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In this paper we show that the fine structure of vertical-horizontal (V-H) light scattering is due to the local
order in the liquid. Use is made of the hydrodynamics equations obtained in a previous paper which

introduced two tensors to characterize the local order, When one of these tensors is neglected with regard to
the other (the one-tensor approximation), the spectrum given previously by different authors is obtained. It is

shown in which cases this approximation is valid. The V-H spectrum for the light scattered by a liquid of
spherical molecules is also given. The spectrum is computed in the general case when the two tensors are of
the same order. In such a case, a spectrum is obtained which gives the broad background observed some

years ago, and also the experimental results obtained recently in supercooled liquids which cannot be
explained with the one-tensor approximation. The results are compared with previous theories, and it is shown

that a generalization of all the previous results is obtained.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I)
we emphasized the importance of the local order
in a liquid when one deals with high frequencies
and small -wavelength hydrodynamics. It was
shown that it is necessary to introduce, with the
usual hydrodynamic fields, two new vectorial
f ields characterizing the local rotations and two
tensor fields, characterizing the local order,
and microscopic expressions for these new fields
were given. Using these microscopic expressions
and the nonequilibrium thermodynamics, we were
able to obtain hydrodynamic equations for a fluid,
valid up to high frequencies and small wavelengths.
It was stressed that the four new fields were nec-
essary to describe the collective behavior if
QL i was not negl igible, where L, is the correl a-
tion length of the local order and k the wave num-
ber of interest.

We shall see in Sec. II that at least one of the
tensors characterizing the local order is propor-
ti.onal to the tensor of polarizability responsible
for the light scattering. Furthermore, we shall
see equally that in a dense molecular liquid the
correlation length L, can be estimated of the order
to 100 A, so that for light wavelengths, kL, =0.12
and is not negligible. Consequently, it appears
that light scattering is a possible field of applica-
tion of the equations given in I. We shall use them
here and shall be able to check their validity with
experimental results. Conversely, it will be seen
that the spectrum of the scattered light is tightly
linked to the local order in a liquid. This paper,
deals particularly with the vertical -horizontal
(V-H) scattered spectrum which has been widely
studied in recent years.

In Sec. II, we recall in more detail the results
(I) which are of interest here, and we recall some

basic results about light scattering.
In Sec. III, we compute the V-H spectrum when

one of the tensors characterizing the local order
is negligible with regard to the other. In such
a case we obtain the same spectrum as that given
by different authors, ' ' which is in agreement with
the experiments for a great number of fluids. ' '
We discuss the physical phenomena involved and
particularly the role of the coupling of the trans-
verse velocity with the local orientational order.
We also give the V-H spectrum in the case of the
depolarized light scattered by a monatomic fluid. '

In Sec. IV, we compute the spectrum in the gen-
eral case, when two tensors are necessary to
characterize the local order. This yields a spec-
trum which is more complex than the preceding
one, and which gives the broad background ob-
served some years ago' " and the triplet observed
more recently in supercooled liquids;" " This
last spectrum cannot be explained with the one-
tensor theories, ' ' as is shown for instance in
Refs. 13 and 15.

Since the theoretical prediction by Leontovich
more than 35 years ago of the fine structure of the
V-H spectrum, " and its observation by Starunov
and others" in 1966, a great number of theoreti-
cal' '""and experimental' """papers have
dealt with this phenomenon. We shall try in Sec.
V to link our results with the more characteristic
of these theories, to explain why, from our point
of view, some of them are not correct, and to
show that for the others the physical background
underlying the hypothesis is the local order in the
liquids.

II. THE USEFUL FORMULAS

In the first part of this section, we recall the
results' which are of interest here. In the second
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part, we relate the tensor of polarizability to the
local-order tensors. In the third part, we recall
some basic results about light scattering. Fi-
nally, in the last part an outline of the computa-
tions is given.

G(r, t) =, g [(r,. —r)'U -(r,. —r)(r,. —r)]U(r,. —r),
1

(2.1)

where m is the mass and r,. the position of the
center of gravity of the molecule j. U is the unit
tensor. U(r& —r) is equal to 1 if the center of
gravity of the molecule j is inside the box of side
L, centered at r, and zero otherwise.

G(r, f) is the tensor of inertia, with respect to
the center of the box of the molecules inside. The
traceless tensor G, (r, f) constructed from Q(r, f)
is the quadrupolar mass density tensor. G,(r, t)
is null if there is no local order of the center of
gravity or if the local symmetry is cubic.

'The local orientational order is characterized
by the tensor

I (r, f}=, Q I,.(r, t)U(r, —r), .
1

where I,. is the tensor of inertia of the molecule

(2.2)

A. Outline of the results {I)

To describe the hydrodynamics of a molecular
fluid up to high frequencies and short wavelengths,
it is necessary to take into account the local order.
More precisely, if the correlation length L, is
much shorter than the wavelength of interest,
it is possible to neglect the local order and to use
the usual Navier-Stokes equations. But if L, is
not negligible compared to the wavelength, the
situation is more complex.

