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Theory of level splitting: Spectrum of the octahedrally invariant fourth-rank tensor operator*0
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The theory of level splitting of certain vibration- rotationstates (including the ground state} in spherical-top
molecules is developed within the framework of the standard Racah-signer tensor algebra; thus

demonstrating the direct applicability of these general techniques without making the usual modifications

associated with the anomalous commutation relations of the body-fixed angular momentum components. The
eigenvalue spectrum of the octahedrally invariant fourth-rank tensor operator is examined in detail, and the

unexpected periodic symmetry and asymptotic degeneracy features of the spectrum are described.

I. INTRODUCTION

Recent experimental and theoretical develop-
ments have resulted in a renaissance of effort in
research on high-resolution spectroscopy of
spherical-top molecules. These systems have
characteristic tetrahedral (T~) or octahedral (0„)
symmetry. The prototypical molecules are CH4
and SF„respectively. '

Much of the motivation for present studies of
high-resolution infrared spectra of CH4 is the
existence of enormous amounts of this gas in the
atmospheres of the outer planets. ' Theoretical
and experimental work on CH, extended to high
values of the rotational angular momentum quan-
tum number J, form the basis for analyses of
planetary data to obtain atmospheric parameters.

Developments in ultrahigh-resolution laser
techniques have produced infrared spectra of tre-
mendous complexity. It has been possible to mea-
sure T~ and 0„ fine-structure splittings in meth-
ane' and sulfur hexaflouride" for which quantum-
number assignments have been made to very high
J values. Considerable research is underway
which will require more refined theoretical devel-
opments.

A theoretical prediction' of pure rotational tran-
sitions in the conventionally nonpolar vibronic
ground state of T~ molecules motivated several
experimental verifications' and theoretical ex-
tensions. ' An intriguing consequence of this line
of research is the potential detection of inter-
stellar methane by radio-frequency transitions. '

The purpose of this paper is twofold: First, we
present the theory of the Hamiltonian which dom-
inates the fine-structure splitting in certain re-
gions of the vibration-rotation spectrum of
spherical-top molecules having tetrahedral or
octahedral symmetry. This basic problem falls
within the framework of the Racah-Wigner angular
momentum calculus. In order to exhibit the fact

that this molecular theory is abstractly the same
as a variety of other physical theories (crystal-
field, con&plex-ion theory), and in order to reach
a wider audience, we have chosen to develop the
theory in the abstract formulation of angular mo-
mentum theory, rather than in terms of the par-
ticular notations of specialized areas. ' Second,
we present a basic eigenvalue problem to be
solved. This is developed abstractly as well as in
particular realizations. The remarkable result
here is that the energy splittings (coming from the
eigenvalue problem) exhibit unexpected degener-
acies for large angular momenta, and it is an in-
triguing problem to attempt to understand from a
fundamental point of view this curious asymptotic
behavior.

We have organized our work in the following
way. In Sec.. II, we develop, in the way of review,
the general structure of the molecular problem in
terms of the general language of the theory of lev-
el splitting. " While some of this material is of a
review nature, it is not so familiar to molecular
spectroscopists. Furthermore, it is desirable to
have the relevant mathematical results brought
together in a form directly useful to the molecu-
lar problem. In Sec. III, the generaL theory is
particularized to a case of practical importance
in the interpretation of ultrahigh-resolution spec-
tra of CH4 and SF,. Here the invariance proper-
ties of the particular problem are set forth in de-
tail. Various general features of the eigenvalues
(giving the level splitting) are presented in Sec.
IV together with specific features based on ex-
plicit -numerical calculation. The method of nu-
merical calculation is also discussed briefly in
Sec. IV. In Sec. V, some of the ideas we have ex-
plored in attempts to interpret the numerical re-
sults are discussed briefly. None of these at-
tempts has been successful in providing a detailed
explanation of the calculated spectrum. (Time-
reversal symmetry is examined in Appendix A. )
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II. GENERAL MATHEMATICAL FRAMEWORK OF
THE PHYSICAL PROBLEM

a.l~jm& =E(a, j)l cm),
J lcm& =, (, +1)l.,m&,

J, l njm& = m
l ojm&,

J, i&pm& =(J,+ iJ,) lnjm&

[(j+m)(j+ m +1)1'~ lajm+ 1&

(o.'j'm'
l
njm& =5„„6,,5

(2)

where j (and j') are either nonnegative integers
[invariance group SO(3)] or nonnegative integers
and half integers [invariance group SU(2)], and
where for each allowed value of j the allowed n
values are m =j,j -1, . . . , -j.

It is useful to note explicitly the unitary trans-
formations generated by the operators (J„J„J',).
For this purpose, we first describe convenient
parametrizations of the groups SO(3) and SU(2).

The para~etrization of the group SO(3) [SU(2)]
in terms of the angle of rotation 8 about &he di-
xectionn=(n, n„n, ) (the .positive sense of 6 and
the direction n always to be related by the right-
hand rule) is particularly useful in molecular and
crystal problems possessing a point symmetry

Although most of the general theory to be de-
scribed in this section is well known, " "it is
convenient to review it briefly for the purpose of
establishing notations and collecting together the
material most relevant to the theory of the vibra-
tion-rotation levels of spherical-top molecules.

We consider a physical system which is de-
scribed approximately by a Hamiltonian operator
Ho (having an abundance of bound states) which has
as its invariance group either a group of 3~3 real,
proper, "orthogonal matrices or a group of 2&&2

unitary unimodular matrices" [SU(2)].
To descr ibe this invar iance proper ty more pre-

cisely, let (J„J'„J,) denote the angular momentum
operators obeying the standard commutation rela-
tions [J,, J~] =ie; I„J, and corresponding to the gen-
erators of SO(3) [SU(2)]. Then the invariance
property of B, is expressed infinitesimally by the
commutation relations

[a„J,] =0,

It is assumed here that Ho and JI, are Hermitian
operators on the state vector space of the Hamil-
tonian H, . Following standardized procedures and
notations, "we 1st lojm& denote the simultaneous
eigenstates of the commuting Hermitian observ-
ables H„J'=J', +J,'+J,', J,. Then the basis states
lcm& satisfy the following familiar system of
equations:

group. In this parametrization, each angle 0 in
the interval 0 & 8 & v and each unit vector n (n n
=n', +n', +n', =1) defines a unique proper orthogonal
matrix

cos -,'0 -in, sin -', 0

(-in, +n,) sin(~8)

(-in, n, ) si-n(28))

cos(~8) +in, sin(~8)f

where (o„o„o,) are the Pauli matrices.
The numbers (Cayley-Klein parameters)

( „o„o„a)&defined by u, =cos(-, 8), o, =n; sin(-, 8)
satisfy ~,'+n', +~,'+~,'=1 and cover t e points on
the surface of a sphere in four-dimensional
Euclidean space as we let 0, n range over all val-
ues 0 & 0 ~ 2m and n n =1. Conversely, each uni-
tary unimodular matrix tf may be written in the
form (4) for unique parameters 6, n which define
a point on the sphere in four space. (There is a
one-to-one correspondence between points on sur-
face of the sphere in four space and the 2&&2 uni-
tary unimodular matrices. )

The relation (homomorphism) between the 3&&3

proper orthogonal matrix R(8, n) and the 2&& 2 uni-
tary unimodular matrix U(8, n) is expressed by

R;& (8, n) = 2 tr [o;U(8, n) o, U (8, n)]

where the dagger indicates Hermitian conjugation.
Noting that

U(2v —8, n) = —U(6, n), 0 ~ 8 ~ v

one sees that both U(8, n) and U(2v —8, n) define
the same 3&&3 proper orthogonal matrix A(6, n)
[the 2-to-1 homomorphism of SU(2) onto SO(3)].

Consider now the unitary operator T(6, n) de-

ff(8, n) = e ' "'~ =I+Nsin8 +N'(1 —cos8), (3)

where n ~ M=n, M, +n,M, +n,M„(M,)» = ie-»„and
N = -in ~ M. The angle & =w and each of the unit
vectors +n determine the same proper orthogonal
matrix, R(v, n) =A(v, -n) =e '"",which is also
symmetric. (These are the exceptional orthogonal
matrices. ") Conversely, each proper orthogonal
matrix A may be expressed in the form (3) for
parameters 0, 7z satisfying 0 + 0 &7), n ~ n =1, where
0, n are unique unless 0 =m in which case n is de-
termined only up to sign (and this happens only
when R is symmetric and not the identity). This
parametrization is often put in correspondence
with the points of a solid sPhexe of radius m, where
diametrically opposite points on the surface of the
sphere are identified.

In similar fashion, each angle 0 in the interval
0 & 0 + 2m and each unit vector n uniquely deter-
mine a unitary unimodular matrix

U(8, n) = e """'
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fined by

T(8 n) e-iBn f

where

(6a)

n J=n,J, +n2J2+n, Z, . (6b)

The action of T(8, n) on the state vector !ujm) is
expressed by

g — 11 12

!

