)

2+ I

+A(p„p, +k). V(p, -p, -%)—,, g+g, &, A(P, -k, P,) ~ V(p, -p, -&)

+I'(Pg —
Pg -~) 'T(pg~p2+»Pa) ' &+& 'T(pv P&»P2)" I'(Pz P2 ~)

1 1—II((P, -P, —k)') g(P, —P, -k) —„~ 1 g+g g(p, -P, —k)
+2+ f» I

(4.6)

where C(P) and A&(P, P') are defined by (4.4) and

(4.5) and II(P'), the vacuum polarization function,
is defined by

the lowest order radiative corrections parallels
that of the Sauter amplitude. To proceed we con-
sider first the zero-potential contribution. We
define

4

. (g&'p' -P&P")[I-Z, +11(P')],

(4.7)
with II(0) = 0. Z, is the charge renormalization
constant. The remaining function, T""(P„P„P,),
is defined by

d4q 1 „ 1 „ 1
P'. —tf'-1 y" Vo

4

. T""(p„pa,p,), (4.8)

and is discussed, in a different context, by Brown
and Feynman. " We note that, because of Furry's
theorem" and the fact that k' =0, diagram (g)
[Eq. (3.11)]only contributes to the renormaliza-
tion of the electric charge in lowest order.

It can easily be seen that all infinite renormali-
zation effects, expressed through the renormali-
zation constants Z„Z„Z„and 5m„, are included
in the zero and one potential terms. All remaining
contributions are finite except for possible infra-
red divergences. Moreover, it is evident that
these renormalization constants only appear im-
plicitly in our expression (4.2) in terms of the
definition of the physical charge and mass of the
electron. Hence no further renormalization is
necessary, to any order in nZ, for the calculation
of the radiative corrections to photoeffect to low-
est order in the radiation field (order a). In the
appendix we give an explicit demonstration of the
cancellation of ultraviolet divergences for this
case.

The evaluation of the lowest order (in o. Z) con-
tribution to Eq. (4.2) is readily accomplished using
the approach of Sec. II, so that our derivation of

M&~";~ =e(2v)' dsp, fi&~"~(p, )M(p, )g;(p, —k), (4.9)

where gz" (p, ), defined by Eq. (2.4), is the nth
Born term in the expansion of the final continuum
wave function. The lowest-order contribution of
the zero-potential term is then given by

fl ~ff +~f f
(o) (i) (4.10)

where only the lowest-order part of Mf'; is re-
tained [cf. Eq. (2.10)]. Using the expression (2.6)
for the ground-state wave function, Mf'; can be
evaluated immediately. We have

x~ V(p —R)u, (l) . (4.12)

In (4.12), we have also used the fact that N«(P)C(P)
= 0, to eliminate one of the self-energy functions.

The lowest-order contribution to Mf'; can be ob-
tained by means of the approximation, (2.8), for
the bound-state wave function. Because of the 5
function, the integration is immediate. We find

M&,", = e(2v)'(o. Z) '~ 'Xn, ()gP-p k)—
x[A(l+k, l) ~ e —C(l+k)g]~, (l), (4.13).

where we have used the fact that C(l )u;(I ) = 0.
Since N(p„p, ) contains the potential once, we

only need the zeroth Born term in the expansion

k 4 ~g(p)[A(P, P-k) e -C(p.)k- EC(p-k)]

x[1+2(p-k) ~ n] I, (I ) (4.11)

or, using the relation, (2.13),

V,",' = e(2v)'(n Z) 'v'Wu, (p) -[W(p p k) e - gC(p - -k)]
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of the final continuum electron wave function.
Moreover, to lowest order we can also use the
form (2.8}for the bound-state wave function.
Thus, both of the momentum integrations in (4.2)
are determined by 5 functions. We see immedi-
ately that the lowest-order contribution of the
first two terms of (4,6) is zero, since u&(P)C(P)
=C(l )u, (l) =0. The contribution of the last two
terms of (4.6), the vacuum-polarization correc-
tion, is also simple since the result is propor-
tional to the Sauter amplitude [cf. E(I. (2.14).]
Explicitly, these terms yield

N~; +Ny; = —II((P —k —l) )S~;. (4.14)

This result could have been anticipated, since it
is known' that the only effect of vacuum polariza-
tion, to lowest order, is to modify the potential
by a multiplicative factor. As the Sauter ampli-
tude is linear in V(q), the form (4.14}follows im-
mediately.

The remaining terms of N(P„P,), corresponding
to the first-order self-energy and vertex correc-
tions, are somewhat more complicated. After
doing the integrations we have, to lowest order,

/~ &~ +~(b~ +w ~~ &~ + ~(d~ + ~~h~
f& + f& f&+ f&+ f&

=e(2w)'(uk) ' e'Nu~(P)I)(&1+2) V(p —k)-- ' 4'e&' —A(P —k, 1) ~ V(p-Q

+ V(p —k) T(&, 1+k, 1) w + e T(&, P —2, 1 ) V(p —
)I(((u).)(4.12)

This form, however, while relatively simple in appearance, is not particularly convenient for later appli-
cations. Using the expression, (4.8}, which defines T "(p„p„p,), it is trivial to show that

u~(P)V T(P& l+k& l) . euq(l) =u~(P) A(P, l) ~ V' — A(P, I+k) ~ V+ T(P& l+k, l) e —
k

k u&(l),

(4.16)

with a similar result for uz(P)e ~ T(P, P —k, l ) ~ Vu, (l ). Inserting these expressions into (4.15), and rear-
ranging terms, we can rewrite that equation in the form,

Ne'; +Ne, +Ne'; +Ne; +NP = (2 )'( ke) ' a~Nap&(&)
wI

— —A(&, 1) V(P —k)+A(&, 1+2) V(P —«)-p'E

+ A(p-k, l) ~ V(p-2)+V(p-k) T(p, I+A, l) a(l)

ea(P) T(A&-k, 1) . VN-«)I
u

(1) . (4.17)

This result (4.17) is somewhat easier to deal with analytically, since it is manifestly gauge invariant.
Moreover, the introduction of the 4-vector, a" (q) =e" —(q e/q k)k", eliminates about one third of the
terms present in T"'(p„p„p,), since k a(q) = q a(q) = 0.