It is known that in liquid nitrogen near the triple
pointp Ly ls at least 12 A." On the other hand, in
the isotropic phase of a nematic, just above T„
L

y
is estimated on the orde r of 200 A." We have

no accurate information on this point concerning
the molecular fluids giving a fine structure for the
V-H spectrum, but they are more complex than
nitrogen and it seems reasonable to take L, on the
order of 100 A for those liquids.

So, as was said in the Introduction, for the
visible wavelengths, kL, = 0.12 and is not neglig-
ible. To understand the light scattered by a
liquid, it is necessary to take into account the
local order, and conversely, light scattering is
an accurate tool to study the local order in a li-
quid.

Two symmetric tensors are necessary to de-
scribe the local order. The first one, G, charac-
terizes the local order of the centers of gravity:

j. The trace J, of l is proportional to the density
of the liquid, and the traceless tensor I, is null
if there is no local orientational order or if the
local symmetry is fcc.

The equations of motion for G, and I, are

d-i, = -2o.»( v), —2n» —G,---—2n»13 d~ s~

40

aG, = -2o.»(&v), -2o., G, —2n,
(2.3)

The matrice o, is symmetric (Qnsager relations),
0,» is the usual shear viscosity. o' is the usual
stress tensor which can be written as

{7= 3 o']U y 0' + 0' (2.4)

where a, is the antisymmetric part. The coef-
ficients a and 5 are defined by Eq. (V.7) of I. We
neglect the term c in this equation (we shall come
back to this point).

The equation of motion for the velocity field
v(r, f) is

= -V ~ o. (2.5)

where p is the mass density.
The antisymmetric part o, (k, f) is negligible if

1/0 is much larger than the correlation length.
So, for the light wavelengths o, (k, f} is small com-
pared to &r, (k, f), and in the following analysis we
shall assume that the stress tensor is symmetric.
The tensor o, correlates the linear velocity field
v with the angular velocity fields & and 0 [see
Eq. (5.13) of I]. Consequently, when we assume
that o, is null, the linear and the rotational velo-
city are no longer correlated, and the latter is
not involved in the scattering process. Such an
assumption is also explicitly made by Gershon-
Oppenheim4 and seems reasonable since the spec-
trum obtained is in good agreement with experi-
ment. Yet, it is not possible to claim from a the-
oretical point of view that this assumption is al-
ways correct and an attempt to explain the de-
polarized spectrum with the rotational velocity
is made in Ref. 25. Nevertheless, the role of the
local order is certainly much more important
than the role of the rotational velocity.

B. The density of polarizability

We cail Q the tensor of polarizability of the
molecule j. There is a linear relation between
this tensor and the tensor of inertia I&..

Q~=B ~ I;. (2.6)
This relation is written in the principal frame
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linked to the molecule j. If the molecule is linear,
B is a scalar, and if the molecule is a symmetric
top, B is diagonal. We define now the density of
polarizability as

Q(r, f) = —, g Q&U(r,. —r)
1

(2.7)

The traceless part of this tensor, Q„ is respon-
sible for the depolarized light scattering. Using
(2.2) and (2.6), we see that there is a linear rela-
tion between Q(r, f) and I (r, f). Now if we use the
Curie principles, since the liquid is isotropic,
we get

Q, (~, f) =PI, (r, f), (2.8)

where P is a scalar. The traceless part of the ten-
sor of polarizability is proportional to the trace-
less part of the tensor characterizing the local

orientational order.
In a liquid of spherical molecules, I, is null

since the tensors I~, are null if we neglect the
collision effects. Yet there is a very weak de-
polarization' which is due to the fluctuations of
the local order of the centers of gravity. In such
a case, we have

Q. = &Gs (2.9)

Q, =PI, +yG, (2.10)

But in a liquid of nonspherical molecules, y is
negligible compared to, P and we shall use (2.8)
in such a case.

where the scalar y is very small, and we are still
able to compute the spectrum of Q, using (2.3).

Instead of (2.8), the actual general formula
should be

C. Basic results of light scattering

The spectrum of the scattered light is given by"

( t, ne)n= ootnxsf P [nr ()t(0) ~ n, ] [nt ~ t'd, (t) ~ n,.]e' '"t' ' 'r"" e'"'dt,
ao jg

(2.11)

where w„k„n; are respectively the frequency, the wave vector, and the direction of polarization of the
incident light, where kf and n& are the wave vector and the direction of the polarization of the scattered
light, and k=k; —.k~.

Using (2.7), the fact that I,, is small compared to 1/k, and the translational invariance, we get

1(s,. + n)=oonstx f e ' 'f ([nt't)(O, D)'n&] [nr'Q(r, t) n&])e "'dr (2.12)

and from (2.12)

I((u;+ e) =f((u)+g(k, t)

(2.13)

(2.14)

This is the well-known result that the scattered
spectrum is the space and time Fourier transform
of the autocorrelation function of the tensor of
polariz ability.