21 22

(6)

and introduce the functions as follows, defined on
the elements';, of Z:

(Z) = [(j+m)!(j —m)! (j+m')! (j m')!]'t'

g ""g ""g-""8""
[n] ( ll) ' ( 12) ' (+21) ' (+22)

where the n;; are nonnegative integers which are
to be summed over in such a way that the entries
in the square array

+21

&12

Q22 j Pl (9b)

have the row and column sums indicated by the in-
tegers jx rn', j *m standing outside the [n] array.
This highly redundant way of writing the summa-
tion (there is only one free summation index) has
the advantage of being easily remembered and
making transparent the symmetries of the u~ (Z)
functions»» and generalizes directly to SU(n)."
Furthermore, the correspondence Z-&~(Z), where
8'(Z) is the (2j +1) && (2j + 1) matrix having row in-
dex m' (m' j,j —1, . . . , -j from the left to right
across the columns) and the column index m (m
=j,j —1, . . . , -j from top to bottom down the
rows), has the general property of preserving
multiplication, that is, Z-5)'(Z) and Z'-S (Z')
implies Z'Z —S'(Z'Z).

The matrix D'(e, n) with elements D' „(e,n) is
now obtained from the S'(Z) by

D'(e, n) =u'[U(e, n)],

T(e, n)!njm& = p D'...(8, n)!oem )
m'

where the D~(8, n) matrix is the standard Wigner
D matrix expressed in the notation of Rose, "but
explicitly in the 8, n parametrization. The explicit
D' „(8,n) functions may be described most suc-
cinctly by introducing more general functions.

Let Z denote an gygjgygyy 2&2 matrix of com-
plex numbers: (

H, = g a„„T,„,
h, p

(12)

where T» is the pth component of an irreducible
tensor T» of rank k [k=0, 1, 2, . . . , for SO(3); k
=0, 2, 1, . . . , for SU(2); p, =k, k-l, . . . , -k]. Thus,
the components T» (p = k, k —1, . . . , -k) obey the
transformation law

T(e, n)T»„T '(e, n) =Q D„„(e,n)T»„ (13)

The invariance of II, with respect to G requires

7(g', .)(Q a,„T„)T- (9', m ) =(Qa,„r.„) (14)

for all parameter values 8', n' which define the
elements G(8', n') of GC:SO(3) [SU(2)]. Combining
Eqs. (13) and (14), one obtains the result which
follows:

Lemma f: The necessary and sufficient condi
tion that Z„a„„T»be an invariant u)ith resPect to
Q is

D (8', n')A =A, all G(8', n'),
cohere

where U(8, n) is the 2 &&2 unitary unimodular ma-
trix given by Eq. (4).

The unitary matrices D~(e, n)(0& 8 &v) for j
=0, 1,2, . . . , comprise all the ineguivalent irre-
ducible representations of the rotation group
SO(3), the correspondence between group elements
and unitary representations being given by

a(e, n)-D'(e, n), 0 8

The unitary matrices D~ (8, n) (0 & 8 & 2m) for j,
=0, 2, 1,—,', . . . , comprise all the inequivalent irre-
ducible representations of the unitary group SU(2),
the correspondence between group elements and
unitary representations being given by

U(8, n)-D'(e, n), 0&8&2m .

These results are, of course, all well known from
the early work of signer. "

Ne conclude the discussion of the properties of
0, by noting that the infinitesimal invariarice prop-
erty (1) may now be expressed as the group in-
variance relation

T (8, n)H, T '(8, n) =H,

for all 8, n which define the elements of SO(3)
[SU(2)].

%e next introduce a Hermitian interaction term
II, which is a sum of irreducible tensor operators
with respect to SO(3) [SV(2)], but an invariant with
respect to a subgroup G of SO(3) [SU(2)].
B, has the general form"
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a» a» -~ ~ ~ aa-a)A — l(

A second very useful result is also easily
pl oved:

f.emma': The operator Z„a»T» is an invari
ant (vith respect to G if and only if the state vector

„a» lkV& is an invariant zenith respect to G.
With these basic preliminaries concluded, let

us now suppose we have given a Hermitian inter-
action H, for the physical system. [Since k =0
gives a constant energy shift, we henceforth re-
strict the sum on k in +y to k' 1 2 3

(or equivalently we may define a« =0).] We now

ask for the energy corrections to +p ln first-order
perturbation theory. These corrections are found

by diagonalizing the (2j +1)x (2j +1) Hermitian ma-
trix with elements

(ojm'Iff, lnjm&

=Q &~i IITall ~i&aa.. .G'",'.' ... , (16)

where C ~
~~ ~ denotes a Wigner coefficient, and the

form of the right-hand side of this result has been
obtained by applying the Wigner-Eckart Theorem. '
We will also assume that the reduced matrix ele-
ments (aj II T» II o.'j& are real.

It is a common trick in perturbation theory to

replace a physical operator defined on the whole

of state space by another operator which has the

same matrix elements on a subspace of state
space (but need not agree outside the subspace).

In the case of Eq. (16), these procedures are
well known. We define"' ' 9'gg by

and Vga(p=k —1, . . . , —k) by

v'» = [(k+)()!/(2k)! (k —)))!]'t'[Z,v;„](„„)
(17b)

t

where [A, B]«) =B,[A. ,B](,) = [A,B], [A, B](,)
= [A, [A,B]], etc. Then

(jm+)). I
q', „Ijm&

[(2j -k+1) (2j+2) ]'~'

where

(o()~ = o.(o. + 1) . (o' +k —1) [(o().= 1]

denotes a rising factorial. Thus, the Hermitian
operator

(~i II T.II c(j&

~a [(2j-k+1)a(2j+2)a]'" ~
has the matrix elements which agree with those of

H, on the (2j +1)-dimensional space Rz with basis

flam&:m=j, j-l, ",i)-

and has zero matrix elements (unlike the physical
interaction H, ) between the spaces R) and

R~ (j'aj).
Having arrived at the operator (19), we now see

that

[O', T] =0, (21)

so that the entire problem of first-order perturba-
tion theory has been reduced to the simultaneous
diagonalization of J' and T. ~e are nogo free to
use any basis of the sPace R; and need not be tied
to the

I jm& basis Th. is is one of the principal
reasons for mapping the perfectly good eigenvalue
problem (16) to an equivalent operator formula-
tion.

It should be noted that, in the physical problem,
the irreducible tensor T» appearing in Eq. (12)
may itself be a sum of irreducible tensors T&„of
rank k,

T» =P A, T~('~), A, real, (22)

where s is an index serving to indicate that the
tensors Tl,'„), T'p~, . . . , have different physical ori-
gins, e.g. , Tp may be built only from internal
coordinates, 7'&'& may be built from a mixture of

internal coordinates and total angular momenta,
etc. Observe, however, that the effect of making
the substitution (22) in Eq. (12) is simply to make
the replacement

&~illTallej& -Q A. &~jllTa"Ill& =)a(pj) (23)

in Eq. (19). The point to be made here is that no

matter how complicated are the internal motions
leading to the interaction T~„, the general form
of Eq. (19) is unaltered:

ej")=-Q aP~V', „, n=1, 2, . . . , n, , (26)

where n& is the number of linearly independent

solutions to Eq. (15) (without loss of generality,
we may take the column vectors
A ', A ', . . . ,A("& to be orthonormal). Thus, the

most general form of T is

~ [(2j - k+ 1)) (2j+2)~]"'

containing a number of real constants )(~~")(nj) equal

to n„N, where N is the number of values over
which 0 ranges.

~a(o'j)~ [(2j k+1)„(2j-+2),]'~' ~ »~»

It may also happen that there exist several inde-
pendent Hermitian invariants of rank k with re-
spect to G,
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Let us also note that since

f t„=(-I)"r,
the condition that C&" be Hermitian is

(2V)

[n)4 ( 1)P (n) (28)

Let us now particularize Eq. (24). In many
practical cases, the rank k of a tensor operator
corresponds to the order of the perturbation theo-
ry. In this case, off-diagonal elements (in j) of
the lowest-rank tensor, say k„occurring in 0,
[Eq. (12)] may be more important than the diagonal
elements of the next higher rank (i'2, +1) tensor.
In the spirit of first-order perturbation theory,
one would then retain only the lowest-rank term in
the preceding theory. Thus, Eq. (26) is replaced
by

~% o(~j)&20

containing n~o real constants which from a phenom-
enological point of view may be considered to be
parameters which may be varied [as is also the
case in Eq. (26)].

One can say practically nothing about the details
(other than general statements about the group
subgroup reduction) of the simultaneous diagonali-
zation of J' and T [even for the simpler case given
by Eq. (29}]. We therefore turn now to the still
simpler case where n&0 =1, so that only a single
term occurs in T. Aside from parameters which

may occur in H„ this theory has but one additional
parameter (j dependent, however) no matter how

complicated the physical system.

Jg =K] +I; (3o)

where P& = -E; is the component of the total angu-
lar momentum of the molecule along the ith axis
of the Eckart frame"" and L& is the ith compo-
nent (relative to the Eckart frame) of the orbital
angular momentum carried by, for example, a
triply degenerate (v2) normal mode of oscillation.
The SO(3) group of the preceding section is then
identified with the diagonal subgroup" of the direct
product group SO„b(3) && SO,„,(3), where SOhb(3) is

IH. SIMPLIFIED MODEL

A. Structure of the molecular problem

Before proceeding to detailed discussions of our
simplified model, let us first indicate in a fairly
general way how the molecular problem fits into
the abstract structure outlined in Sec. II.