Collecting terms, we have the final result for the lowest-order radiative corrections to the photoeffect
matrix element:

Rq; = uq(p)Ru, .(l )

=Mf +Ey-

1
=e(2w)'(o. Z) 'w'Ãu&(p) [A(p, p —k) ~ c —)fc(p —k)]

1
g(p-%}

—.Il((p —k —l )') e' g(p —k)+ —A(p, l ) V(p —k)+A(p, l+k) V(p-k)p-k' —1 l ~ k 21- k

-. eg(p —k) T(&, l ~ k, l) ~ a(l)+(&—l, k —-k(WIu(l), (4.18)
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where []}}—l, k —-k] denotes the matrix ad)oint
of the preceding expression followed by the substi-
tutions, P—l, k —-k. Thus the transition matrix
R defined by (4.18) is Hermitian. We also note
that the lowest-order radiative corrections defined
by (4.18) are gauge invariant. That is, Rz; is in-
variant under the substitutions,

e~ -e" + (k" (4.19)

V"(p —%)-V"(p-k) + $(P- k —l )", (4.20)

where p and g are arbitrary.
At this point, it is convenient to display explic-

itly the infrared divergent part of 8&&. %e note
that each of the functions, C(P}, A"(l},P'), and
T "(p„p„p,) is infinite in the limit, X-0. Sum-
ming the infrared-divergent terms, ""we find
that R&; can be written in the form"

Rz; =—[- (-, + Ink') + 2 vF, (P, l )1 Sy, +By, ,

where Rf; is independent of A. and 9&, is the Sauter
amplitude (2.14). The function I',(P, I ) is defined
by

(4.21)

1 ' dx P'
(4.22)

V. INVARIANT AMPLITUDES

The functions C(P), A" (P, P'), "7"(P„P„p,), and
II(q') which appear in our expression (4.18) for
the lowest-order radiative corrections are rather
complicated. Moreover, although these functions

where P„' =1- (2 —v)x(1 —x) and v=2l P. This
infrared divergence will be eliminated, in the
final results, by the addition of the lowest-order
brompton cross section, in which the incident pho-
ton produces a final real photon on interacting with
the electron. In Sec. VI we will evaluate this con-
tribution explicitly, assuming the energy of the
emitted photon is small compared to the electron
rest energy.

have been evaluated for certain kinematical situ-
ations, in general the kinematics appropriate to
photoeffect have not been considered. In these
circumstances it would be difficult to give a de-
tailed derivation of the reduction of this expres-
sion to invariant amplitudes. Accordingly, we
will only present here essentially the final results.

In order to simplify the evaluation of our result
(4.18), we introduce a particular set of linearly
independent spinor basis functions 7„'. In this
basis the matrix element Rf; will have the form,

Rq; = QA„((o, cos8)u~ (]}})I'„u;(l },
n=I

(5.1)

where cos8 =P ~ A is the cosine of the scattering
angle. %e note that, because of parity and time-
reversal invariance, there are only four scalar
amplitudes, A.„. The spinor basis functions which
we choose are combinations of Dirac matrices
rather than the usual linear combination of Pauli
spin matrices. In this way we can maintain ex-
plicit relativistic covariance and gauge invariance.
This not only simplifies the expression for the
matrix element; it will also make the trace cal-
culations for the crops section somewhat easier
to perform. Thus we define

V, = 2v'(n Z)-' jgg, V, =2v'(n Z}-'g@,

I;=27['(n Z) '[(2l. k)(2p ~ e) —(2l ~ e)(2p ~ k)] g,
Y', = 2w'(n Z) '[(2][} k)]t'f'- (2P e)fg], (5.2)

where p=g(p —%) is given by K[I. (2.5). Although
these basis functions are manifestly gauge invari-
ant with respect to the incident photon, the par-
ticular forms (5.2) imply the choice of the Cou-
lomb gauge for V]'(q) in (4.18).

The set of spinor basis functions (5.2) is a nat-
ural set, in that reduction of our expression (4.18)
to invariant amplitudes is achieved most easily
with this basis. For completeness, however, we
should indicate the relation between the F„and
the usual Pauli matrices. In the Lorentz gauge,
e" =(0, e), we have.