Without any further calculation, we can have
some ideas about the shape of the spectrum, using
only this last formula. Consider a fluctuation
6Q(0, 0). A part of this fluctuation will decay local-
ly, i.e., within a distance ~L„and the other
part will couple with the hydrodynamic modes and
will spread through the liquid. So we shall have

([n& Q(0, 0) 'n, j[nz Q(r, f) n, ]) =f(]t)5(r)+g(r, f)

the tensor of polarizability with the hydrodynamic
modes. Thi., is actually what we shall find in the
following parts.

To study the P-H scattering, we choose the usual
geometry: k is along the z axis of the laboratory
frame, 0 is the scattering angle, k&, k&, and n&

are in the xz plane, and n,- is perpendicular to the
xz plane.

Using the fact that the components Q, and Q„
are independent variables, one can easily show
with this geometry that

I«(t~, +~) = sin'(8/2)Re. (Q„,(0, 0)Q„,(k, &u))

+ cos'(8/2)Ite(Q„, (0, 0)Q„(k, (d}),

(2.15}

where
The scattered spectrum will be the summation of
two terms. The first one, k independent, is due to
the local decay of the fluctuations of the tensor
of polarizability. The second one, k dependent, is
due to the coupling, allowed by the geometry, of

„Q(k, w) = e '"'Q(r, t) dr dt

Q(0, 0) =Q(r, f) for r=0 and t=0

(2.16)
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D. Outline of the computation

We shall compute the V-H spectrum, using Eq.
(2.15). Since Q, is proportional to I, [formula
(2.8)], we shall compute the space and time auto-
correlation of I„, and I„.

We saw in I that the natural fluctuations in a
liquid obey Eqs. (2.3) and (2.5) if we are interested
in wavelengths larger than a characteristic length
L, which is on the order of 10A. This is typically
the case here.

The natural fluctuations in a liquid at equili-
brium being weak, we shall linearize the equa-
tions. We take for /=0 the initial conditions
I (k, o), G(k, o), and v(k, o). With these initial
conditions, using the Fourier transform with re-
spect to space and the I,aplace transform with re-
spect to time, we shall solve (2.3) and (2.5). Since
the equations are linear, the solution will be linear
with respect to the initial conditions. For in-
stance, we have

I„(k, (u) =I„(k,0)f, (k, (u)+ G„(k, 0)f, (k, z)

+ v, (k, 0)f, (k, (u), (2.1I)

and taking the equilibrium thermodynamic average

(I„(O,O)I„(k, ~)) = (I„(O,O)I„(k, O))f, (k, ~)

+ (I„(o,o)G„(k, o))f, (k, ~)

+(I„(0,0)v, (k, 0))f,(k, u)) .

(2.18)

We must compute the averages appearing in (2.18).
Coming back to the r space, we have

(I„(0,0)I„(k,0)) = e "'(I„(0,0)I„(r,0))dr,

and using the fact that (I„(0,0)I„(r,0))
= II(r)(I',,(0, 0)), we get

but they are qualitatively the same as those given
in Sec. IV.

Now we present some formulas which willbe
useful later. We consider a function f(r) which
tends towards zero when

~

r
~

tends towards infin-
ity. This is the case if f(r) is a natural fluctua-
tion of the liquid. We have chosen k along the z
axis~ so

f(k) = f(r)e '"dxdy dz,
V

(2.22)

III. THE ONE-TENSOR APPROXIMATION

In this section, we shall compute the V-H spec-
trum assuming that one tenser is sufficient to de-
scribe the local order. This arises in three cases:
(1) G, is negligible with regard to I,. This is,
for instance, the case in the isotropic phase of a
nematic, or if the local order has a cubic sym-
metry. (2) I, is negligible with regard to G,. This
is, for instance, the case in a fluid of nearly
spherical molecules. (3) The tensors I, and G,
are proportional. This situation arises for in-
stance if we assume that the liquid is a set of
mic roc rystals.

We first compute the V-H spectra (Sec. III A) and
then discuss the results (Sec. IIIB).

A. Calculation of the V-H spectra

It is assumed, for example, that 6, is negligible
compared to I, [case (1) above]. The other two
cases give the same results with a straightforward
permutation of the index. Equation (2.3) yields

(I„(0,0)I„(k,0)) = L',(I,', (0, 0)) .
Following the same demonstration, we have

(2.19) e„=-n(((e„v + 9~v ) —2n(3I„~

bI„,= -n „(&„v,+ e,v„) —2n, 3I„,
(3.1)

(3.2)
(I„(O,O)v, (k, O)) = I.',(I„(O,O)v, (O, O)) = O

and

(2.20)

(I„(0,0)G„(k,0)) = L', (I„(0,0)G„(0,0)) = 0. (2.21)

The second part of (2.20), is exact, as can be
shown easily using the Boltzmann distribution. But
the second part of (2.21) is an approximation which
amounts to neglecting (I„(0,0)G„(0,0)) with re-
gard to (I'„,(0, 0)). This is equivalent to neglecting
the coefficient c with regard to a and b in (5.7) of I.
In the following we shall use this approximation, yet
it isuncertain if this is always agood one. We have
also performed the calculation without thiS approxi-
mation. The formulas obtained are rather tedious,

where I„, is the partial time derivative of I„,.
Taking the space Fourier transform of (3.2) and
using (2.22), we get

bI„,(k, I) = -2n„I„,(k, I) . (3.3)

There is no coupling between I„,(k, I) and th«»ns-
velse velocity. Solving this last equation we get

I„,(k, I) =I„,(k, 0)e "', (3-4)

where 1/I" = 2n»/b is the relaxation time of the
local structure.