In a molecular vibration-rotation problem for
spherical-top molecules, the angular momentum

' (J'„J'„J,) is composed of two parts,

the group of orthogonal matrices generated by K
and SO„,(3) is the group of orthogonal matrices
generated by the internal angular momentum L.
One is thus working in the coupled representation
of angular momentum theory, i.e., the states
~njm) of the abstract theory are actually the
signer coefficient coupled states of frame wave
functions and oscillator wave functions. The Ham-
iltonian Ho already contains the Coriolis inter-
action term K ~ L (diagonal in the coupled repre-
sentation). The SO(3) symmetry (diagonal sub-
group) is broken by interaction terms (polynomials
in the normal coordinates and the components of
K&) which are tensor operators under SO(3) and in-
variants under the O„(or T») subgroup of the dia-
gonal subgroup SO(3).

In the dominant approximation of Hecht, "one
considers only tensor operator interactions of the
lowest rank which can be (nontrivial) invariants
under O„or 7.'„. In either case, the interaction is
the sum of fourth-rank tensors as follows:

&1= ( 2 }"&4.0+&4,4+&», ~ (31)

where the factor (~2')'/' is required for the O„(T„)
symmetry (see Sec. IIIB}.

While the detai[s of the problem may appear to
be rather intricate, the mathematical problem to
be solved (for first-order pe'rturbation theory in
the physical problem) is simply stated —diagonal-
ize the operator

(
14 )1/2»f' + (J4 + J4 ) (32a)

B. Orbital angular-momentum model

For integer values of the angular momentum j,
the mathematical Problem of simultaneously dia-
gonalizing J' and T, may be solved fully by choos-
ing the operators J„ to be the orbital angular mo-
mentum operators for a single particle in ordinary
three-space:

8 9
L~ = -i xq — —x)

8x g Bxy
(33)

where j, k, l are cyclic in 1, 2, 3. Since this sim-
plified model also provides a technique for writing
out tensor operators which are invariants. under a
subgroup of SO(3} [SU(2)], we examine it in some
detail.

Consider a single, structureless particle moving

on the space X&. In this result, we have

cf I —(~4)1/2g —~[J J4]
=&(J')' -12J'J', + 14J', - —", J'+ 10J', . (32b)

It is the structure of this problem which is dis-
cussed in the remainder of this paper.
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in ordinary three space (x) = (x„x„x,) in a
spherical potential (so that the orbital angular mo-
mentum is conserved) and having Hamiltonian Ho
(bound states). Let the particle be perturbed by a
potential field which is a harmonic polynomial in-
variant P(x) of the group 02 (or T&), limiting our-
selves to the first nontrivial invariant.

This type of problem has a rich history of devel-
opment, beginning with the early classic work of
]Bethe."'2' The construction of harmonic poly-
nomial invariants under the various subgroups of
the rotation-inversion group has also generated
much mathematical interest' and is still active. "
Jahn" was one of the first to use these techniques
in molecular problems.

Referring to the convenient tabulations of
Meyer", we find that the lowest (nontrivial) degree
polynomial invariant for either Oz or T& is
x] + xp + x3 and its harmonic proj ec tion is

=,'(x', +x', +x,')'+(x', +x', +x,')
= [8~/(5) (f)(9)]"
"[(.')' "JJ,,.( )+'L,.( )+'JJ., .( )], (34)

where 'g, denotes a solid harmonic of degree l as
tabulated, for example, by Edmonds. "

Corresponding to the harmonic'invariant (34),
we have (Lemma 2) the invariant angular momen-
tum operator

—
(

14
)

1/2 1f' + (L 4 +L 4 )

where the commutator

(—",)"r, = —„', [I, , L', ]&,&

(35a)

(35b)

has already been given by Eq. (32b) (substitute
I, , for J; and denote Z2 by I.'). It is also useful to
write 7., in terms of the components L;." Except
for a lower degree invariant which can only be a
constant plus a constant times L', the result must
be in agreement with Eq. (34) under the mapping
I;-x~. Noting tha, t

'g, ,(x) = (x, +ix,) /16 [2m/(5)(V) (9)]' ',
we see that

T — 24 (L2)2 + 8(L4 +L4 +L4) + 8 L2

No additive constant occurs in Eq. (36) because
(OO~T, ~OO) =0, and the coefficient —', multiplying
I ' can be obtained by noting that (10~T,~10) =0.

Thus, the first-order perturbation problem for
this model (orbital motion) problem is equivalent
to the simultaneous diagonalization of I ' and T0,
and the solution to this problem"'" yields the so-
lution to the molecular problem,

Let us now restrict our attention to 0„, although
similar procedures may be followed for Td (or
other point groups). For completeness, we next

note the explicit transformations of Euclidean
three space induced by the group 0&.

We begin with the observation that the two ma-
trices

10 0)
A=A(2m, e,) = 0 0 -1

(0 1 0)
0.1 0)0=8('d)=100
O O -11

satisfy

Z'=S'=(ZS)' =I, (3Vb)

(x„x„x,) - (~x„+x,, ~x,), (39)

where (i,j, 0) is any permutation of (1, 2, 3), and
the + and —signs may be in any combination [0„
is a direct product group isomorphic to S2&&D4].

It is clear [Eq. (33)] that under the transforma-
tions (39) we obtain the following mappings of the
angular momentum components:

( „2,I 8) ( 1L&, a2L, u8L2), (40)

where n, =+1 (i =1, 2, 3), but u, o2n8= 1 if (i,j, k)
is an even permutation of (1, 2, 3) and u, o.2o.8= -1
if (i, j, k) is an odd permutation of (1, 2, 3). These
are just the transformations generated by A and
S, i.e., by the elements of the group 0, since
under the inversion operation I we have

(L„I„,L2) (I„I„I,)

(I is a pseudovector).
Let us hasten to note, however, that both J2

and To are invariant under the time-reversal
transformation

(41)

and he'nce generate" the group 0 (24 elements) of
pure rotations which map the regular octahedron
onto itself. Our model here locates the vertices
of the octahedron at the eight points (s1,+1,+1)
corresponding to any combination of + and-
signs. The unit vectors e„e„e,have their tails
at (0, 0, 0) and their heads at (1,0, 0), (0, 1, 0),
an'd (0, 0, 1), respectively. To obtain the group
0„, we adjoin the inversion

o 0)
I= .'0 -1 0

0 -1
to the group O. Then', S, andI generate OI,.
The actions of the 48 elements of OI, on an arbi-
trary vector (x„x„x,) are to produce the 48 map-
plngs
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(I„I„L,)- (-L„I—„I-3). (42)

The consequences of time-reversal invariance
for the present problem are examined in Appendix
A.

To conclude this discussion of the orbital theory,
we note that the

I jm) (we now drop o.) become
the solid harmonics '({,„. In this case, the trans-
formation (7) is realized by the operator T„

(T.f)(x)=f(R 'x), (4~)

where R=R(8, n) and x'=R 'x, where
x = col(x„x„x,).

One of the advantages of working iy a particular
realization of the angular momentum operators is
that one need no longer use the Ilm) basis, that
is, one may try to diagonalize Tp directly on the
space H, of homogeneous harmonic polynomials
of de-gree l.

(47)

S I —e&~(~1 + ~2) ~(~) —Se2~ &&~] + J'2)~&2)

where we note [cf. Eqs. (7)-(10)]that
~ Ae"'" ' J = (-1)'~, n arbitrary, (48)

on the space X,, Hence, on the space R&, we have

ments of the octahedral group OcSO(3) by the
homomorphism (5). Since r4=s'= —o (o =2x2
unit matrix) and (rs)'= c„ the generators of 0 are
the elements r and s satisfying r'= s4=(rs)'=co.
0 is often called the double group of 0.

From the 2x2 matrix realization of 0, we can
now write out the generators of the unitary opera-
tor realization of this group on the abstract space
R, [cf. Eqs. {6) and (7)]:

g e i' ll Jpl& gi f3+J]I2 Qe2+f J&

S e-4&(J z+ J 2) I(2)

(R' = (-1)"(R, S' = (-1)"S . (49)
C. Abstract model

We now extend the results to the general abstract
case of integral and half integral j [SU(2)] so that
the model includes all possible physical realiza-
tions. Thus, the problem to be considered is that
of diagonalizing J' and

24 (J 2)2+ 8 J2+ 8{J4+J4+J4)

=7' +J4+Jp + (44)

e3&f o &/4

1)
((' o -1-i)

i &(a q+ o 2}I2(2) (45)
&2 (1-i o

e~~(a, + a,) i@2)»2

where we note that the homomorphism from
0 c SU(2) to 0 cSO(3) is expressed in terms of the
generators by

(r, r') -R, (s, s') -S . (46)

for the general case of integers and half integers.
Let K,. denote the (2j+ 1)-dimensional Hilbert

space spanned by the set of vectors ( I jm):
m =j,j —1, . . . , -j). We next construct the trans-
formations of this space corresponding to the
transformations of the octahedral group 0. The
method of doing this is well known and discussions
of the method may be found in Hamermesh. "

The 2x 2 unitary unimodular matrices corres-
ponding to the generators R and 8 of 0 are given
by [cf. Eqs. (4) and (5)]

[While (R and S alone generate the unitary opera-
tor realization of 0 on the space X, , it is con-
venient to carry along (R' and S' ((R' =(R' and
Sl S3) ]

If the physical realization of the angular mo-
mentum operators admits only integral values of

j, then N.'=I, and S'=S. In this case, the theory
is isomorphic to the theory of orbital angular mo-
mentum, using the group of proper orthogonal
matrices.