--'Z +1xr(P}is«(})= *. .. X] iir (XXX) — [P X+ia* (P )]) XX, ,x

X~(P}FX (l}=, . X] —(X (XXX}— — -[j ~ X+B (PXX)]) X, ,Ef +1
(5 8)

+@V')&&+]( ) =
~

k~2 ( )( p ~)xyx&i

]/2
Mf(p)y', g, (l )=—'- ~, ]iraq[(2p g)jg ~ (pxk)+2(g)(p ~ g) —(2p ~ k)fox (pxg)]. g;,4 i p~ 2 g +1
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where ](, = (,') and y, = (', ) are Pauli spinors des-
cribing the initial and final electron-spin states.
Hence, the Y„are equivalent to a description in
terms of the four linearly independent Pauli basis
functions, p ~ e, o ~ (kxe), o ~ (pxX), and p ~ e
o' (p xk). By choosing a, particular coordinate sys-
tem, these reduce to the spinor basis functions
used in other calculations. '

In terms of the I'„, the Sauter amplitude (2.14)
has the form,

1 1 1
Zu —'e(2w) AYut—(P) —1;+—1' ——Y, ) u;(1),

(5 4)

where, we recall, N=(nZ/ v)' '. The invariants
a and 7 are defined by

[( =2p k =2E& (d(l-pcosg)2 7 =-2l ~ k = 2&v, (5.5)

where P =
~ p [/Ez is the velocity of the emitted

~ = [p-k['. (5.6)

The infrared-divergence-free part of the radia-
tive corrections to the photoeffect, R«, which is
defined by Eq. (4.21), can be written in the form

4

It„=,'e(2—v)'f(I g—ft„(~, T)u, (P)I'„u, (l), (5.7)
n =l

where the Rn are independent of n and o. Z. For
simplicity, we write R„ in the form

R„=M„+I„+t"„+J„+P„, (5.8)

where each term in (5.8) corresponds to one term
in (4.18). Explicitly,

electron. Note that, neglecting quantities of order
(n Z)', z is just the square of the momentum trans-
ferred to the nucleus,

I Pt )(PY (u)=)2 (wa )Z'Yet (P) ([A(PP —k) ~ e —, YC(k —k)]
n=1

is the zero-potential contribution. I'„ is defined by

Q F„uq (]}2)Y'„u;(l )
7l

1
)2p —tw) + [2 1, k —-k] )—u;(1 )

(5.9)

= 2w'(aZ) 'at (2) ( [A(P, 1} Y(p-t() e(le ink')2(p —)[) —kep (2, 1)f(p —(()]e [2—1 k —-k]W)u()),

(5 .10)

where F,(J2, I ) is given by Eq. (4.22).
4—QG„kt(P)Y„u;(1 )=2w'(aZ) Pt(P)(

n= l

while J„ is determined by

G„ is defined by

[A(k, 1+2): Y(p —2)+(-', e)nk. ')2'(p-k)] +[2—l, k —-k]W)u;(1),

(5.11)

QJ„u~(p)Y„u,(I )

t

=2w'(az) 'ut(P)()'(p-]() ~ T(Pl+2, l) a(l) —2wp ,(P))tw(p-tw) -+[P, —l, k ——k]wIu(l).
(5.12)

Finally„P„gives the vacuum polarization contribution,

(5.13)
4

1P(P)t„PY( )a=2)( w„Z) a'ut(P) —rr((P —k —1)')1
1 f(P -)e) e[P—1, k —k]W) a() ). -

t,

Of these terms, the simplest is the vacuum-
polarization contribution since it is proportional
to the Sauter amplitude. Moreover, the integral
(4.7) defining II(q') can be done analytically. ' We
have

10 81
P(~) =- —+——

9 Sg

2 g —2 g+4 ' x+4 ' +a'

-II((p —k —I )') = -ll(-[[)= (n/2v)P(~),

where

(5.14)

Hence, using (5.4) and (4.14),

(5.15)
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TP2 = —KTP3 P) P~ = 0.

The integrals which occur in the zero-potential terms M„can similarly be evaluated analytically,
since the square of the momentum transfer in A "(}}),p —k) is k'=0. Calculating A"(p, p —k) and

C(P) and simplifying, we have

(5.16)

QM„u/(P) Y„u,(l )

= 2lr (rr 2) '2«(2} ({l,(1 «))r/+1, (1 —«)[(2(r. 2)l —(2p. «)21}} . . 2'(p 2) +[)r 1 4 2]T) rr((),

(5.17)

where

l, (1 —«') = — 1 + In«'),K

2 1 —K 1-K
1 m2l (1 —«) = ———1(1—«)).2 6

-„, ,)(-. )
Kx 1 —lnx+ — incI —K

(5.18)

3

G„= G„"' K, 7. ,
r =0~ =1

where the integrals G„"' have the form

(5.28)

The remaining terms, Q„«and J„, are quite com-
plicated. Moreover, it is not feasible to evaluate
the Feynman parameter integrals which occur
analytically. " Accordingly, we will express these
contributions to the invariant amplitudes in terms
of linear combinations of certain definite integrals.

For G„we write

and I.2(z) is the Euler dilogarithm, G„"'(«, T) =
I

d& 1 n~(&2 TT 3'@ra(&2 TT 3'). (5.24)

I 2(Z) =— —ln(1 —x) .x (5.19)

Expanding the right-hand side of (5.17) in terms
of the F„, we find

M, = (2/«)I, (1 —«) +I,(1 —«) —(1/T)I, (1+T),

M, = (1/T)I, (1+T) —I,(1+1.),

M, = 0, M4 = (1/«)I, (1 —«),

(5.20)

L2(1+V) =—
(5.21)—in ~1 —x ~+i}[ln(1+y) .