We now study I„. Taking the space Fourier
transform of (3.1) and (3.2) and using (2.22), we
get
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o„(k, t) = -n„ikv, (k, t) —2n, g„(k, t),
bi, (k, t) = -n„ikv (k, t) —2n, g„(k, t) ~ (3 5)

There is a coupling between I„(k, t) and the trans-
verse velocity v, (k, t). The equation of motion of
v, is given by (2.5). Taking the space Fourier
transform, we get

pv, (k, t) = -ik&„(k, t) . (3.6)

Taking the time Laplace transform, we are now
able to solve Eqs. (3.5) and (3.6). Using (2.19)
and (2.20), we give the autocorrelation functions
directly:

(v, (O, O) v, (k, Z)) =
Z

——'[z+ r](v',)

(I,',) ER(I2 )

r+z, r+y,
Z+ I" Z-X, g- X,

(3.8)

where

2 2
Q] g

P Qg) Q33 (3.9)

p(z) =z'+ [r+E(1 -R)]'z+ Er,

X, and A., are the roots of P(z), and (P„) means
(I',,(0, 0)). Using (2.15), (3.4), (3.8) and the fact that
(I„',) =(P„) since the liquid is isotropic, it is now
easy to get the V-H spectrum. There are two
cases depending on the sign of the discriminant ~
of P(z).

1. ~ is positive. This arises if

(1 -R"')' (1+R"')'
(1 -R)' (1 -R)' I (3.1o)

The roots of P(g) are real and from (3.7) the trans-
verse velocity v, is diffusive. The 7-H spectrum
is given by

r &P )dos (sigz~'r (~, ~,~r ~r, ~,P, (r+~, )~,
)(d + I (I + X )(I + X )(X —A. ) QiP + I (d + X (d + A.

(3.11)

It is also possible to rewrite (3.11) in the more usual form' '

8 I' ... cos'(8/2) X', + X,E(1 -R) X', + X,E(l -R)
n.

~
—X2 . w +A.2 ur +X~

(3.12)

2. 6 js negative. The roots of P(Z) are complex
and from (3.7) the transverse velocity v, is propa-
gative. (The spectrum is not given here. It can
easily be obtained with a straightforward calcula-
tion. ) There is a central peak and two symmetri-
cally shifted peaks and the area of the two shifted
peaks is equal to the area of the central one."""

B. Discussion

We discuss the results using formula (3.11). As
expected from the previous discussion in Sec. II C,
the V-H spectrum is the summation of two terms.
The first one, k independent, is a Lorentzian
which corresponds to the decay of the local order.
The second one, which is k dependent through 0
and E, gives the fine structure of the spectrum.
As this fine structure is due to I„, we shall try
to have a better understanding of the evolution of
this quantity.

Returning to r space, we can rewrite the second
equation (3.5) as

X/2

I„(r, t)= rl„(r, t) -— " R'"S,v, (r, t).
Q33

(3.13)

The first term of the right-hand side corresponds
to the decay of the local order due to the thermal
fluctuations which, as I„„does not couple with
the transverse velocity. The second term cor-
responds to the coupling between I„and B,v„
B being the coupling para, meter. It is easy to
show, from the definition of R and using Eq. (5.6)
of I giving the entropy production which is always
positive, that B is always between 0 and 1.

We now consider a cube of side L, (the correla-
tion length) in the liquid. It was observed in I
that for some spans of time shorter than the life-
time of the local structure, the molecules in this
cubic box are organized as those in a loose solid.
The variations of I„are related to the evolution
of this pseudosolid which is twofold: first, as a
real solid, there is a linear velocity v and an an-
gular velocity &, and second, there is a deforma-
tion of the structure of this pseudosolid.
one side of the box along the z axis and another
side along the y axis. The transverse velocity
along y on the face z = 0 is V, = v, (r, t); the trans-
verse velocity on the face z =I., is V,. Since L,
is small compared to the light wavelength,

V, = V, +I,&,v, (r, t) . (3.14)
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The variation of I„due to the transverse velo-
city v, is proportional to the shear V, —V, . Thus,
from (3.14),

I„(r,f}= -L,a,v, (r, f) (3.15)

But for a, given shear and a given I„ the varia-
tion of I„depends also on the "softness" of the
pseudosolid. We have, for instance, three charac-
teristic cases:

(1) The "stone case": the pseudosolid is very
rigid. In such a case the shear stress gives to the
pseudosolid a rotation along the x axis which in-
duces a variation of I„in the laboratory frame.
This variation of I„is important.

(2) The "rubber case": the shear stress induces
a deformation of the bulk of the pseudosolid. The
resulting variation of I„is still important.