The following relation plays the key role in
verifying the transformation properties of 'the

operator 7p:

= J cos6+n(n ~ J)(l —cosg) —(nxJ) sin8, (50)

(RJ (R ' = (R'X(R' ' =J,e, +J,e, —J,e, ,

SJS ' = S ' TS' ' = J',e, +J,e ~
- J',e, ,

(51a)

(5lb)

that is, the action of {R or (R' is to give the trans-
formation of angular momentum components

where we have written J =J,e, +J,e, +J,e„and it
is important in this relation that [J,, e&] =0 [vector
notation is just convenient bookkeeping for the
component relations implied by (50)]. Equation
(50) is valid for any vector V which satisfies
[n ~ J, V]=-i(nxV), and the proof follows from
the general multicommutator expansion

~ [»&1(.)
kt

One may now verify explicitly the following re
suits:

The group 0 contains 48 elements and is the
finite subgroup of SU(2) which maps to the 24 ele-

(R: (J„J„J,) -(J„J3,-J,),
while the action of S or S' is

(52a)



FOX, GALBRAITH, KROHN, AND LOUCK

8: (Z„J„J,) - (J„J„-Z3). (52b)

These properties imply that it is always possible
to choose the vectors of K,. such that

Sc,- = +4 „each C,-cX&,

and ~e assume this to be done. Hence, spatial
inversions play no further role. in the problem of
diagonalizing 7, on X&. Thus, it is the finite
groups 0 (integral j) and 0 (half integral j) which
enter into the discussion of the properties of To.
Observe by looking at the transformations (51a)
and (5lb) and the form (44) that T, is trivially
invariant with respect to O.

The transformations associated with 0 do not
include

[Whiie the action of N, and 6V (8 and 8') is the same
on angular momentum components, their action is,
of course, different on state vectors when j is half-
integral. ]

We have yet to consider the inversion. Quite
generally, the inversion operator d (the operator
on any physical space K,. corresponding to I }
satisfies 8' equal to identity, and it commutes with
the angular momenta J of any physical system

5J=T5 .

to the following realization": Consider the space
6',. of polynomials which are homogeneous of
degree 2j in two complex variables g and q. Thus,
the polynomial P($, q) belongs to (P& if and only if

P(~(, ~n) = ~"P(5, q). (56):

If P and Q are arbitrary polynomials,

P(g, q)=g a „g q", a „complex,

Q(g, q) = g b„„g"$", b„„complex,
m, n

the scalar product (P, Q) is defined by

(57)

where P*($,7!) is the polynomial obtained from
P(g, q) by complex conjugating the coefficients
~mn-

An orthonormal basis of the space 6'~ is given
by the familiar spinor functions

C',.(&, q)= P'"g'-"/[(j+m)!(j -m)!]"', (58)

where m =j, j —1, . . . , -j. The realizations of
J~ and J3 on this space are

(O'„Z„Z,) - (M„M„-Z,} (55)
8J„=(— J =q-sq' Bg

(59a)

which clearly leaves J' and T, invariant. This
operation is Wigner's" time-reversal transforma-
tion. It is interesting to examine the consequen-
ces of time reversal for the present problem, and
this is carried out in Appendix A. The result
demonstrated is: Ne eigenvectors of Tz may be
obtained as real linear combinations Q„' a.„~jm),
a real. However, we already know this property
to be valid —it follows from the fact that the
matrix with elements (jm ~To~jm) is a real sym-
metric matrix because the Wigner coefficients are
real. Hence, the matrix may be diagonalized by a
real orthogonal matrix. In this sense, we learn
nothing new from the time-reversal symmetry of
T„a result already anticipated by Wigner. " For
this reason, one usually pays little attention to
time-reversal symmetry in the molecular vibra-
tion-rotation problem (other than to verify its
presence).

(59b)

(60)

Let us next recall the unitary transformation
properties of the space 6', . We define the opera-
tor (linear, unitary) Tv, each Uc SU(2), by

(T,P)(5, n) =P(5', q') .

where

(61)

(62)

Thus, with
~ jm) = 4,.„(g,q} and with the definitions

(59), one duplicates the abstract properties (2).
Finally, one observes that J,=-,'(J++8 ), J,
= (J, —J )/2i, and J', are Hermitian operators on
the space 6',. in consequence of the property

D. Senor or boson model

Another convenient realization of angular-mo-
mentum theory (which admits both integral and
half-integral values of j) is the spinor realiza-
tion" which is abstractly equivalent (isomorphic)
in structure to the boson realization introduced by
Jordan" and developed further by Schwinger. "
Each of these structures is, in turn, isomorphic

Then for U=U(&, n) [cf. Eq. (4)] the action of Tv on
4,.„is precisely that given by Eq. (7), i.e., T~e s!
=T(g, n). In particular, the generators r and s of
0&SU(2) effect the transformations (62) given by

r: (h, n)-(I/~~)($ in, iE, +n), -- (63a)

s: (h, n) (I+/)2((---I)ni, (& - )(i), (68b)

and under these transformations of variables
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(J„,J„J,) transform, respectively, according to

61: (J„J'„Z,) (J'„Z„-Z2),

8: (O'„Z„J,) —(J„J„-Z,) .
(64a)

(64b)

Again, as in the case of the orbital theory, the
advantage of using a particular realization is that
it frees us from the

~ jm) basis —we may try to
diagonalize T, directly on the space of homogeneous
polynomials of degree 2j in $ and q.

In this section, we have indicated how the mo-
lecular vibration-rotation problem fits into the
general scheme of Sec. I in the dominant approxi-
mation. The first-order perturbation theory is
then equivalent to simultaneously diagonalizing
two operators: ~' and T„. We then gave the orbi-
tal angular-momentum realization of the problem,
developing explicitly (in the O„case) the trans-
formations which leave Q invariant. Using the
homomorphism between SU(2) and So(3), we then
extended the problem back to its general abstract
setting, being able now to give explicitly the trans-
formations which leave the abstract theory in-
variant. Finally, we particularized the abstract
theory to the spinor realization, giving the trans-
formations of the spinor space induced by the in-
variance group 0 of T,. Each of the three frame-
works presented in Secs. IIIB-IIID, respectively,
may be used to formulate the problem of simul-
taneous diagonalization of J' and T„each offers
certain advantages.

IV. EIGENVALUE PROBLEM

A. General group-theoretic results

In this section, we outline the main results which
are available from general group-theoretical
methods.

We will use the notation +~ to denote any one of
the spaces H„&,, or 6', of Secs. IIIB-IIID, re-
spectively. Then ~' is automatically diagonal on
36, with eigenvalue j (j +1) and requires no further
discussion. All the results of this section refer
then to the space &~ and its subspaces.

From the general viewpoint of representation
theory (setting To aside for the moment), the space
&,. is the carrier space of the irreducible repre-
sentation (irrep) D'(B, n) of SU(2); it is also the
carrier space for a (2j +1)x (2j +1) reducible rep-
resentation I' of O. This is the representation
generated by the two unitary matrices Ccf. Eqs.
(37}, (45), (9), and (10)]

1" =D'(—
m, e, ), I;=DJ(n—, (e, +e,)/v2—). (65)

The irreducible constituents of 0 contained in I'~

may then be found by the standard group character
methods (and are given, for example, in Hamer-
mesh~), and we state here the relevant results.

The group 0 has. 48 elements partitioned into
eight classes under the conjugation action. The
eight irreps are denoted in spectroscopic notation
by

(66)

of dimensions 1,1, 2, 3, 3, 2, 2, 4, respectively
(A, is the identity representation).

The symbols A„A„E,F„I"2 also denote the
irreps of 0, and are the only irreps of 0 which
occur in the reduction of &' (j integral), the rea
son for this being that the transformations of the
space && generated by @. and 8 then become identi-
cal for 0 and 0. Similarly, the reduction of I'
for g half integral entails only E,', Z2, and 6'.

The explicit reduction formulas may be given in
the following way: Define the representation R
(for regular) of 0 by (+ means direct sum)

R = A, +A. +2E+3I",+3E, for g integral,

R =2E,'+2E2+4G' for g half-integral.

