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Adiabatic analysis of atomic collisions. II. Properties of velocity-coupled channels*
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The connection between wave functions describing inelastic collisions and a complete set of standing wave

functions, expanded in a Born-Oppenheimer-type base, is developed in terms of Jost functions generalized for
application to velocity-coupled channels. The Jost functions represent conserved currents which include, in our.
case, contributions from nuclear motion. Several limiting cases of a recently developed post-adiabatic
treatment are examined from the points of view of numerical applications as well as qualitative discussion.

The example of a spinning particle traversing a magnetic field of variable direction is worked out,

I. INTRODUCTION

The concept of adiabaticity is helpful for the
physical understanding of atomic collision proc-
esses as well as a powerful instrument for prac-
tical calculation. It derives from the Born-Op-
penheimer approximation for diatomic systems,
which separates nuclear from electronic motion
at smaller collision velocities.

The procedure is, in fact, more general from
the point of view that it separates one coordinate
(say R) from the set of all others (denoted in the
following by &u) even though separability does not
hold strictly. So, e.g., this technique has been
applied to electron-atom collisions. ' In e-H and
e-He collisions the quasi- separating coordinate
R is the mean-square radius of the two electrons,
R = (r', +r2)'", introduced by Fock.' The exact
two-electron wave function is then represented by
a superposition of discrete channel wave functions

Q& (R;u&) which are eigenfunctions of the Hamil-
tonian at constant R,

4 „"(R;(u) = E„(R)y „(R;&u), (la)

where each F„(R) is now eigenfunction of a static
potential U„(R).

Following these lines, doubly excited states of
He and H have been calculated for some lower
channels. ' The position of levels is represented
reasonably well; more careful analysis, however,
shows that quantum defects become systematically
too small for higher excitation. A more drastic

q'(R;(u)= Q E„(R)P„(R;(u). (I)

The adiabatic approximation assumes conservation
of channel properties —which become observable
only in the limit of large values of R—during all
stages of the collision and implies, therefore,
slow variation of the channel functions p„with
respect to R. Exact wave functions are then re-
placed by adiabatic wave functions,

breakdown of the. hypothesis of adiabaticity has
been reported by I in. ' ' In the case of e-H he
found the elastic phase shift to become rapidly
too small with increasing energy, even though all
higher channels are well separated in energy from
the ground channel under consideration. In the
case of He he also reports that channel coupling
in the adiabatic frame overestimates experimental
transition rates.

This breakdown at still rather small velocities
must stem from unrealistic reliance on an energy-
independent base. In fact, in the above-mentioned

. examples no actual or critically avoided crossings
occur which could be responsible for such signifi-
cant deviations. In such more complicated systems
as atom-atom collisions similar situations may
well occur, but the available numerical material
seems insufficient to permit quantitative com-
parison between experiment and theory.

These circumstances have led Fano and myself
recently to outline an extension [hereafter quoted
as (I) j of the concept of adiabaticity, which in-
corporates the collision velocity into an improved
Born-Oppenheimer basis. In consequence of
quasi- (rather than exact) separability between R
and m, the motion in the fd space induces mock
forces in the R space in addition to the static
interactions represented by adiabatic potentials
U„(R). Post-adiabaticity takes these mock-forces
into account and neglects only their variation in R.

An analysis of this mechanical background had
been presented by Guttinger' in a particularly
simple situation. He studied the motion of a
spinning particle in a slowly variable magnetic
field and showed the spin to precess around an
effective field consisting of the external and the
Coriolis field, provided the Coriolis field itself
is considered as constant.

The present paper complements (I) in several
respects. (I) dealt with standing wave functions
with the implied understanding that a particular
superposition of standing waves has to be con-
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structed to determine the amplitude for a colli-
sional transition. This construction is familiar
in elementary cases, but needs some attention
here because (I} replaced the usual formulation
by first-order equations with subsidiary wave func-
tions. The language of Jost functions will prove
convenient for this purpose, ' it has also the ad-
vantage of splitting a scattering matrix into factors
corresponding to ingoing and outgoing stages of a
collision. This technique has long been developed
in formal scattering theory, but we will have to
extend it to velocity-coupled channels in Sec. II.