(3) The "butter case": the shear stress induces
a deformation near the faces z =0 and 8 I

y
which

does not disturb the bulk of the pseudosolid. 'The

variation of I„is then weak.
We may characterize these different behaviors

by a phenomenologic coefficient P which can be
named a local "softness" coefficient. This coef-
ficient is large in the first case and small in the
third one.

Using (3.13), (3.15), and the preceding discussion,
we can write

the theories of the V-H light scattering based on
the coupling of the individual molecule with the
transverse velocity are not accurate. The 0 de-
pendent term of the V-H spectrum is due to the
coupling of the local order, which is a collective
quantity, with the transverse velocity.

Equation (3.12) (or similar expressions) is given
by different authors, ' 4 the definition of the coef-
ficients E, I', and R being different for each theo-
ry, but having essentially the same meaning. The
experimental spectra are in agreement with this
formula for a great number of compounds in a
large range of temperatures and densities. ' '
Thus, the one-tensor approximation seems valid
in a great number of cases. In the studied liquids,
this approximation holds because the liquids are
in case one or case three described at the be-
ginning of this section. The second case corre-
sponds to the depolarized light scattered by a
fluid of spherical molecules' and the formula (3.11)
gives the V-H spectrum in such a case.

It was observed recently in supercooled fluids" "
that the V-H spectrum disagrees with (3.11) or
with the equivalent formula when ~&0. Thus the
one-tensor approximation is not always valid
and we shall now compute the V-H spectrum in the
general case.

R'~'= PL (3.16)
IV. THE GENERAL CASE

which gives the mathematical definition of Q.
From this last formula, we can qualitatively un-

derstand why the experimental values of R are ap-
proximately the same for a great number of com-
pounds, ""since there are two opposed effects:
when the correlation length I., is large, the soft-
ness modulus is generaLly weak and vice versa.

We return now to the second term of the, right-
hand side of (3.11) giving the fine structure of the
V-H spectrum. As expected, this term is pro-
portional to the coupling parameter R. Using the
definition of E and (3.16), we see that this term
is also proportional to (kL, )', which is the charac-
teristic number of the theory' as was emphasized
in the Introduction.

Thus if I., is much smaller than the light wave-
length, the V-H spectrum is a single Lorentzian.
This is, for instance, the case of a highly de-
polarizing molecule diluted in a liquid of spherical
molecules. In such a case the V-H scattering is
due to the diluted molecule and the correlation
length is the length of the molecule (=5 A). (KL,)'
is then very small and the coupling of the scat-
tering object (the molecule) with the transverse
velocity is very weak. Actually, the observed
spectrum is a Lorentzian with no fine structure. "

This argument and this experiment show that

A. Computation of the V-H spectrum

Let us begin with Q„,. If we perform a space
Fourier transform of (2.3) using (2.22), we get

aG„,(k, t) = -2c.„G„~(k,f) —2o.'„I„,(k, f},

M„,(k, t) = -2o.2SG„,(k, f) —2n, g„~(k, f) .
(4.1)

G„, and I„,are coupled to each other but are not
coupled to the transverse velocity.

Using the time Laplace transform, it is easy
to solve (4.1). We give the autocorrelation func-
tion directly, using (2.8) and (2.19)—(2.21):

where

2

22(y, 3 2(y, 2 2~33
(4.3)

We now assume that the two tensors I and 0 are
necessary to describe the local order. As in the
preceding section, we begin with the computation
of the V-H spectrum (Sec. IV A) and then discuss
the results (Sec. IVB).
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and Z, and Z2 are the roots of

D(z) = (1-R„)z'~(r, + r, )z~ r,r, (4.4)

These roots are always real and negative, and the
coefficients before the two exponentials in (4.2)

are always positive.
Equation (4.2) is valid when R»e 1. We shall

study the case R» —-1 in Sec. IV B.
It is now easy to compute the first term of the

V-H spectrum:

(Q„',) Z', + Z, r', /(1 -R„) Z', + Z, l', /(1 -R.„)
1 2 (d + CO +

(4.5)

D(z)
(v, (0) 0)v, (k, Z)) —(v,) ZD(Z) E~(z), (4.7)

&Q,.(o, o)Q,.(k, Z)) = &Q.,(o, o)Q.,(k, Z))+ &Q',.)ER~3F~

&,z'+a,z+x,
D(z)[zD(z)+ Ex(z)] ' (4.8)

where D(Z) is defined by (4.4) (its roots are Z,
and Z,), and

k 2 2
12 g 13

12 & 13p 0!1]Q22 Q110,33

X(Z) =[1-R„-R„-R„+2(R,g,g„.)'"]Z'
+ [1',(1 -R„)+'1', (1 -R„)]z+r', 1', ,

(4.9)
12 23 12 23 ]

13 13

I

This term ls the summation of two posltlve Lor-
entzians.