Then the following formulas hold:

I q+I ll"q

I 12P+q pR+I q

(6Va)

(67b)

(68a}

(68b)

where q is an integer or half-integer in the interval
0~q ~11 and P=0, 1, . . . . Equation (68a) serves
for calculating all I", 0&q &11, knowing only those
for q ~5 (the explicit results are listed in Ref. 29,
pp. 339 and 367), and Eq. (68b) then gives the gen-
eral reduction.

While one knows (from the representation theory
of finite groups) that there exists a unitary simi-
larity transformation A such that A I ~A is fully
reduced, A is not unique (due to the freedom ot
making unitary transformation between those sub-
spaces of 36; which carry the same irrep of 0).

The introduction of the operator T, serves to
distinguish between those subspaces of && which
carry the same irrep of 0. Thus, it follows from
TO@ =NTo and ToS =STD that N, c' and Sc' are eigen-
vectors of To having eigenvalue ~ provided

y,c =x4. (69)

Let us denote by S z the subspace Sz& , . of func-
tions satisfying Eq. (69}for a given A.. Then S~
is the carrier space of a representation of 0;
The more important point, however. , is that S&
carries anirreducible representation of O. This
means that To serves as a complete labeling opera-
tor for the group chain SU(2) zO [or SO(3) &O] in
the sense defined by Dirac" and investigated ex-
tensively in the general work of Patera, Sharp,
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and Winternitz and collaborators. " The proof that
To splits complete 1y the "multiplicity pr oblem"
for SU(2) z 0 has been given by Moshinsky and
Kramer" and may also be inferred from the work
of Michelot and Moret-Bailly. " (It is not our pur-
pose to review this problem here, since our nu-
merical calculations fully verify these results. )

It is quite interesting to note, however, that the
implication of time-reversal symmetry (cf. Ap-
pendix A) is that A may be chosen to be a real
orthogona1. matrix, that is, the Wigner coefficients
for the group-subgroup reduction SU(2) 40 may be
chosen to be real.

[& + 240 —24(4516)'~'] 4 (& —1056)'

x [&+240+24(4516)'t2]4(&+2016)' =0

By considering the trace of various powers of the
operator T and using well-known properties of the
3p symbols, one can also derive relations between
the eigenvalues of T. Let ~, denote the eigenvalues
of T, where the index s runs over the values
1, 2, . . ., 10P +n„ in which n, denotes the number
(repetitions counted) of irreps occurring in I'.
If we let I; denote the irrep label (symmetry type)
assigned to level ~„ then we have

B. Properties of the eigenvalues

(7o)

which has for its matrix elements the 3J symbols
(multiplied by appropriate numerical constants):

In place of the operator To, we choose to inves-
tigate the operator

T =5(-;.) "T,S[(» —3),]',

Q (diml;)A, =0,

Q (diml )A.'=—'

g (diml;)~.' =14W(4j4j; j4)/3[(6)(I I)(13)]~~

(73a)

(73b)

(73c)

j =2: (~- —",')2(~4 —",)&=0,

(~-48)'(~+86) =O,

j =3: (~-144)'(A, +48)3(A. +288) =0, (72a)

j =-,': (~- 336) (h. -48)'(~+432)' =0,

j =4 (A. —672)(A. —336)'(&- 96)~(&+624)' =0.
For later reference, we also include the & =—",

character istic equation:

4
&jm. 4lTl jm& =(—,',)"(-Iy+™I

(m +4 -m+41

(71a)

(i
&jmlTljm& =(-) t (-Iy "l

(m O -mj

These matrix elements of T are then bounded for
all g.

We have calculated numerically the eigenvalues
of the operator T for all integral values of g in the
interval 0&j &100 [Thes. e eigenvalues are re-
lated" to the F'4' coefficients introduced by Moret-
Bailly by a phase, &(T) = (—1)~E'4'.] The set of
eigenvalues of T exhibits a number of remarkable
features, and the purpose of this section is to de-
scribe them.

We begin by noting some exact results. For
j =0, —,', 1, and —,', the matrix of T, on the

l jm)
basis is the zero matrix so that T, has only zero
eigenvalues for these cases. For j =2, —,', 3, —,',
and 4, there is no multiplicity, and the character-
istic equation of T, must factorize. In these cases
the characteristic equations are as follows44:

where W(abed; ef ) denotes a Racah coefficient. ""
Equation (73a) has already been noted by Hecht"
(the operator To is traceless) Equ. ation (73b) is
particularly useful since this result shows that
the eigenvalues of T are bounded as j-~.

One can, in fact, derive asymptotic bounds on
the eigenvalues. " The procedure is quite simple
and is an application of Gerschgorin's theorem. 4'

First, we set m =a.g, -1~o, &1, and use the fol-
lowing well-know'n estimates of the signer coeffi-
cients" for large j:

C~4' -=—,', [—,
' —12n'+14n'], (74a)

(74b)

Combining these results with Eqs. (71), we obtain

&qm ~4I(2j+],) Tl jm) =—b(I —n')' (75a)

I (n) = [a(n), b(n)l,

where

b(n) =b(16n4 —16n + —', ),
a(n) =k(12n4- 8n'- —,').

(76a)

(76b)

(76c)

The union of the intervals X(n) for ne[1, -I] is
now calculated to be

(77)

and Gerschgorin's theorem implies that for j suf-
ficiently large we have

&jml(»+I)'"Tl jm& -=b[-,' —»n'+14n'], (75b)

where b = —,', (—,',)''. We next define the closed inter-
val I(n) by ~
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TABLE I. Eigenvalues of the operator T for j=28 and

j=29. . Symmetry type is denoted by the letter to the left
of each eigenvalue.

00 Xs(g =28 100 X (j=29)

A& 8.487 462 046
E( 8.487 456 801
E 8.487 454 178

E2 5.458 988
E& 5.458 814

E 2.93.2 765
Ep 2.931 506
A, 2.928 978

E2 0.880 008
E, 0.859 569

A& -0.65.6 581
E( —0.747 841
E -0.800 266

Ep -1.796 085

E, -2.135241

g -2.643 086

-E, 2.773106

A.p
—3.707 218

E2 -3.826 045
E( -3.916492
A& —3.992 826

5.698 117
8 —5.707 309
E2 —5.716 390

E] 8.392 214
Fp 8.392 211

E 5.500 724
E( 5.500 673
A) 5.500 571

3 ~ 071227
E2 3.069 673

Ap 1.082 843
Ep 1.069 511
E 1.062 693

E& -0.487 973
E2 -0.562430

E —1.618 549

F) -1.710588

A. g
-2.008 739

Fi —2.512 100

E2 -2.708 534

g2 -2.907 678

F2 -3.797 060
-3.873 022

E) -3.948 714

E2 -5.632 286
E -5.639471
F i —5.646405

2 (7)1/2&(2j +1)1/2Z &( 7)1/2 (Vs)

for each eigenvalue &,. It is easy to see (use the
m =j equation) that the upper asymptotic limit

(,~)'~. is the least upper bound and the numerical
calculations also indicate that the lower asymptotic
limit ——', (—,',)~ is the greatest lower bound.

We next turn to the description of the properties
of the eigenvalue spectrum of T which have been
obtained by numerical methods.

We display in a vertical column the eigenvalues
of T (for a given j with j=12p+q, 0&q &11) in
decreasing order as read, say, from top to bottom,
assigning to each eigenvalue its corresponding
irrep label [cf. Table I]. Each such display then
contains 10P +n, eigenvalues together with the
assigned irrep labels. We next describe with the
aid of Fig. 1 the general properties of the se-
quence S,. (j integral) of irrep iabels obtained by
reading the display either from top to bottom
S/(4) or from bottom to top, S&(4).

Figure 1 shows ten equally spaced points on the
circumference of a circle (the solid circle), each

Fp Fi

/
/

/
I
I
l

l
F) i i 5

l

I2~iFs

l

1
/

FIG. 1. Sequence S& {~) {j=12p+q, p =0, 1,2, . . . ; q
=0,1, . . . , ll) of irrep labels assigned to the eigenvalues
of T as read from the highest to the lowest value is ob-
tained by entering the solid circle at the point A

=j (mod4) and reading off the irrep labels clockwise
for even j, counterclockwise for odd j, completing P
full cycles and one partial cycle which terminates at
the point K =j (mod6). The dashed lines partition the
irrep labels of the regular representation into sixfold
(outside dashed circle and radial lines) levels and eight-
fold {inside dashed circle and radial lines) levels. which
describe the symmetries of the asymptotic clusters at
the high and low ends of the spectrum, respectively.

point being assigned one of the ten irrep labels
appearing in the regular representation B. The
integers 0, 1,2, 3 and 0, 1,2, 3, 4, 5 denote, respec-
tively, the values of j(mod4) and j(mod6). The
placement of irrep labels and integers in Fig. 1
has the following significance: Let [q(mod4),
q(mod6}], 0 &q &11, denote the set of points (sub-
set of the ten displayed points) with initial point
q(mod4) and final point q(mod 6), including all
points in between as obtained by reading clockwise
for even q and counterclockwise for odd q. Then
the irrep labels in Fig. 1 corresponding to the set
of points [q(mod4}, q(mod6)] are just those con-
tained in I' for each q c [0, 1, . . . , 11]. (Note
also that we may obtain the I' by interchanging the
initial and final points in the above description and
reading counterclockwise for even q and clockwise
for odd q. ) Indeed, using these results, one quick-
ly reads off all F', For example, 1' =E, +E, +E +E,
is obtained by reading off (counterciockwise) all
irrep labels on and between the. points 1 and 5'.