Section III covers various details of analytical
development that were not presented explicitly in
Ref. 4. Finally Sec. IV illustrates the post-adi-
abatic treatment of (I) through its application to
the Guttinger-like example of a spin- —,

' particle
traveling in a magnetic field of variable direction.

II. SCATTERING THEORY

We consider a real Hamiltonian II in the con-
figuration space spanned by (R, e] so that the
coordinate R separates from the set ~. A channel
expansion like Eq. (1) leads to the exact set of
equations'

~5„V s+2 P~„V sf+~„+(2E—Uq)5~„]E, (R)=0,

zeros of a denominator. This concept has been
developed long ago for single-channel and formal
scattering theory'; it has been applied also in
empirical analysis of scattering data. We extend
it here to velocity-coupled multichannel systems.

To this end we rewrite tne collision Eq. (2) in
matrix notation,

(lV'„+2PV„+Q+21E —2U)F(R) =0

or, with Eqs. (3), in the equivalent form

((1V„+P)'+ 2(1E —U)]F (R) = 0 . (4a)

A complete set of regular wave functions repre-
senting standing waves is denoted by F"(R)
=(F&'(R)] where the index p, labels channels iden-
tified by the behavior near R = 0,

limR ")F)'„ (tR) =5„, .
B~O

The characteristic exponents n„& 0 result from an
investigation of the indieial equation near R = 0;
see, e.g., Pock' for the applications of Ref. '1.

These standing wave solutions may be resolved
at large values of R into complex-conjugate parts
representing out- and in-going waves, respective-
ly,

with
(2)

Fst (R) [~i)tt)it~ e i)tUR~ g -]
2i

(5)

()~ (R)d~„—Idred „(R;(a) R„„„„d,(R;(a), =

R„.(R)= I d(ad„(R;(o)'V„d. (R;(A= ( R), R-
(3)

Q„„(R)=f d(ud, (R;(a)"V„'d„(R;~)

= g P, „(R)P,„(R)+V„P„,(R).

We assume, without loss of generality, all I'„,
to be real. (They are in fact real if the (d) space
has a finite volume as in Ref. 1. Complex cou-
pling, being then anti-Hermitic P„„=-P», would
induce formal but not substantial modifications in
some of the following equations. )

Scattering data are usually obtained as elements
of the S matrix. In the. following we represent the
S matrix as a ratio of two properly defined Jost
matrices for two reasons: First, this technique
decomposes the process of excitation into two
more elementary stages, ingoing and outgoing,
respectively. Second, the 8 matrix has singular-
ities in the energy. Familiar singularities are
simple poles at bound states and resonances.
Jost functions, however, are normally analytic;
singularities of the S matrix are described by

The coefficients A. &, and A» constitute probability
amplitudes to find in- and out-going flux in channel
u at R=~ with respect to a unit probability con-
centrated in a single channel p. at R =Q. Physical
boundary conditions at R =~, however, correspond
generally to a normalized incoming flux in a sin-
gle channel. Therefore, we construct linear com-
binations of the standing waves with complex co-
eff icients,

+,„(R}=gC „F„"„(R),

with

Q Cq„Aq', =5„„,

as one does for simple potential scattering. Equa-
tion (5) reads now

E),„(R)-—.(e'"'"Sg, —e ' "5),,].
The matrix elements S~, =Q„C„„A„„represent
the probability amplitudes for outgoing flux in
channel u with respect to the flux which enters
only in channel A, with unit strength. This is the
8 matrix to within normalization.