We now compute Q„. Performing a space Four-
ier transform of (2.3) and using (2.22), we get

a'„(k, t) = -n „ikv, (k, t) —2n„G„(k, t)

-2n, )„(k,t),
«„(k, t) = -n„ikey. (k, t) 2n„G—„(k, t)

(4.6)
-2n,g,.(k, t),

bI~, (k, t) = -n, ~ikv~(k, t) —2n»G, (k, t)

-2n) „(k, t).
G„and I„now couple with the transverse velo-
city. 'The following calculations are straightfor-
ward but tedious, and we give here the main lines
only. The time Laplace transform of the second
and third equations (4.6) gives G„(k, Z) and I„(k,Z)
as a linear function of G„(k, 0), I„(k,0), and

v, (k, Z). Using these results, the r.aplace trans-
form of the first equation (4.6) and (3.6), we get
v, (k, Z) as a linear function of v, (k, 0), G„(k, 0),
and I„(k,0). With this value of v, (k, Z) we are
then able to obtain G„(k, Z) and I„(k,Z).

We give the results which are of interest to us
[we use again (2.8) and (2.19)-(2.21)J:

84 (4.10)

where the B, are easily obtained from the A, , the
Z, , and the X,.

Now, using (2.15), (4.5), and (4.10), we are able
to obtain the V-H spectrum in the general case.

We must consider two cases depending on the
sign of the discriminant 6, of ZD(Z)+ EN(z):

0 The three roots X] X2 and X3 are
real. From (4. 'I) the transverse velocity v, is
diffusive, and

I,„((o,.+ ~) = rte&q„, (0, 0)q„(k, ~)) —cos'(8/2)&q'„, &

B,z, B,z,
13 3 2 g2 2 g2 2+X2

(4.11)

2 ~1 ~ 0 The root X1 is real, the othe r roots.
X, and X, are complex conjugate: X2=x+iy, X3
=x —iy. From (4.7), the transverse velocity is
now propagative, and

Iva ((o;+ v) = He(Q„, (0, 0)Q„,(k, ro))

—cos'(8/2)(Q'„, )ER»1",

C3
X 2 2+ p q+

(4.12)C4 C,
(~-y)'+x' (w+y)'~x') '

To compute the C, we must take into account
that now the B,. are complex.

If we call X„X2, and X, the roots of the third-
degree polynomial, ZD(z)+EN(z), we can rewrite
(4.8) as

&Q,.(o, o)Q„(k, Z)) = &q.,(0, o)Q.,(k, Z))+ &Q;.)ER„F,

A.3 = -I"', .
A, 3

B. Discussion

As in the one-tensor approximation, the V-H
spectrum is the summation of two terms. 'The
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I„,(k, t) =I„,(k, 0)e r3',

G„~(k, t) = G„,(k, 0)e r2'.
(4.14)

Now I„,(k, f) and G„,(k, t) are two independent func-
tions. Thus, R» plays the role of a coupling pa-
rameter between I, and G,. When R»-—1, these
two tensors are proportional; when R»=0, they
are not correlated.

Furthermore, from (4.14) we see that 1/I', and
1/I", are respectively the relaxation times of G,
and I, if there is no coupling between them.

Using the same arguments as in the previous
section for R, we can see that R» and Ry3 are re-
spectively the coupling parameter between the
transverse velocity and the tensors G, and I,. Ac-
tually, the parameter R defined by (3.9) is nothing
else but the parameter R». As in the one-tensor
approximation, the k dependent term of the V-H
spectrum is proportional to the coupling param-
eter R».

We shall see now that the formulas (4.5), (4.11),
and (4.12) could explain the experimental spec-
trum which cannot be explained with the one-ten-
sor approximation. If I,« I'» we have from (4.4)
and (4.5)

Re &Q.,(0, 0)Q.,(k, ~)&

1 1
1-R» (u'+ [I',/(I —R„)]' (o'+ I",

(4.15)

The second one of these Lorentzians is high and
narrow and corresponds to the decay of the local
orientational order, as in the one-tensor approxi-
mation. But the first Lorentzian is very broad and
very low and could give the broad background ob-
served experimentally. '"

first one is k independent and the second is k
dependent. But now each of these terms is more
complex. Furthermore, the spectrum depends on
five parameters: i I'2» R12& R13& and R»
the same reasons as those given in the previous
section for R Ry2 R&3 and R» are always between
0 and 1.

We shall now try to understand the physical,
meaning of these parameters.

Let us begin with R». If R» ——1, it is easy to
show from (4.1) that

I„,(k, t) =I„,(k, 0)e "2r~',
4.13

G„,(k, t) =I„,(k, O)r, /I, (c „/o.„)"'e
with the condition that I', + I', = 1.

The components I„„(k,f) and G„,(k, f) a.re propor-
tional. If R» = 0, we can easily show from (4.1)
that

Formula (4.12) could gives the spectra observed
in the supercooled liquids, ""since there is a
central peak and two shifted propagative ones, and
the area under the central peak is larger than the
area under the two shifted ones, which is not the
case with the one-tensor approximation where the
two areas are equal. "

From our point of view, the best way to compare
our results with the experimental ones would be
first to compare (4.5) from an experimental spec-
trum with 8 = 180' (since in such a case only this
term appears in the V-H spectrum) and to fit the
parameters I'„ I'„and R». Then it would be
easier, knowing three parameters, to solve nu-
merically (4.8) and fit the last two parameters
on an experimental spectrum with et 180'.