(The dashed lines in Fig. 1 serve to partition the
irrep labels for purposes to be explained later. )
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A +E +E, E~+Ei, E+F2+A2, E2+Ei, (79a)

this grouping of levels by common approximate
eigenvalue becoming rather bad for the next A.,
+E,+ E. On the other hand, reading upward from
the bottom of Table I (j= 28), one sees that the
levels are combined into eightfold nearly degener-
ate levels of symmetry types, respectively,

We may now give complete descriptions of the
sequences S~(4) and S~(t) for integral j =12P +q,
0(q' «11 ~

The sequence S&(&) is obtained by entering Fig. 1
at the point k = j(mod 4) =q(mod 4) and reading off
the irrep labels, in turn, by going clockwise for
even j and counterclockwise for odd j, completing
P full cycles and one partial cycle which termi-
nates with the irrep label at the point K =j(mod 6)
=q(mod 6).

The sequence S,(t) is obtained by entering Fig. 1
at the point k = j(mod 6) =q(mod 6) and reading off
the irrep labels, in turn, by going counterclock-
wise for even j and clockwise for odd j, com-
pleting P full cycles and one partial cycle which
terminates with the irrep label at the point
k = j(mod 4) =q(mod4).

Remark. While it is obvious that S,(4) [since it
is just S&(k} read backwards] is described as
above, it is useful for subsequent discussions to
have this description written out fully.

If we define an R sequence (R for regular) to be
any sequence of irrep labels containing one A„
one A„ two E's, three E,'s, and three E,'s, we
may characterize each S~ sequence associated with
the spectrum of T more colorfully by the state-
ment: Each S~ sequence has a definite R sequence
as its period, repeats this Period p times, and
contains at the end a Partial Period made uP of
as much of the R sequence as needed to meet
dimensionality requirements. Figure 1 serves to
delineate the details of the R sequence for each
j value.

We find it quite remarkable that the irrep labels
assigned to the eigenvalues of T should exhibit
such a periodic structure. (We emphasize again
the empirical nature of this result, it being veri-
fied, without exception, for all integral j from 0
to 100.) Table I shows two examples of the gen-
eral structure described above.

We next turn to the description of several fea-
tures of the spectrum of T which become more
pronounced with increasing j. If one examines
the entries in Table I (j =28), one observes that
certain eigenvalues are almost degenerate. At
the top of the display, one sees that the levels are
combined into sixfold nearly degenerate levels of
symmetry types (reading downward), respectively,

E +E+E, A +E~+E2+A2, E2+E+E~, (79b)

this grouping of levels by common approximate
eigenvalue being rather bad for the last E,+ E+E,
in this sequence. Similar features, involving the
same sixfold levels (79a) and the same eightfold
levels (79b) are exhibited by the j= 29 column of
Table I.

Qualitatively, the sequence of eigenvalues of T
(integral j) may be partitioned into three sets
described as follows: (i) the high eigenvalue end,
where the eigenvalues associated with each R se-
quence in S&(f) exhibit the sixfold (approximate)
degeneracies of levels of symmetry types A, + E
+E„E,+E„A,+ E+E„and F,+F„(ii) the low
eigenvalue end, where the eigenvalues associated
with each R sequence in S&(t) exhibit the eightfold
(approximate} degeneracies of levels of symmetry
types E+E,+E„A,+A, +E,+E„and E+E,+E„.
and (iii) a transition region between the high and
low eigenvalue end which contains four to seven
levels having eigenvalues which follow no pattern
other than being close.

The dashed lines in Fig. 1 serve to partition the
irrep labels of the regular representation into the
sixfold (outside dashed circle) levels and the eight-
fold (inside dashed circle) levels going, respec-
tively, with the high and low eigenvalue ends of
the spectrum. As an example, for j= 28, we enter
Fig. 1 at the point 0 and read clockwise two full
cycles, finishing with the partial cycle ending at
4, thus obtaining the sequence S»(0). The parti-
tion indicated by the outside dashed circle then
instructs us to split up the regular representation
according to A, +E,+E, E,+E„E+E,+A„and
E,+E,. The levels at the high end of the spec-
trum then exhibit these sixfold degeneracies.
Similarly, to obtain the sequences S»(4) we enter
Fig. 1 at the point 4 and read counterclockwise
two full cycles and one partial cycle ending at 0.
The partition indicated by the inside dashed lines
then instructs us to split up the regular represen-
tation according to E,+E+Ey Ag+Eg+E2+A2,
E,+ E+E,. The levels at the low end of the spec-
trum then exhibit these eightfold degeneracies.

Directing our attention again to Table I, we see
additional qualitative features which are typical
of each spectrum: (i) the clustering of eigenval-
ues into sixfold and eightfold degenerate levels is
best at the ends of the sequence and becomes
poorer for those levels nearer the middle; and
(ii) the clustering into sixfold degenerate levels
(high end) is more pronounced and continues fur-
ther into the sequence than the clustering into
eightfold degenerate levels (low end).

To give some indication of how the clustering
phenomenon improves with high j, we have (Table
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TABLE II. Eigenvalues (multiplied by 100) of the operator T for j= 100. Symmetry type is
denoted by the letter to the left of each eigenvalue.

Af 5.f25 690 090 113 115 680 256 257 41
Ef 5.125 690 090 113 1 15 680 256 246 55
E 5.f25 690 090 113115680 256 241 11

E2 4.613 143 588 753 669 695 986 086 41
E) 4.613 143 588 753 669 695 984 526 12

E 4.123 813 565 974 013 576 249 958 69
E2 4.123 813 565 974 013 576 195 545 78
A2 4.123 813 565 974 013 576 086 7 $9 95

E2 3..657 180 034 191 149 605 188 983 55

Eg 3.657 180 034 191 149 600 281 883 37

3.212 732 649 388 f 84 644 879 787 44
E) 3.212 V32 649 388 184 484 121 005 93
E 3.212 732 649 388 184 403 741 615 18

F2 2.789 971 626 892 359 674 156 371 85
Fg: 2.789 971 626 892 355 597 481 874 43

E 2.388 408 909 335 097 267 599 682 75
E2 2.388 408 909 335 055 641 500 81930

- Ap 2.388 408 SOS 334 972 38S 303 092 32

Fp 2.007 569 673 405 330 918 805 17f 95
E) 2.007 569 673 403 924 645 927 347 27

1.646 994 299 230 227 427 363 868 59
F) 1.646 994 299 210 200 870 576 13999

1.646 994 299 200 187 592 180 041 52

E2 1.306 240 983 446 697 745 268 577 70
1.306 240 983 202 868 0 f3 774 524 95

E 0.984 889 268 710685 073 571 903 90
E2 0.984 889 267 428 308 849 092 921 45
A2 0.984 889 264 863 556 326 927 654 06

E2 O.682 544 915774 415 105 086 555 01
Ei 0.682 544 892 285 740 302 042 659 88

Ai 0.398 846 926 458 295 844 008 468 22

Fi 0.398 846 738 104 829 771 571 132 97
E 0.398 846 643 927 897 998 386 18949

E2 0.133477 415 121 653 930 832 11801
Ei 0.133476 087 600 358 713277 347 41:
E -0.113820 550 714 971 537 012 721 75
E2 -0.113824 670 725 801 047 764 678 17
A2 -0.1 f3 832 911516 736 218 647 037 97

F2 —0.343 211700 124 708 016 123 815 95
Fi -0.343 256 749 021 544 314 879 348 59

Ai -0.554 586 765 960 79f 560 014 224 37
Fi -0.554 802 947 346 126 586 805 606 85
E -O.554 911306 144 353 572 766 778 27

E2 —0.747 916422 095 131911371 734 66
Ei -0.748 829 443 283 038 39f 070 882 10

E -0.921 740 940 781 814 669 346 563 49.
Fp -0.923 367 440 228 536 798 770 416 95
A2 —0.926 750 544 46S 145 034 187 247 51

F2 —1.073 780 721 465 328 536 413 833 16
F( —1.083 217 941 412 453 593 557 705 35

A ( —1.190 130 139 104 612 221 122 307 78
Fg

—1.21 f 465 541 115730 083 575 430 55
E -1.223 807 792 495 174 406 634 504 30

Ep —1.298 669 531 856 416 780 417 344 07

E( —1.357 463 645 331 767 352 225 532 58
E —1.398 953 665 318 508 955 615 312 30
Eg -1.413 942 186 561 829 616 697 19963

A.2 -1.53'0 407 059 651 272 556 104 560 10
E2 —1.542 737 626 348 819454 833 532 19
Fi -1.552 860 244 399062 344 812493 06
Ag -1.561 835 047 007 528 733480 626 01