On the other hand, I, (1 —«) is real since «&0.
The expression for E„, defined by Eq. (5.10), can

likewise be evaluated analytically since, in the
vertex function A" (})), 1 ), both momenta are on the
mass shell. We find simply

p =y' -p =0
(5.22)

—1 T+4 (T+4) r +T'

)
I"3= 1+2 -- ln

2KT, I T (T + 4)1/2 Tl/2

where I/(1+7.) is obtained from (5.18) by the sub-
stitution, v- —7. We note that the functions
I&(1+T)havenonzero imaginaryparts. Inordertofix
thesignoflmi&(1+T) unambiguousiy, we recallthat
according to the Feynmanprescription, the masses of
the electron and photon have infinitesimal negative
imaginary parts. This implies that T has an in-
finitesimal negative imaginary part, so that

1n(-T) =ln ~~}(+ix,

In (5.24), the I'„"' are polynqmials in y and the g„,
are logarithmic functions of their arguments. Of
the 32 integrals indicated in Eq. (5.23), only 14
are nonzero. For these integrals, the explicit
forms of I"„"' and g„, are given in Table I.

For J„we define

3 2."'(,~)+g g J„"(...), (5.25)

and J„"' has the form
1 1

~n~(&T T)= dx d1' &, (&2 T;x, p) j„,(/&, r;x, y).
0 0

(5.27)
8„"' a,nd K„"' are polynomials in x and y. 8„, and j„,
are logarithmic in z, T, x, and y. The arguments
of the integral in Eq. (5.26) for ten nonzero H„"'

are given in Table II, while the arguments of the
integral in Eq. (5.27) for the 26 nonzero J„' are
given in Table III.

Each of the 50 nonzero Feynman parameter in-
tegra, ls Q„"', H„"', and J„"' given in Tables I-III is
is well defined22 for all (finite) values of «' and T
Moreover, the imaginary parts of G„"', H„"' and J„"'
are determined unambiguously from the usual

where H„"' can be written
1

II„"'(«, v ) = dx dy 8„"'(/[, r; x, y)k„(}[,T; x, y ),
0 p

(5.26)
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Feynman prescription which implies that T has a
small negative imaginary part. (G~, H~, and J~
are real for physical values of a and T ).Thus,
while an analytic treatment of these integrals is
not feasible, they are amenable to numerical
evaluation.

Although the number of integrals which must be
considered in order to obtain a complete descrip-
tion of the radiative corrections to photoeffect,
including all polarization phenomena, is rather
large, some simplification results when we re-
strict the discussion to the unpolarized cross sec-
tion. In this case, the number of distinct integrals
which must be evaluated is reduced from 50 to 20
since the sum over polarizations results in the
replacement of the spinor basis functions by scalar
functions of the invariants rc and 7 so that inte-
grands for the same values of ~ and s can be com-
bined to form a single integral. Moreover, only

the real part contributes to the cross section, so
that the imaginary parts can be ignored. In the
following section we derive the expression for the
lowest order radiative corrections to the photo-
effect differential cross section.

VI. CROSS SECTION

With the normalization which we have adopted,
the cross section for photoeffect can be written

der«& Ipj
i

dn (2~)' 2~ ' &*'' ' (6.1)

where T« is the total amplitude. Including radia-
tive corrections to lowest order in aZ, T« is
given by

T„=s„+—[-(-', + in~')+ 2 vs, (p, l)Js„+2„,2~
(6 2)

TABLE I. The functions I „" and gr, given in Eq. {5.24) which comprise the integrands of
the 14 nonzero integra1s G"„.In these functions, p~=l+ Ty+Ky(1-y), q~=1 —Ky, and v

=T+ 2.

Grs
n

Goi
2

g„, (K, T;y)

T T 2 P2- ~, (y ) &„P,-y
2 ~ 2p2 2(p2)2 y

GO2 1/K ——1n(q +yK) — + 2ln
2q~ 2(q~} yK

Gil
1

Gii
2

(v+ 1)/T

-(K —1)/T

p~-yT2- 7

p —yT

—2/K

1/K

1 q~+ yK

qy yK
n

G2ii

G2i
2

-(1+vy)/T

(z+ 1-2y)/&

p

Q22 (2- Ky}/K

-(1+2y) /K

1 1 yK ~qy+ yK
q~ q~ yK

Q3ii —v(1 —y) /7

—
t, 1 —(2 —K)y Ky 2l /T

G32

G32
4

(1+Ky )/K

2y/K

1 pK K q&+yK "
q -2 q q yK
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where Sz,. is the Sauter amplitude (2.14) and Rz,. is
defined by (4.21). Hence,

dc' $
do' $' Q 5 2 d(Tf'' + —[-(~+Ink.')+ 2vy' (p, I)]

I gi I+
( ), [R~, S~,. +S~,R,], (6.3)

where dvz'o'/dQ is the analog of the Sauter cross
section including polarization. The second term of
(6.3), which is also proportional to the Sauter
cross section, contains the infrared divergent part
of dvz, /dQ.

In order to relate (6.3) to the physical cross sec-
tion, it is necessary to take into account the fact
that any experiment will have a finite energy res-
olution hE in regard to the possibility of emission
of secondary photons; i.e., any number of photons
of total energy less than AI: could be emitted in
the process. Then, for consistency to first order in
in n, we must include the possibility that one pho-
ton of energy less than AE is also emitted along
with the final electron. Thus, to obtain the physi-

cal cross section we must add to (6.3) the cross
section for the inelastic scattering of a photon with
final energy less than b,E by the bound K-shell
electron (Compton scattering). This addition of
the Compton cross section will allow the elimina-
tion of the photon mass X from our expression (6.3)
and, hence, give a result which can be compared
with experiment. "

The Compton amplitude for the scattering from
a bound electron is described by the Furry dia-
grams of Fig. 6. For our purposes, however, we
only need to evaluate these diagrams for the K-
shell to lowest order in ng. This can be accomp-
lished without difficulty using the Born approxima-
tion for the intermediate electron propagators and
essentially the same procedure as that outlined
for the calculation of the radiative corrections.
Hence, we will omit details of this calculation and
simply present the final result for the lowest-order
contribution to the Compton-effect transition mat-
rix element Qf,. assuming the initial and final elec-
tron states in this case are the same as in our
expression (4.18) for the radiative corrections to
photoeffect. We find

TABLE II. The functions e„" and A'rs given in Eq. (5.26) which colnprise the integrands of
the 10 nonzero integrals H"„'. In these functions, p„=x7 + [7y(1 —y) —Ky] (1 -x) + Ky(1 —x) + 1,
Q~ = —xK + [7'y(1 —y) —Ky] (1—x) + Ky(1 —x)+ 1, and & = T+ 2.