There is a last point to understand: why is the
one-tensor approximation a good one in the nor-
mal liquid for high temperatures, but becomes a
bad one for low temperatures in the supercooled
liquid? It is a very difficult problem since it
deals with the evolution of the local order as a
function of the temperature. Nevertheless, we
can imagine two different explanations:

(1) The molecule is elongated. Then, in the
normal liquid at high temperature, the orienta-
tional local order is much more important than
the order of the center of gravity, and the one-
tensor approximation is valid. But in the super-
cooled liquid, the local order recalls much more
a real solid, and we must now take into account
the order of the center of gravity.

(2) The molecule is not elongated. In the nor-
mal fluid the two local orders are of the same
importance, but since the molecule is rather
spherical the local order is cubic. Then, the ten-
sor G is null and the one-tensor approximation is
also valid. But if at low temperature the sym-
metry of the local order is no longer cubic, it
should be necessary to take into account the two
tensors.

V. COMPARISON WITH OTHER THEORIES

A great number of theories deal with V-H light
scattering. We shall try in this last section to
give a short summary of those which are from our
point of view the most characteristic. We shall
relate them to our own work, bringing up the main
differences and pointing out the new results we
have derived.

The theories dealing with V-H light. scattering
can be roughly divided into two subsets: the first
one uses the technique usually called the Mori
formalism" "; the second one uses the older
technique of nonequilibrium thermodynamics.
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A. The Mori technique

The utilization of the Mori technique in this kind
of problem is very well summarized in the work
of Andersen and Pecora. ' The main difficulty with
such a technique is to guess the good set of vari-
ables. One must have a set of "slow" variables
with relaxation times larger than the molecular
one, and this set must be a "complete" set which
includes all the variables coupling with the vari-
able which is of interest (the off-diagonal part of
the polarizability tensor for the 7 -H light scatter-
ing). When one has chosen the set of variables
and assumed that this set is the good one, the Mori
technique is a powerful tool to obtain the dynamics
of these variables. -

The more elaborate papers dealing with the V-H
light scattering using the Mori's formalism are
those of Andersen and Pecora, ' Keyes and Kivel-
son, ' and Gershon and Oppenheim. From sym-
metry considerations, all these authors agree that
the transverse velocity is a good variable.

As a second variable, Andersen and Pecora
choose a second-rank tensor with the adequate
symmetry, without further precision. Keyes and
Kivelson choose a tensor characterizing the mo-
lecular orientation density, and Gershon and Op-
penheim choose the polarizability tensor directly.

'These authors all make two fundamental as-
sumptions: these variables are slow, and they
form a complete set.

The transverse velocity is actually a slow vari-
able since it is a real hydrodynamic variable. But
concerning the second variable, the preceding
authors are not able to prove their assumption.
We are able to claim that this second variable is
really a slow variable since it is proportional to
the tensor I, characterizing the local orientational
order, and we know (see discussion in I) that the
relaxation time of the local order is much larger
than the molecular relaxation time.

Concerning the second assumption, we can claim
that it is generally wrong since we saw that G„
which is also a slow variable, couples with T, and
the transverse velocity. If we neglect the antisym-
metric part of the stress tensor (see preceding
discussion, Sec. II A), the complete set of vari-
ables is formed with the transverse velocity and
the two tensors of the local order I, and G, . Yet,
we pointed out at the beginning of Sec. III the cases
in which this second assumption is valid.

Andersen and Pecora' introduce also another
variable, but they choose as their third variable
the stress tensor. They obtain the same results
as Volterra" and we shall discuss them later.
Gershon and Oppenheim' claim that the relaxation
time of the stress tensor is of the same order as

the molecular one, and consequently that it is a
wrong variable. But a further molecular dynamic
calculation in dense argon" shows that its auto-
correlation function has a very long positive tail.
So it appears that the stress tensor can be re-
garded as a slow variable, and it is difficult to say
with this argument if it is a wrong variable or not.

We also believe that the stress tensor is a wrong
variable but for a different reason: the velocity
and the stress tensor are not variables of the same
order. 'If we are interested in the behavior of the
velocity, the stress tensor plays the role of the
random force and of the memory function in the
generalized Langevin equation; so it is not con-
sistent to have them both in a "complete" set of
observables and to assume that the memory func-
tion of this set is a delta function. We shall come
back to this point later.

B. Nonequilibrium thermodynamic method

The second category of theories dealing with the
depolarized light scattering employs nonequili-
brium thermodynamics. One assumes that locally
the liquid is at thermodynamic equilibrium, so
that it is possible to define locally the usual ther-
modynamic quantities, free energy, entropy, etc.
'Then, performing a limited expansion up to the
second order of the free energy, it is possible to
get the equations of motions of the fluid. Our
theory (I) enters this last category.