Equation (5a) relates more directly to the ex-
periments; Eq. (5) shows symmetry under time
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reversal and involves no matrix division. More-
over, we show now that the coefficients A„, and

A.„*„canbe identified as physically relevant quan-
tities at all stages of the collision and not only in
the limit where the colliding system is separated.
To this end we define two alternative comPlete
sets of solutions identified by in- and out-going
wave boundary conditions at R =~,

F,', (R}-6„„e""';
the aggregates of these component functions con-
stitute matrices F'. Equation (5) extends then to
all values of R,

G, (R) =-(IV„+P)F,(R) (7)

is a constant matrix. In the special case where
I'2 = W, this Wronskian represents a conserved
current. Note that Eq. (7) represents this current
as the sum of two parts, neither of which is con-
served separately. This extended definition of a
Wronskian constitutes the extension required to
deal with the velocity coupling in Eq. (4).

Jost matrices are now given by

W(F' (R), F'(R)) = Z'

and are related to A. and A.* as

cf~ y
—k~A~P P JP I/ kPA P y

with wave numbers

kp
={2[E —Up (~)]}'

The experimental S matrix requires normaliza-
tion of F'(R) per unit volume and reads in matrix
notation

Sexpt k-2/2J-(ge)-fki/2

Symmetry of S" ' is demonstrated by formal
evaluation of W(F" (R), F" (R)) = 0 and is expressed
in terms of Jost functions by

4 (J+) '=k(J+) 'J k '

This conclusion requires VsF" (0}and P(0) to be

F'„', (R}= —.Q [Fpp(R)Ap„—F„p(R)A~pp ], (6)
P

Note that A. and A. * don't depend on R because
three complete sets I'", I', and Il, as solu-
tions of a second-order equation, are linearly
dependent. Therefore, they are constants of
motion rather than mathematical coefficients of
an asymptotic expansion. Such constants of motion
are conveniently expressed by Wronskians. It is
easy to verify that, for each pair of complete
solutions {F„F,}of Eq. (4), the quantity

W(F„F,) = F,G, G,F, —

with

finite.
Unitarity reads for open channels S'"P'(S'" '}*=1;

it follows from F'(R)* = F (R} and holds if the
Hamiltonian is real.

III. POST-ADIABATICITY

(U —2P —lu„ 2(E —u„)P ) ( Vp I

U--,'P'-lu„) (W„)

The coefficients P and U in this equation are func-
tions of R, and so are its eigenvalues u, (R) and
eigenvectors {V„,W„}. The eigenvalues {u„(R)}
constitute a new set of post-adiabatic channel po-
tentials which replace the initial U(R). Note that
both u„and {V„,W, }depend on the energy E as a
parameter of Eq. (11).

Substitution of Eqs. (10) and (11) into Eq. (9)
provides the equations obeyed by the new radial
functions {f,(R),g, (R)}in the postadiabatic base,
namely,

IV„ I ) ( I ) (11„11) (I )
( 2(IE .) IV„) (g) (II„ 11„)(g)

(12)

where u is diagonal and consists of the eigenvalues
u, . The matrix II is the logarithmic derivative

In Eq. (8) we have seen that the auxiliary func-
tions G given in Eq. (7) prove relevant as they
generate the conserved current together with the
wave function I' itself in a transparent way. We
use them now as a second set of independent vari-
ables and replace the Schrodinger equation by a
first-order system,

lV +P 1 I (F)
( 2(IE U) IV„+P) (G)

which is now linear also in the coupling P, in con-
trast to the original version. Note that the Q ma-
trix of Eq. (4) no longer appears. Note also that
the minus sign in front of the element -2(1E—U)
of Eq. (9) was inadvertently omitted in (I).

The linearity of Eq. (9) suggests now transform-
ing away the coupling P by a linear transformation

(Fl (V W) (f ) 10

The transformation matrices {V,W, X, Y}were
determined in (I) firstly by setting

X= -PV —2W(1E —U), Y= V-PW,
and then identifying each column {V„,W„}of the
matrices {V,W} as an eigenvector of
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of the transformation, Eq. (10),

(II„ 11„) (v w)-'(v, y v,w)

( II„ Il„y I X I
~ qV„X V„r~'

The term of Eq. (12) with the matrix II was not
given explicitly in the corresponding Eq. (7} of
(O.