Hrs
n 8"„(K,w;x, y) Ars (K, 7';X,y)

H01
2

—(1-x) 2-x7
1+—21np' p' -x7

H02 (1-x)

H'2
3 (1—x) /K

H02
4 (1—x)p + 2)/K

(1-x) [(v+ 2)(l-x)y —xv] /~

H2 (1—x) [(v+ 2)(l-x) y+x7] /v

H2 —x(1 —x)

H12
2 x(1—x)

—(1 -x)/K

xz xx
&

q~2+ m)-
„2 Q g xK

H12
4

—(1—x) (v + 2) [1—y + xy] /K
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TABLE III. The functions 4„"' and j„,given in Eq. (5.27) which comprise the integrands of the 26 nonzero integrals
J~ In these functions p 2 xT + [Ty(1 y) Ky](1 x)2+ Ky(1 x)+ 1 ~2 xK+ [Ty(1—y) —Ky] (1 —x) 2+ Ky (1—x)+ 1 k2

=1+ Ty(1 —y), and v= T+ 2.

J7S
n ,&"n (K, T X,y) S~~ (K, T~x~y)

J01
2

J02

—v/T

—V/K

[Ty {1—y) —yK] {1—x)—1
k2 'k2 p2-xT

—21n 2+
1 K [Ty(1-y)-yK](1 —x)- 1

/~2 + xK

J iL
2

—(1-x)[v + 2+ 2T(1 —x)y]/T

—(1—x)[v + 2+ 2r(1-x) + 7'v[y(1-x)+ x]] /r )
2 xT

J 11
3 (1-x)(v/T) [1-y + xyl

J 11
4

J' 12
1

(1—x)[1—y +xy]

(1 —x)[(v+ 1)(l —x) (1 —y) + 2(l —x)y + 2x] )

J 12
2 {1-x)[1—y + xy]

—(1-x)[2(1-y+ xy)-xK] /K

1 1 2+xK—,—2
In~"

XK tg& + XK

J 12
4 (1 —x) [(K —T) ( 1—x)y —K Tx —2] /K

J 21 (1-x)[T (1—x) y(1 —y) —K(v+ 2) x(1 —x)y

+4(7+ 1)(1—x)y+ 2] /T

J 21
2

J' 21
3

1 2T p2 xT xT
(1-x)[v (x+y -xy)+ v(1 —2x)-K{v+ 2)x(1-x)y]/T 2 2 1+ 2 In{p) p2 —xT p„—xT

(1 —x)Q[—7 (1—x) (1-y) + (x + r)x] /v

J 21
4

J22

J22
~2

J22

J'22

J31
1

J31
2

J31

J'31

J'32
1

J'32
2

J3'
J32

4

{1-x) y[l —2(l —x)(1 —y) + vx]

1 1 2x7 3(xT)2 p2 xT {xT)'

(p2)2 p p2 (p2)2 p2(p2 ))
1

1 2xK 3(xK) q+ xK {xK)2

(p')' p p' (p')' " * a'(p!+

—(1—x)[v(1-x)(1-'y) (1-y + xy)+(1- x)y(1+ 2x)+ 2x]

—{1—x)[(1—x)2(1 —y) (1—2y)+ x(1-x)y x2] *".
)22 — 2n+2

(1-x)((l-x) [{K+r)(1-y) -(v —l)(l-y)-y]+(x —1)x(l—x)—x}/x2 2 (g„) g„xK q„+xK

(1—x) ((1—x) (1-2y)[(x+'r) (1-y)- v] + v(x- 2)x (1-x)(1-y)
+(r —p:)x(l —x)y + (r + 1)(x—2)x}/x r

x(1—x) y(K/T) [—T(1-x)(1—y)+ v]

x(1—x) y(K/T)[- T(1 —x)(1-y)+ vl

(1-x) y((1 —x) (1+ ry )+x{1—x)[2+ (r —x)y]+ x}/r2 2 2

x(l —x) y[&(1 —x)(1—y)- v] r
x(l —x) y[7'(1 —x){l-y)+2]

x(l —x) y[ r(l -x)(1—y)+'2]

-(1—x)y (1+(1—y +xy)[T(1-x)(l -y)+ xx] }/x
—x(1 —x) y(7/K)[7(1 —x)(1 y)+2]
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1 1 1Gf;=e'(2v)'(nZ) 'v'At'uf(p) pf g pf /)+AD g p ff g p g
1/(p+kf kg)1

1 1 1
0; —if —1 ~f if —1 ' 'f It--' 1 ~)+ ~ f + j f

1 1 1
+gf~ ~ 1$(p+kf -k, )~ ~ g, +g,.

~ ~ 1'//(p+kf-k, )~ ~
fff u, (1),

f

(6.4)

where k;. is the 4-momentum of the incident photon,
kP the 4-momentum of the outgoing photon, and
&j" and zf' are the corresponding polarization 4-
vectors.