Leontovich" was the first to use this technique
for depolarized light scattering. He introduced
a tensor ( which characterizes the local orienta-
tional order and which is equivalent to our tensor
I,. He assumes also that this tensor is propor-
tional to the polarizability tensor. But, to obtain
the evolution equation of f he implicitly assumes,
as was shown by Volterra, " that f is proportional to
the stress tensor. 'Thus, instead of getting the
spectra (3.12), he gets analogous spectra but with

the coupling factor R =1. We can easily find this
previous result using (3.1) and (3.2). If R = 1, the
determinant Qy] @22 Qy2 0 which implies that
the stress tensor 0, must be proportional to the
tensor I,. This was Leontovich's hypothesis.

Volterra" wasthefirst to stress that two pro-
cesses are involved in depolarized light scatter-
ing. The first one is (as for Leontovich) the "re-
orientation of the molecules" and the second is the
"rearrangement of the molecules into new equili-
brium positions. " To characterize the first pro-
cess, he introduces the same tensor g as Leonto-
vieh, but to characterize the second process, he
assumes that the liquid is solid-like, and he in-
troduces a deformation tensor S as in the elastic
theory of solids. But in a liquid this tensor S can-
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not be defined rigorously and has no real physical
meaning. The only way to define such a tensor is
to write S = &v, but then S is defined with an ar-
bitrary constant. Furthermore, in. our opinion
the Volterra theory fails on two points. First,
there is confusion between the tensor S and the
real tensor characterizing the rearrangement of
the center of gravity of the molecules which is
our tensor G,. Particularly, this confusion leads
to an incorrect expression for the free energy.
We shall come back to this point. Second, the
equation of motion of f, as stressed by Volterra
himself, is derived from an arbitrary assumption
of minimizing the free ene.rgy, and does not give
a direct coupling between g and the transverse ve-
locity.

We get Volterra's fundamental equations A. (1, 2)
from our equations (4.6) if we assume that the
stress tensor o, is proportional to G, and that Qys

=0.
Nevertheless, the Volterra theory gives an ac-

curate qualitative interpretation of the twg pro-
cesses involved in light scattering. He gives the
same expression as we do for Re(Q„,(0, 0)Q„,(k, &o))

(4.5) and stresses the fact that this expression
gives the broad background observed by experi-
mentalists. '"

Rytov, using the paper of Romanov, Solov'ev,
and Filatova" gave a new version of his previous
theory" in 1970.""His new t;heory is essentially
equivalent to the Volterra theory, but instead of
two, he assumes there is in the liquid a number-
n of relaxation processes without further physical
explanations. Furthermore, he assumes that the
polarizability tensor is not only proportional to
the local orientational order but is also proportion-
al to the other relaxation processes.

We disagree with him on these two points. The
discussion (Sec. II B) shows that in a molecular
Quid the tensor of polarizability is only proportion-
al to I, and G, and that under normal conditions,
for a fluid of nonspherical molecules, it is essen-
tially proportional to I,. Furthermore, in I we
stressed that in a simple liquid there are only
two relaxation processes (I and G), if we do not
take into account the internal modes of the mole-
cule.

As for Volterra's theory, our equations (4.6)
yield the Rytov funda, mental equations (9) when
there is a single relaxation process (namely I,),
if we assume that the tensor G, is proportional to
the deformation tensor S and if we take ~]3 0.

We return now to an important point on which
we disagree with the previously mentioned theories.

'The three preceding authors, having in mind that
for high frequencies a liquid behaves like a solid,
introduce a deformation tensor S. Assuming then

that the deformation is small, they express the
density of free energy F as a quadratic function
of the tensor S and of the other tensors character-
izing the internal relaxation processes, which are
essentially the local orientational order charac-
terized by I,. So they write, in our notation,

E=E,+ &aS'+ & b+I, +cI,: S,
S=Ov.

(5.1)

(5.2)

These two equations are the basic ones for their
theories.

We think there is a confus ion between the tensor
S and the tensor characterizing the local order of
the centers of gravity, which is our tensor G,.
The density of free energy E is the free energy of
the molecules contained in the little box of side

these mole cules being organized as in a loose
solid. A deformation of this loose solid is char-
acterized by a variation of the tensor I, and of the
tensor G,. The time derivative, V'v, of the tensor
S is an external stress with regard to this loose
solid, and this external stress induces an internal
strain which is characterized by a variation of the
tensors G, and I,. Thus the formula (5.1) is wrong
and must be replaced by

F =F,+ aaG, '+ & bI, '+cI,: G, (5.3)
which is the formula (5.7) of I.

In other words, we find the conclusions of our
discussion about the third variable of the Ander-
sen and Pecora theory. Here, there is confusion
between strain and stress. In the Andersen and
Pecora theory there is a mixing between the vari-
ables (the transverse velocity and the orientational
tensor I, ) and the force acting on them (the stress
tensor).

Finally, a paper dealing with light scattering
and using nonequilibrium thermodynamics is one

by de Gennes on the short-range order in the
isotropic phase of nematics. " This author com-
putes the spectrum of the light scattered by a sheaj
flow and he finds the same expression as we do:
Re(Q„(0, 0)Q„(k, +)) in the one-tensor approxima-
tion. We emphasized in I that our theory is a
generalization of de Gennes's theory when the two
tensors I and G are necessary to describe the
local order.
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