I et it be recalled that no approximation is in-
volved in the analytic developments up to this
point. Even the assumption that the matrix U is
diagonal, in Eq. (2), is unnecessary. Approxima-
tions are involved only at further stages, with the
intent of decoupling the equations, and consist of
disregarding the P matrix in the adiabatic ap-
proximation or the Q matrix in the first post-
adiabatic approximation. The smallness of each
matrix element P„„(or, respectively, II„,) is
often judged by comparing it with the correspond-
ing separation of potential curves, ! U„—UU!
(or!u„u„!). —This separation may itself become
very small at avoided crossings, but we are not
concerned in the present paper with the special
effects related to crossings. These effects are
taken into account by appropriate treatments
limited to the channels whose potential curves
nearly cross and to the relevant range of R. We
shall discuss, instead, several aspects of the first
post-adiabatic approximation which are not given
in (I) or only sketched very briefly there.

Numerical treatment of Eq. (11)prefers the
eigenvalue equation in standard form with the
eigenvalue appearing only along the diagonal. This
is easily done by multiplying Eq. (11) from the
left by

(1 -2P)
(0 1

P ))U ++! U)) —UU f 2 (15)

and not too large kinetic energy E —u„we find

P2
u„(R,E) = U„(R) ——'(P )„„+2(E —U„) Q

(16)

Note that the term p. = v does not contribute be-
cause P„„=O. For the lowest channels that are
open, i.e., with U, &E, the contribution to Eq.
(16) from all the higher channels, with U„&U„,
is negative, and thus depresses the eigenvalue u,
with respect to U, . This contribution increases
with increasing values of the energy E and should
thus generate a progressive increase of the scat-
tering phase shift.

The validity of the Born-OPPenheimer approxi-
mation can be investigated by inspection of Eqs.
(14) and (16), at least qualitatively. An expansion
like Eq. (16) demonstrates clearly that weak cou-
pling in the sense of Eq. (15) is an insufficient
criterion because the perturbation is amPlified
by the coefficients E- U„. Indeed, the effective
channel kinetic energy e„=E-u„already appears
in Eq. (14}as a coefficient of P. Even for small
velocities of the colliding particles at large sep-
aration, significant deviations from the adiabatic
limit may result if the channels are attractive be-
cause the velocity will then increase during the
collision.

Transitions between channels do not occur in the
first post-adiabatic approximation, as pointed out
in (I), at least as long as the channels are dis-
crete and their coupling vanishes sufficiently fast
at large separation R. This can be seen from the
explicit form of the wave function, which is now
given by

2I)U (R2 (d) = Q Q~(R; (u)[Vq„(R) W+q (RU) V]f, (R),

yielding

2P(1E- U+ gP )) (V„) (VU }"~
U- —.'P' f I,w„) (w„)

(13)

(U+ ',P'—
! P-

A basic property of these eigenvalues is that their
values for the lower channels are depressed with
respect to those of the corresponding adiabatic
potentials U„(R). This can be seen by eliminating
W„ in Eq. (11) leading to

(I t)
rather than by the simple Eq. (la). No transition
results according to Sec. II, if our eigenvalue
problem yields V„„-5„,, 5"„„-0, and u„- U„5„,
at both R =0 and R = ~. At small values of R the
potentials in a collision process diverge and the
coupling remains finite. In this region the ex-
pansion, Eq. (16), does not hold, but from Eq.
(14}we find for R-0

u„(R) = U„(R) (1 —2 Q U„(R),
V

(14)

and treating terms with P perturbatively. In the
limit of weak coupling,

and, therefore, V-1. The matrix 8' vanishes in
this limit of ineffective coupling as seen from Eq.
(11},which gives
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At large distances R- ~, the coupling P van-
ishes. The conclusion that no transition occurs is
nevertheless far from obvious. For example, for
electron-atom collisions all channels are in fact
discrete, but they accumuLate near an ionization
threshold. Our Eqs. (11), (13), and (14) must
then be examined carefully. In this case the ex-
pansion Eq. (16) need not hold because in the ra-
tios P'„,/(U„—U, ) the denominator may also
vanish at R- ~. In a more mathematical language,
it has to be checked whether the degeneracy of
many adiabatic channels at R- ~ will be removed
by channel coupling. We only mention here that
this degeneracy will in fact not be removed if