Fi —1.735 872 930 017428 548 567 057 65
1.738 329 462 409 720 394 247 929 18

E2 —1.740 792 637 826 024 220 948 537 19

E, —1.S58 800 917 925 736 438 246 769 67
E —,1.959 211 917 221 652 421 431 964 77
Fg -1.95961747439855f 57455553S92

A2 -2.205 690 537 106 250 549 362 472 70
E2 —2.205 740 107 216 926 575 826 673 52

Ei -2.205 789 633 426 881 222 180 206 50
A i -2.205 839 115846 819 559 087 037 52

Ei -2.475 887 153 282 221 645 230 334 37
E -2.475 891 508 594447 061 256 67541
Ep —2.475 895 863 794 787 859 379 167 96

F) -2.768 492 514 561 974 034 171497 12
-E -2.768 492 779 390 955 664 450 11570-
E2 -2.768 493 044 2 f 7 690 926 871 15073

Ap -3.082 960 347 082 066 430 850 404 83
F2 -3.08296035709086268156f 5424f
Fi -3.082 960 367 099 656 707 919444 58
A ( -3.082 960 377 108448 509 925 335 12

Ei -3.418 969 545 015 500 357 195826 09
E -3.418 969 545 193238 111742 763 24

E2 -3.418 969 545 370 975 865 769 605 86

II) given to 26 significant figures the calculated
eigenvalue spectrum of T for j~ 100 (within the
highest multiplet A.,+E,+ E, the eigenvalues differ
only in the 24th significant figure l ) That the
clustering is an asymptotic (in j) phenomenon is
clearly indicated by the entries in Table II. It is
remarkable that already at j= 10 (Table III) the

clustering begins to make its appearance.
We can make several more observations by

introducing the "center of gravity" of a cluster
[we have already noted in Eq. (VSa) that the center
of gravity of the full spectrum is at the origini].
If we let C denote the set, of indices (subset of
1,2, ... , 10p+n, ) which enumerate the levels in a
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TABLE III. Eigenvalues of the operator T for j = i0.
Symmetry type is denoted by the letter to the left of each
eigenvalue.

E i0.459 4i7
Ep i0.349646
A2 i0.ii2306

E2 0.783 i90

El -0.358 i20

Ai -3.5i2 696

El -6.454 38i
E -7.436 370
Eg —8.535 570

cluster, then the center of gravity X~ of the clus-
ter is defined by

(80)

where N~ is the number of levels &, in the cluster
C.

In terms of this nomenclature, we may make two
semiquantitative observations: (i) the transition
region between the high end (where the clustering
into sixfold degenerate levels occurs) and the low
end (where the clustering into eightfold degenerate
levels occurs) is comprised of four to seven
levels located to either side of the point which
lies below 0 at a distance equal to three-eighths
the distance from 0 to the low end; and (ii) within
a cluster C, we have

Fig. 2.
For actual spectra, it is useful to know the

positions X~ of the clusters since the hyperfine
structure within a cluster may not be resolved or
may appear as a blended line at X~. To illustrate
this behavior, we have plotted in Fig. 3 the values
100K~ for j=100 as a function of the cluster index
C. We have assigned C=1, 2, ... , 21 to the sixfold
degenerate clusters (see Table H) C=0 to all four
of the levels in the transition region, and
C = —1, —2, ... , —8 to the eightfold degenerate
clusters. The resulting points fall on the smooth
curve shown.

Dorney and Watson" have noted certain features
of the spectrum described above. They first of
all observed the clustering (79) into levels of
approximate common eigenvalue in their calcula-
tions of the spectrum of -4 T, for j= 2, . .. , 20.
Second, they gave a classical argument as to the
origin of this approximate degeneracy, an argu-
ment that suggests that the molecule prefers to
spin about one of the threefold (group 8,) or four-
fold (group 8,) axes of the octahedron. They fur-
ther noted that the diagonal elements of T for
j=m, m —1, .. . , give a rough approximation to
the centers of gravity of the clusters at the six-
fold end of the spectrum. This observation is
substantiated for large j and m (where & =—1) by
Eqs. (74) and (75). For a similar approximation
to the centers of gravity of the clusters at the
eightfold end of the spectrum, they noted that one

lOOX,

for each pair of levels X, and X,, not equal to X~.
Each case of Eq. (81) is displayed graphically in

Structures

With A Level

In The Center

Structures

Without A Level

ln The Center-

Sixfold Clusters

A(

-Fp

—--—-Center

Ap

Eightfold Clusters

Fp

Ap

Fp---——Center

Ai

I

-IO

FIG. 2. Relative splittings of eigenvalues within the
various types of clusters are inversely proportional to
the degeneracy of the level.

FIG. 3. Plot of the center of gravities of the clusters
vs the cluster index defines a smooth relation as illus-
trated here for j=100.
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2G', E'+ E'+ O', E'+ E'+ G' (82b)

are playing the same role in the half-integer
problem as are the three eight-dimensional rep-
resentations (79b) in the integer problem. Ob-
serve that the irreps of 0 appearing in either Eq.
(82a) or (82b) sum toR =2E', + 2E,'+4G', which is

should consider the diagonal elements of the oper-
ator T' which is the transformation of T to one of
the threefold axes. These results already give
considerable insight into the explanation of the
calculated spectrum.

This completes our discussion of the properties
of the eigenvalue spectrum of T for integral j, and
we now turn to the case of half integral j.

A remarkable observation due to Barter and
Patterson4' allows us to make a prediction as to
the general nature of the spectrum of T for j half-
integral. (This prediction is a conj ectuxe because
it is based on the assumption that the structure
of the half-integral case will parallel that for the
integer case. ) Harter and Patterson observed
that the three eight-dimensional representations
of 0 given by A.,+ A, +E +F„E+F +F„E+F
+E, are just the representations obtained by in-
ducing" from the 63 subgroup of 0, the repre-
sentation A, +A, +E,+F, being induced from the
identity representation of G„and the representa-
tion E+E,+ E, being induced once from each of
the (one dimensional) complex-conjugate represen-
tations of 8,. Similarly, the four six-dimensional
representations A, + E+E„A,+ E+E„E,+E„
E,+E, are just the representations of 0 induced,
respectively, from the four one-dimensional
representations of the 64 subgroup of 0. The ob-
servation of Barter and Patterson should certainly
play a key role in the theoretical explanation of the
eigenvalue spectrum of T, but at this point we will
regard it only as an intriguing fact.

I et us apply this idea to the double groups
63 c 0 and &4 & 0. 6 3 has six one -dimensional
representations, and the corresponding eight-di-
mensional-induced representations of 0 are A,
+A, +E,+E„E+E,+ E, (twice), 2G ', and E,'+ E',
+ G' (twice); 6, has eight one-dimensional repre-
sentations, and the corresponding six-dimension. -
al-induced representations of 0 are A, + E+E„
A, +E+E„E,+E, (twice), E,'+G' (twice), and
E', +G' (twice).

The implication of these results is clear: The
four six-dimensional representations

(82a)

are playing the same role in the half-integer
problem as are the four six-dimensional repre-
sentations (79a) in the integer problem. Simi-
larly, the three eight-dimensional representations

the. appropriate cycle for reducing I'~ for j half-
integral [cf. Eq. (67b)].

We now consider for half-integral j the problem
of constructing a circle analogous to Fig. 1. The
idea is: (i) to find an assignment of the irrep
labels Ey Ey pE& E,', G', O', G', G', to eight points
equally spaced on the periphery of a circle such
that four radial (dashed) lines outside the circle
partition the letters into pairs going with the in-
duced representations E,'+O', E', +O', E', +
E,'+O', while at the same time three radial
(dashed} lines inside the circle partition the let-
ters into those occurring in the induced represen-
tations 2G', E,'+E,'+G', E,'+E,'+G'; and (ii) to
find an unambiguous assignment of the half-inte-
gers k = j(mod4) and K= j(mod6) to the eight points
such that when we enter the circle at the point k
and exit at the first point k, reading clockwise"
for j= (4n+ 1)/2(n= 0, 1, . . . , ) and counterclockwise
for j=(4n+3)/2 (n=0, 1, . .. , ), we read off the
irreps occuring in the known" l, , q = &, ~, . .. , —", .

There are only four diagrams (obtained by con-
sidering all possibilities} which meet the two
stipulations above. One of the possible diagrams
is shown in Fig. 4. The other three are obtained
by exchanging E', and G' in the upper-left-hand
quadrant and/or by exchanging E', and G' in the
lower-left-hand quadrant. If we further assume
that one diagram works for obtaining all sequences
S&(4), then the calculated eigenvalues for j=—, and
j=—", [cf. Eqs. (72)] require that we pick Fig. 4.

The conjecture is: to obtain the sequence S~(4)
(j =12p+q, p=0, 1, . . . ,q=&, 2, . ..), we enter the
circle at the point k= j(mod4), read off the letters
clockwise for p full cycles for j= ~(4n+ 1) [counter-
clockwise for j= &(4n+ 3)], and continue for a par-
tial cycle to the point k=j(mod6). Furthermore,
we expect the clustering at the high-eigenvalue
end as given by the sixfold degenerate levels read
off the outside partition and we expect the clus-
tering at the low-eigenvalue end as given by the
eightfold degenerate levels read off the inside
partition.