If we assume the energy resolution is such that
~E «1, then we need retain only those terms in
(6.4) which dominate in the limit kf - 0 and thus
consider just the infrared divergent part of the
Compton amplitude. " In this limit we find

1 2(AE)2 1 1+P
A(u&) = ———21n2n, E+—1+ln

2 2 Ef+1 P 1-P

+ -[2L.(-'(1+~/lp I)}-2L.(-'(1- ~/I p I))

L.(-(lpl )}-L,(lpl- }] (6.8)

and L2(z) is the Euler dilogarithm. We note, from
(6.8), that A(ur) is real.

Adding (6.6) to (6.3) and using (6.7), we have
finally, for the physical photoeffect cross section,IRD—

fj fj py ~p fj ~

f f
(6.5)

where Sf, is the Sauter amplitude. Using (6.5), we
can write the cross section for Compton scattering,
in which the final photon has energy less than AE
«1, in the form,

d(rP n doP' 1 d'kf
dQ m dQ 2' ~ ~@ 2' yo P f f

(6.6)

where deaf'0'/dQ is again the analog of the Sauter
cross section including polarization which appears
in Eg. (7.3), &uf

= (lkf l'+y')' ' and the sum in Eg.
(6.6) is extended over the polarizations of the final
(undetected) photon.

The integral in (6.6) has been discussed in many
places. " For the kinematics which obtain in photo-
effect it can be evaluated analytically. We find,

dn dn
+ (2v)' »

(6.9)

where A is given by (6.8). We see explicitly that
this expression, (6.9), is indeed free of infrared
divergences.

The cross section (6.9) is completely general in
that it includes all polarization effects. However,
in the following we will consider only the unpolar-
ized differential cross section for the K shell
since it is this quantity which is of primary experi-
mental interest. The unpolarized cross section is
obtained by summing over all possible transitions
from the K shell to the continuum final state of
asymptotic momentum p and averaging over the
initial photon polarizations. For this purpose, we
note that

uf(P) Y„u,(l)[uf(P)Y,u, (l)]~
fll g

ting
= ~ /2

where

= z+ inkz —2', ( p, l) + A(w), (6.7)

= —,'Tr(p+m)Y„(l'+m)Y„=--,'(Y„,Y,), (6.10)

wh~~~ ~,= r, ~& r„and mj and mf are the magnetic
quantum numbers of the electron. Evaluating the
traces which result from summing over the elec-
tron-spin states in Eg. (6.9), we have

g(Y„1;)= z(2v'/nZ)zV'(21'P}(2P'k) g(1;,Y, ) = g(Y~, Y,) =-z(2v'/nZ}'(2k' V)',

y(Y„Y,) = &(Y„Y,) = g(2& /nZ)'V'(2J' E}', z~(Y„Y~)= 4(Y~, Y,)'= z(2v /nZ)'V~(2P'k}(2P' k- 2l' k),

g(Y„Y,) = (2 2/ vZ)'n(2l'k) [(2V'k)(2V'p) —V2(2p k)], «(Y„Y,) = ,'(Y„Y,) = 4(2v—m/nZ)2V'—(2J a)2, (6 11)'

~(Y2, Y,) = —,'(Y~, Y,) = p(2v'/nZ) j2—p k[V'(2l'k+2p k) -(2V k)(2V p)]+ —,
' V'(2J e)']

—,'(Y„Y,) = —,'(2w2/nZ)' V'[21 p+ 2](2J'~ e)', —,'(Y„Y4)= ,'(Y~, Y~) =- g(2v'—/nZ)'V (2J' e)',
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FIG. 6. Furry diagrams which correspond to the
Compton effect from a bound atomic electron.

where 2P e=(2l k)(2p a) —(2p k)(2l e) and V"
= (V(p —k), 5). If we now average over the polari-
zation states of the incident photon, then, due to
the gauge invariance of the F„, we can make the
replacement

g&"
X=+1

so that

2(KT c)'--2J'=-2[~' +r' a7.v-J

(6.12)

(6.13)

Using the results (6.11) and (6.13), the radiative
corrections to the unpolarized K-shell photoeffect
differential cross section, to lowest order in n g,
can be written in the form,

(6.14) should be replaced by the Sauter-Gavrila.
formula" which includes the ng corrections.
For high-Z elements it is also possible that the
accuracy of our expression (6.14) may be improved
by substituting Pratt's modification' of the Sauter-
Gavrila formula for do~r"/dQ.

Even with the simplications which result when
we consider the unpolarized differential cross
section, the final analytic expression for the radi-
ative corrections to photoeffect (6.15) is sufficient-
ly complicated to. require numerical evaluation
for general values of x.and v. In particular, one
must determine the contributions of the 20 one-
and two-parameter Feynman integrals of the type
given in Tables I-III which remain after integrals
with similar integrands are combined according
to (6.15). Although we have made some prelimin-
ary estimates, the actual computation of these in-
tegrals has not yet been carried out. Neverthe-
less, we can make some quantitative statements
concerning the magnitude of the radiative correc-
tions to photoeffect since we have been able to ob-
tain analytic results for the low- and high-energy
limits of our expresss ion (6.15).