~ ()
„Uq (R) —U„(R)

Note that this criterion depends sensitively on the
behavior of P and U and imposes a restriction far
stronger than the Eq. (15) which was derived for
nondegenerate channels only.

A 8'KB approximation shares some basic as-
sumptions with our post-adiabatic treatment and
serves to illustrate some of its features. The
basic assumption, common to the two approaches,
concerns the slow variation of channel properties
and leads one to disregard the derivative terms II
in Eq. (12). The remaining parameters in this
equation can then be represented as wave numbers

«, (R) =(2[E-u, (R)]I'" ~ (16)

Z„' =V„+iz„W, . (19)

Equation (11) is then seen to split into sePaxate
equations

[(+i«, 1+P)' —2(E1- U)]Z„' =0 (20)

with the common eigenvalue g, in place of u„.
This equation holds regardless of the occurrence
of a branch point of z, at the turning points, when
introduced through our post-adiabatic approach via
Eq. (11), in contrast to the divergence that would

The WEB approximate solution of Eq. (12) with
II- 0,

R

f,'(R)-« "*e«p (*i e„(R')dR },„'
diverges at the turning points, where g„vanishes.
The post-adiabatic treatment must avoid this di-
vergence, because turning points have an essential
role in collision problems. The divergence can,
however, be avoided while retaining the concept
of pairs of solutions f,' propagating in opposite
directions with the same wave number z„. To this
end one transforms Eq. (11), which determines
the pair of vectors J(V„W„j, by replacing this
pair by the pair of complex-conjugate vectors

have been met by deriving it directly from Eq. (4)
by a %KB approximation.

The residual couPLing of channels represented
by the II matrices in Eq. (12) remains to be dis-
cussed. Assuming again slow variation of pariam-
eters, one might attempt to eliminate also this
coupling disregarding its derivatives —i.e., second
derivatives of the initial coupling P—in a second
step of post-adiabatic approximation. It is quite
doubtful whether this iteration procedure would
converge, nor has a convergence criterion been
formulated. Anyhow, we can anticipate some
features of a further post-adiabatic transformation
by inspection of Eq. (12).

To this end we again transform as in (I), sub-
stitute

(f ) tf If(2) IIf(2)) (I (2)) (I (2))

( g ) (~(2) y(2)) ( (2)) I (2))

and require

f (2) gg(R) + 0(g «0 (2))

g g~(2) 2(IE (R))f(»+0(g g(R)}

After elimination of X '~ and Y ' we find, in
analogy to Eq. (20), for the combinations

g(2) k P(2) g i (2)W(2)
Il Ij V IJ

-2((R -«e -,'.()„)IZi' = 0. (21)

Here the diagonal matrix u consists of the post-
adiabatic potentials. The next-order potentials
u,' are expressed in terms of wave numbers
«(» = [2(E u(»)] 2f2

A first remark is that the coupling represented
by II in the post-adiabatic Eq. (12) has far lower
symmetry than the initial coupling P in the adi-
abatic Eq. (9), which occurred only and identically
in the two diagonal blocks. This lowered symmetry
distinguishes Eq. (21) from Eq. (20) and leads to
two consequences: (a}Whereas the first post-
adiabatic transformation replaced the initial adi-
abatic potentials [U„(R)}by an equal number of
(u, (R; E)) owing to the degeneracy in Eq. (20),
elimination of the couplings 0 now doubles the