To test this conjecture, we calculated the spec-
trum of T for all half integral j in the interval

j ~ —", , although we did not make the assignment
of symmetry type to the levels. " The resulting
sequences of fourfold and twofold degenerate
eigenvalues in S~(0) for —', ~j - —", agree with the
results read off Fig. 4. Furthermore, the clus-
tering phenomenon occurs just as predicted (see
Table IV) with relative spacings in accord with
~q. (81).

C. Method of calculation of eigenvalues

For integral j the calculation of the eigenvalue
spectrum of T was done in the space II, of solid
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f'JJ,„:m = A, (mod4)). (84b)

Thus, each eigenvector 4 of T must simultaneous-
ly belong to one of the spaces H, (I',) and one of the
spaces H, (k).

The detailed method used for splitting the spaces
H, (I",) into p+br perpendicular spaces each car-
rying irrep I', has been described elsewhere. "

All calculations have been carried out with
double precision (relative accuracy 5 x10 ") on the
CDC 7600 computer at Los Alamos. It is noted
that at the high end of the j= 100 eigenvalue spec-
trum (cf. Table II), Eq. (81) is satisfied to 26
significant figures.

V. CONCLUDING REMARKS

6
I

J
FIG. 4. Sequence S, ()) (j =12p + q, p =0, 1, . . . ;

q = 2, 2, . . . , —3} of irrep 1abels assigned to the eigen-
values of T as read from the highest to the lowest value
is obtained by entering the solid circle at the point k
=j (mod4) and reading off the irrep labels clockwise for
j =~(4n+1), n =0, 1,2, . . . , counterclockwise for j
=2(4n+3), n =0, 1,2, . . . , completing P full cycles and
one partial cycle which terminates at the point k
= j(mod6). The dashed lines partition the irrep labels
of the R representation into sixfold (outside dashed
circle and radial lines} levels and eightfold (inside
dashed circle and radial lines) levels which describe
the symmetries of the asymptotic clusters at the high
and low ends of the spectrum, respectively.

harmonics. We first split the space H, into in-
variant subspaces (with respect to 0) which
carry only one (with repetitions) of the
irreps &y &„E,E„orE„ this being accomp-
lished by standard projection techniques:

H, =H, (A, ) SH, (A,) SH, (E) SH, (E,) SH, (E,),
(83a)

There are two general features of the eigenvalue
spectrum of T which remain to be explained: (i)
the general cycle structure with period R; (ii) the
asymptotic (in j ) clustering phenomenon together
with the internal spacings of levels within a clus-
ter.

We have made no substantial progress in ex-
plaining either of these features. (One. would like
to understand the structure of the problem without
having to construct the details of the complete
solution. ) Our approaches to the problem have
included the following: (i) If one splits the prob-
lem into the four pieces corresponding to Eq.
(84a), the problem is reduced to the study of four
Jacobi matrices in which the elements are 3j sym-
bols. One may study the three-term recursion
relations directly in hopes of explaining the cycle
structure, and one may use asymptotic forms of
the 3j symbols in hopes of explaining the asymp-
totic features. (ii) One might attempt to construct
directly (by using symmetry techniques) P bases,

TABLE IV. Eigenvalues of the operator T for j=-.2'
Numbers in parentheses denote the multiplicity. Sym-
metry type was not determined.

where, for /= 12p+q, we have

(83b)dimH, (I',.) = (dim I',.)(P+ kr, ),
in which k~, is the number of occurrences of
irrep I', in 1"',0 ~ q 11. It is this step of the
analysis which allows the irrep labels I'; to be
assigned to the various levels.

It is also useful to observe from the recursion
relations based on the matrix elements (71) that
the space H, also may be split into a direct sum
of four invariant subspaces with respect to T:

H, = H, (0)SH, (1)SH, (2)SH, (3), (84a)

where H„(k) is the subspace of H, spanned by the
solid harmonics in the set:

100 ~, (j=")

(4) 8.345 566 7
(2) 8.345 564 4

(4) 5.5187617
(2) 5.518 678 9

(2) 3.135 817 2

(4) 3.134 524 2

(2) 1.171438 0
(4) 1.159 854 2

(4) -0.394 908 3

(2) -0.461 954 4

100 X, (j=")

(4) -1.552780 8

(2) —1.740 156 5

(2) -2.365 8199

(4) -2.610359 1

(2) -2.878 837 1

(4) -3.8153557
(4) -3.935 0891

(2) -5.598 630 9
{4)—5.606 346 7
{2)—5.613 833 8
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APPENDIX A: CONSEQUENCES OF TIME REVERSAL

Wigner" has proved that the time-reversal
operator 9 may be written as a product

9=m, (A1)

where U is a linear unitary operator and K is an
antilinear, antiunitary operator. It is instructive
to see the simple form which this result assumes
within the framework of the present problem.

I.et us first give an explicit construction of 9 on
the space K~. A general vector C of K,. has the
form

each carrying the reducible representation R, such
that the interaction T between these R-represen-
tation spaces is small for large j. One could then
attempt to study each R-representation space using
the ideas of induced representations of Barter and
Patterson. " (iii) One may implement analytically
an approximate group-theoretical reduction of the
problem using the methods of Miehelot and Moret-
Bailly, " looking carefully for those structural
characteristics of the method responsible for the
observed features of the eigenvalue spectrum.

Added note. —After this paper was accepted for
publication, we received two manuscripts" by
Harter and Patterson in which they combined their
ideas on induced representations with the sugges-
tions of Dorney and Watson. " They have now
developed a perturbation treatment of T (and its
transform to a threefold axis) that yields good
agreement with the calculated spectrum for clus-
ters near either of the two ends of the spectrum.
Their analyses also show that our circle in Fig.
4 gives an incorrect result for j=~(4n+3). The
correct result is obtained by interchanging E,' and
E,' in the result obtained by our rules. It thus
requires taco circles to make the irrep label as-
signments to the levels for j half-integral.

We are indebted'to Dr. Barter and Dr. Patterson
for their recent manuscripts, for pointing out the
significance of Dorney and Watson's work, and for
correcting our "half-integral circle."

where the o. are, in general, complex numbers.
The scalar product (4, 4') of two vectors is given
by

(4, 4')= g n*n',

where "*"signifies complex conjugation. W'e next
define two operators K and U by giving their ac-
tions on an arbitrary vector of XJ.

KC= &* jm, (A4)

U4=+ ~„(-1)' ~j, -m). (A5)

UJ.U'= -J, UJ U'= —J„UJ,U'= -J„
KJ,K=J„KJjC=J, KJQ= J,. (A6)

Because of the linear property of U and the anti-
linear property of K, properties (A6) may also be
written

UJ~U = -J„U&2U = J2, UJ3U = —J~,

KJP= J„KJP= —J„KJP=J,.
Combining these operations, we obtain

9J,9 =-J,-,

(A7)

(A8)

which is, indeed, the time-reversal operation. ,

Note that from the first line of Eqs. (A7) it
follows that U is equal to one of the operators
generated by , @',8, and 8'. Indeed, from the
definition (A5) it follows that [cf. Eqs. (7) and (9)]
U is the operator corresponding to

,)
that is,

(A9)

(A10)

We are now prepared to examine the conse-
quences of

Using t'hese definitions, it is now an elementary
exercise to prove the following results: K(4+ 4')
=K4 +K@', K(X4) =X*(K4), (K4,K4') = (4, 4')*,
that is, K is antilinear and antiunitary on K,.; also,
U(4+4')= U4. + U4. ', U(~4)=X(U4), (U4, U4')
= (4, 4'), that is, U is linear and unitary; further-
more K'=1, K '=K U'=(-1)2~, U'= Ut and
U&= &U.

Using next the action of J, given by Eqs. (2),
an elementary derivation establishes UJ, C
= -J U4, that is, UJ, U = —J . In similar fashion,
one derives the following results:

4= ~ jm, (A2)
9T09 = To.

Since

(All)



1380 FOX, GAI BRAITH, KROHN, AND LOUCK

@TOP = To,

we obtain

KTQ= To,

(A12)

that is,

(A15a)

(A15b)

TQ = %TO. (A13b)

Since an eigenstate of T, with eigenvalue X is a
linear combination of the form Z„n„~jm), we
obtain

n~ j =X ~*jm, (A14)

since T, is Hermitian and its eigenvalues real.
Let S„denote the space of functions C such that
T,C =A,C. If 8, is irreducible with respect to 0,
then we must have

It foBows that @faith appropriate normalization of
Z„&„~jm), we can always choose n to be real
Moshinsky and Kramer~ have proved that each
eigenspace S„ is irreducible, a fact which is sub-
stantiated by our numerical calculations.

It follows that the consequences of time rev-eysal
invaxiance of To is contained fully in the statement:
the eigenstates of T, may be obtained as seal lin
ear combinations of the basis vectces

~
jm), m

=j, . . . , —j. (In the case of the spherical harmon-
ics, one should choose the Biedenharn phase

~
lm) =i'&,„.)
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