VII. LOW- AND HIGH-ENERGY LIMITS

do'g dO'g

dA dA m

where'4

2 T 8

x Re[R, +(1—7)R, -(~- 7.-8)R, —2RJ

(6.14) In the low-energy limit (cu «1) we expand the in-
tegrands of the integrals which define the R„ in Eq.
(6.15) in powers of P, the electron velocity, and
keep only the lowest-order terms. The resulting
integrals can then be evaluated analytically. We
find

6=-—',[p (~~ —jn2n, E)+2p kln2&yJ+O(p')
(6.15)

and do~+'/dQ is the Sauter formula,
P

p

(6.16)

In Eq. (6.15), A is given by Eq. (6.8) while the R„
are defined by Eqs. (5.8), (5.14)-(5.16}, (5.20),
(5.22)-(5.27), and Tables. I-III. (Note that only the
real parts of the R„contribute to &.) As we have
indicated, this expression is valid provided nZ/P
&c 1.

It will be shown in the following paper' that our
result for the K-shell photoeffect can be simply
extended to the case of any n$, &, subshell. To the
same order in ng we find that the corresponding
cross section is obtained by multiplying Eq. (6.14}
by n ' so that

dv. , q, 1 de' n.
)dA n' dA m

(6.17)

We note that, for consistency in the case of light
elements, the basic Sauter cross section in Eq.

=--', P'[~- In26E +2P lnP cosa]+ O(P') . (V.l)
We note that this expression (V.1) is of order P',
which seems', to be a characteristic feature of ra-
di.ative corrections at low energies calculated in
the Born approximation. It is also found in the re-
sults for the radiative corrections to elastic scat-
tering, ~' Compton effect,"Manlier scattering, "and
bremsstrahlung. "" However, it should be pointed
out that these results cannot yield the limit P- 0
since they are derived under the assumption
nZ/P«1. In order to treat the case P=O, then,
another approach would be necessary.

As a check on our expression (V.1), we note that
it agrees with the expression derived from Fomin's
result" for the nonrelativistic limit of the radiative
corrections to bremsstrahlung in the case all of
the energy of the incident electron is carried away
by the photon (p, =0). This will be explained in the
following paper, ' where we will explore more fully
the connection between the radiative corrections
to photoeffect and the high-frequency limit of
bremsstrahlung.
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Because & is proportional to P' at low energy,
the radiative corrections are not large in this
region. Moreover, due to the additional factor of
]6 multiplying cos8, &(u&, cos8) is nearly isotropic.
At energies for which E(I. (7.1) is expected to be
valid (&@ & 5 keV), we find 0~-(o./»)&~ 10'. (See
Table I of the following paper. )

The high-energy limit of our expression for 6

can also be obtained analytically using well-known
techniques for evaluating the asymptotic behavior
of Feynman-parameter integrals. " Because the
basic photoeffect cross section is sharply peaked
in the forward direction at high energy it is only
observable in this instance for small angles; i.e. ,
finite momentum transfers. Thus, we consider
the case r»1 and» finite. (Note that, , because of
the kinematics particular to photoeffect, the mini-
mum possible momentum transfer is of order 1 at
energies well above threshold. ) We find

difficult to observe.
We note, finally, that the simplicity of E(I. (7.2)

allows an analytic derivation of the result for the
high-energy behavior of the total cross section in-
cluding radiative corrections. The dominant high-
energy dependence can be obtained directly from
the relation,

(7.4)

(r»' =4m (nZ)'/(d (7.7)

where x, the momentum transfer, is chosen as
the integration variable. By writing

c»= (r» '(1+c.a/»), (7.5)

we find that in the extreme relativistic limit,

b, =2(ln7 —1)[ln2~ ——,
'

Inn ]——,
' lnT+0(1), (7.6)

6 = 2(inr —l){[ln26E —~z Inr) —In» Inr + O(1). (7.2) is just the asymptotic result for the Sauter
cross section.

This logarithmic dependence of 6 on v and ~ is
characteristic of radiative corrections at high en-
ergy. " In E(I. (7.2) we see that 6 is also weakly
dependent on the momentum transfer.

As an estimate of the order of magnitude of the
corrections in this region we take r =20 (ur = 5

MeV), » = 5 (8 = 10') . In this case

(c(/ii) 6 = 0.01(ln2 AE —1) . (7.3)

For nE =0.10 (=50 keV), we find (o./)T)6=-0. 03
and for n.E =0.01, (n/7i)&=-0. 05. In general, for
fu in the 1-10MeV range, an energy resolution
between 5 and 50 keV and for forward angles
(~10'), the radiative corrections (n/») 6 range
between -0.01 and -0.07. At sufficiently high en-
ergies these corrections may attain values of
-0.10 to -0.20. (See Table II of following paper. )
However, in this region the basic photoeffect cross
section itself is very small, and consequently,
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APPENDIX

In this appendix, we give an explicit demonstra-
tion of the cancellation. of ultraviolet divergences
for the case of the lowest-order (in o.) radiative
corrections to photoeffect. Because we consider
all orders in o.Z (Furry picture), the renormal-
ization program in this instance is somewhat more
interesting than in the free-particle case.