. number of potential curves [u„')j. (b) This doubling
replaces each u, by a pa& of complex conjugate
second-post-adiabatic potentials (u('), u(' *]. This
may be seen by inspection of Eqs. (21}. If «„ is
one eigenvalue with eigenvector Z,', -g„ is also
an eigenvalue with eigenvector Z, . In addition,
however, +a„* are also eigenvalues with eigenvec-
tors (X„*)*.We note that (Z,')* =K„* no longer
holds, even if the channels are open. A complex
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potential implies attenuation of propagation in one
channel and its transfer to the others. One four-
fold set of channel wave numbers might conceivably
pertain to in- and out-going wave propagation, .

each mode accompanied with excitation or deex-
citation with respect to first-post-adiabatic chan-
nels, but no clear interpretation can be offered
at this time.

1 d——+iy'e +E —yBe, I'=0.
2 dy

(22)

The corresponding form of Eq. (13) can then be
solved analytically and yields post-adiabatic chan-
nels labeled by spin quantum numbers v=+ 2,
whose parameters read in dimensionless units

u„(y) =2v(y'B'+2E(p")"' —,'y",
V „(y)=5, cosg, ,

(23)

(24}

IV. ILLUSTRATIVE EXAMPLE

We consider a spin- & particle with gyromagnetic
ratio y moving parallel to the y axis iri a magnetic
field B which is constant in strength, perpendicu-
lar to the y axis and rotates slowly in the x-z
plane as a function of y,

B = B(cos2y, 0, —sin q),

with y =y(y) and y" «(y')'. This arrangement is
similar to Quttinger's. ' Our field, however, var-
ies in space rather than in time, whereby the
problem relates more directly to our time-in-
dependent collision theory. The Schrodinger
equation in the adiabatic (rotating) frame, in which
8 is constant and the magnetic energy diagonal,
reads in exact analogy to our Eq. (4)

P. (y)= Ql~& V (y)+W., (y) —f. (y).
dy

(26)

In this particular example a WEB approximation
for the f„(y) is acceptable as no turning point
occurs for F. &u„( y). Equation (26) would then
simplify to

wxs

with

l v&= Q I222&(V., +ii, W ) (27)

~, = [2(E —u„}j '" .
The post-adiabatic spin states ) v&, defined by
Eq. (27), differ for in- and out-going waves (a)
as inversion of the direction of wave propagation
inverts the sign of the mock interaction K„y'0, .

For any value of the energy E both terms V
and W contribute to Eq. (27). In the special case
of very large energy (E- ~), we find from Eqs.
(24) and (25) the limits V „-5 and z„W„,- (1 —&..)(-1)"'-'.

The potentials u„ in Eq. (23) differ from their
adiabatic limits ayB by being (a) shifted by 2p"
and (b) separated by u,» -u, /, &yB. The shift is
due to the quadratic term P ' of Eq. (4a), the en-

, ergy-dependent increase of level separation stems
from the cross term Pd/dy. Equation (23) shows
clearly that the lower channel is depressed,
u „,( y) & yB F-ina.lly, our example demonstrates
that a perturbative treatment of adiabatic channel
coupling would have rather limited applicability.
In fact, an expansion of the square root in Eq. (23)
would converge reasonably fast only if

W„„(y)= (1 —5„„)(-1)"'" sing„., 2y "E«(yB)'. (26)

with

I
tan8„= as)

(y2B2 + 2Bpt2)i /2 + yB 2vy/2

Note that, in our two-channel system, channel
mixing stems only from 5' because P is diagonal
(P=irp'cr„). Note also that the eigenvalues, Eq.
(23), are no longer proportional to v =+2 owing
to their linear and quadratic dependence on the
Coriolis force The eff.ective field B,« =u„/v de-
pends itself on the magnetic quantum number v,'

the rotation angles in Eq. (25) also depend on v

for the same reason. The wave functions now have
the form

An estimation of convergence based on the simple
comparison of matrix elements appearing in the
Schrodinger equation, y" «2yB, leads in general
to a wrong conclusion because it disregards the
coefficient E in Eq. (28).
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