The ultraviolet divergent parts It&; (A) of the con-
tributions of the Furry diagrams (a)-(h) of Fig. 3
arise solely from the zero and one potential terms
of the exact Coulomb Dirac electron propagators.
Including all orders in aZ, we find the following
divergent contributions from each diagram:

zi', (k)= —ie(2e)'fe('P, e'P, ki. (p, )(ilm —(z, ' —l)0{,—l)]s(zip„p, +k)22,(p),
+ —le{ke)'fe'P, e'P, (Z2,

'P—l)ile'(P)2(P, —P, )2(ki,.P„P.+k)i{2(P),

fl+~(A) = —ie(2»)' d'p, d'f2, T()~(p, ) 4'(E;;p, —k, p, ) [&~ —(&, ' —1) (P', —1)]g;(p, )

+-i.(»)' d'~, d'~, d'f. (~ -1)V, (p,) &S(E;;p,-k, p.) &(p. -p, ) ~;(p.),

Z'i'](k)= ——'
(2 )'2 fe('P, Z'P. ke(P, )2(ke'2 2"k)kP;(2 )
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Bz~!(A)= - —ie(2w) llm Jd'(, d'P, Ti)(p, )CS(E, ; p, —k, p, ) ( (p, ),

Rq',. (A) = ——ie(2w)' d'p, d'p, d'p, (1 —Z, ) 7()) (p, ) I('(p, —p, ) S(Eq, p„p, + k) gp;(p, ),

R~p (A) = ——ie(2)) )' d'p, d'p, d'p, (1 —Z ) p~(p, ) gS(E;; p, —k, p, ) p(p, —P,) g;(p, ), (Al)

)(R (A)= —e(2m)'(( —Z)f d'pgi)(P)A;(p —k),

where, to order n

dm = —(lnA'+-') Z '= Z '=1+ —(lnA'+ -'+2lnA') Z =1-—lnA'
3~

and A is a high-energy cutoff which appears in the
regularization procedure used to define the Feyn-
man integrals for the invariant functions, C((t)),
A" (p, p'), and 11((I'). In order to show that these
divergences cancel to order n when the matrix
element for photoeffect is written in terms of the
renormalized charge es, defined by e„=Z,'i'e [e is
the unrenormalized charge which appears in the
contributions (Al)], we note first that because of
the inclusion of the mass counterterms [diagrams
(c) and (d) of Fig. 3], the matrix element is al-
ready written in terms of the physical electron
mass. Moreover, it is easily seen that in the sum
of the contributions of diagrams (a)-(d), the mass
counterterms cancel identically. Thus, the only
divergences which must be considered are those
of the renormalization constants Z» Z» and Z, .

It is well known' that Z, and Z, only give rise to
a spurious charge renormalization which, in fact,
vanishes identically. To show this, we consider
the sum Z(, » of the contributions of diagrams
(a)-(d) and (h) of Figs. 3. Using the fact that Z,
=Z, and that

(// —1)S(E;p,p')+ "d'9 &(p- RS(E;C,p')

= [- 2i/(2)T)']6(p —p'), (A2)

it is trivial to verify that

/

R"'(A)+ Rf,"(A-)+ Rf', )(A)+ R. f", '(A) + Ry",. '(A).
(i, a)

Z(») and multiply the result by a factor Z, '~' for
each external electron corresponding to the re-
normalization of the electron wave functions, then
we find, to first order in c( (again using Z, = Z, ),

=- (1/Z, )(S~, + Z(', , ))
(x, s)

= (1/Z, )[1—2(Z, ' —1)+ (Z, ' —1)]S~;

= (1/Z, )[1+(Z„' —1)] 'S~,. = S~, (A4)

Thus, the electron propagator and wave-function
renormalization constants Z, and Z, cancel identi-
cally as they should.

Of the remaining contributions, R&",. )(A) and
Rz",.)(A) renormalize the electric charge contained
implicitly in the wave functions and propagators
due to the Coulomb potential, while R&",.)(A) renor-
malizes the explicit factor e which appears in the
basic photoeffect amplitude S&, To show this we
consider first R&",.)(A)+ RzP(A). I

It is trivial to verify that, to order o, , the dif-
ference between the wave function g(p) satisfying
the Dirac equation ~ith unrenormalized Coulomb
potential V( j) and the wave function P"(p) satisfy-
ing the Dirac equation with renormalized Coulomb
potential V~( j)=Z, V( j) is given by

4

4(P) —("(P)=
2,. d'P, d'P. (1 —Z.)

x S(E;P,p, ) p(P, —p )q(p, ) .
(A5)

=[-2(Z,' 1)+(Z 1)]

«(2~)' ( &'R, (i)A;(0- &)

=[-2(Z, ' —1)+ (Z, ' —l)]Sy, . (AS)

Similarly,

2 4

4(p) —0 "(P)=
2,. d'P, d'P, (1-Z.)7(P,)

xy (p, —p,)S(E;p„p) .
If we now add the basic photoeffect amplitude Sz,.
(of zeroth order in n, but exact in c(Z) to the sum

(A6)

Substituting the left-hand side of Eqs. (A5) and
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(A6) in R&(~)(A) and Rzp(A) and adding the basic
photoeffect amplitude, we have, neglecting higher
orders in n,

l
—:Sq,. + Rf(p(A) + Rf,"(A)

(&, 2, 3)

= (2 )') &')'(' (P)A;(P-k)- (2 )'

d p f p —
~ p ~ p —k

correct renormalized Coulomb potential.
Finally, if we add to our previous result the re-

maining contribution, R&,"(A) and multiply the sum
by Z, ' ' corresponding to the renormalization of
the external photon line, then we have, to first
order ln D,

=Z, '"Z, '[S~;+R~(", (A)+Rf', '(A).
(x, z, 3)

+ R"'+R"'(A)+ R"'(A)+ R',"(A)

—8(2ir)'fd') () (5)4[(';(5-&)—((,"(P-&H

(A'I)= Sfi I
)('-+ vs '

Thus, the sum (AV) yields precisely the basic
photoeffect matrix element corresponding to the

(A8)

This completes the renormalization program to
this order in a. We see explicitly that all diver-
gent quantities sum up to give precisely the physi-
cal photoeffect cross section. Moreover, as we
have indicated previously this result is exact iri

QZ. .
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