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The elastic scattering of fast electrons and positrons by complex atoms is analyzed by using the basic ideas of
the eikonal-Born series method within the framework of the optical-model formalism, This approach allows us
to derive from first principles a local second-order pseudopotential which in addition to the static interaction
also accounts for polarization, absorption, and exchange effects. A full wave treatment of this pseudopotential
is then performed. Our ab initio optical-model theory is illustrated by a detailed analysis of the elastic
scattering of electrons and positrons by helium and neon atoms for incident energies ranging from 100 to 700
eV. Our theoretical values for electron-helium and electron-neon differential cross sections are in excellent
agreement with recent absolute experimental data.

I. INTRODUCTION

We have recently proposed a new approach —the
eikonal-Born series (EBS) method —for analyzing
the elastic scattering of electrons or positrons by
atoms at intermediate and high energies. ' ' This
method, which gives a consistent picture of the
differential cross section through order k ' (where
k is the incident-particle wave number), has been
applied successfully to the analysis of the elastic
scattering of fast electrons and positrons by atom-
ic hydrogen" and helium. "

Since the calculation of the EBS scattering am-
plitude involves the evaluation of such quantities
as the second term of the Born series (by using
closure methods), it is clear that in practice the
range of application of the EBS method is re-
stricted to rela, tively simple atoms. Thus, in
order to analyze the elastic scattering of electrons
or positrons by complex atoms, other approaches
are needed, which lead to tractable computational
schemes. One of these approaches is the optical-
model formalism4 ' which has attracted consider-
able interest in recent years. " In this paper,
we show that it is possible to use the basic ideas
of the EBS method within the framework of the
optical-model formalism to perform ab initio opti-
cal-model calculations of elastic electron- or
positron- atom scattering. Our approach, which
is based on a multiple scattering expansion" of the
optical potential in terms of the full interaction
between the incident particle and the target atom,
applies essentially to the region of intermediate
and high energies. It consists basically of con-
structing a local, second-order pseudopotential
which is derived from first principles. In addition
to the static interaction, this potential also ac-

counts for dynamic Polarization and absorption
effects (obtained by using the properties of the
EBS method) together with exchange effects. The
only parameter in our theory is an average target
excitation energy 4, which we determine by re-
quiring that the long-range form of the polarization
potential be —o./(2v'), where n is the dipole polar-
izability of the target atom. " In contrast with
recent eikonal optical-model calculations, '"'""
we have used here the partial wave method to per-
form a full wave treatment of the optical potential.
In this way, we are able to avoid certain difficul-
ties associated with the use of the eikonal approx-
imation. " A preliminary version of the present
work has been given elsewhere. '""

We begin in Sec. II by presenting our approach
to the determination of the optical potential from
first principles. In Sec. III, we apply this ab
initio optical-model theory to study elastic scat-
tering of fast electrons and positrons by helium.
This is an important test case, for which we are
able to compare our theoretical results with ones
we have previously obtained from the EBS meth-
od,"as well as with recent absolute measure-
ments of differential cross sections for incident
electrons. ' We find that the agreement between
theory and experiment is excellent. We also dis-
cuss total cross sections and compare our calcu-
lations with the experimental data which have been
obtained both for electron-helium ' "and positron-
helium" "scattering.

Section IV is devoted to a detailed analysis of
the elastic scattering of fast electrons and posi-
trons by neon, a problem on which little theoreti-
cal work has been done so far. ' ' Our results
for elastic electron-neon differential cross sec-
tions agree well with the recent absolute experi-
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mental data ' ' abpve jncjdent- electrpn ener-
gies of 200 eV, pa, rticularly in the small-angle
region where the scattering is very large. We
also discuss total cross sections for electron-neon
scattering. ' O' ' Finally, we consider positron-
neon scattering and compare our total-cross-sec-
tion values with recent experimental data. "' '

II. THEORY

Let us consider the nonrelativistic elastic scat-
tering of an electron or a positron by a neutra, l
atom of atomic number Z. We denote by X the
kinetic-energy operator of the projectile, while
h is the internal target Hamjltonjan having eigen-
kets n) and eigenenergies &d„; we use the sym-
bols 0) and eo to denote, respectively, the
ground-state eigenket and eigenenergy of the tar-
get atom. The free motion of the system before
the collision is described by the Hamiltonian H,
=X+A. The full Hamiltonian of the system is
given by H = H, + V, where

(2.1)

differences ur„—&u, in Eq. (2.5) by an average ex-
citation energy ~. Performing the summation on
n in Eq. (2.5) by closure, we then obtain for V"'
in the coordinate representation the nonlocal,
complex expression

(r~ V"'~ r') =G"(k' r r')A(r r')

where
iso�(1~P )

(2.6)

k'= (k' —2n)' ', (2.8)

x(r, r') =(o~ v(r, x)v(r', x) ~o)

&oi v(r, x) io&&oi v(r', x) io&.

The Schrodinger equation (2.2) then reads

[-& '7&'+ V„(r)—2k']g', .'(r)

(2 9)

(2.7)

is the single-particle free propagator correspond-
ing to the wave number

is the interaction potential between the projectile
and the target, with Q =+ 1 for incident positrons
and Q = 1 for incident electrons. The symbol X
denotes all the ta, rget coordinates.

We now write the equivalent one-body
Schrodinger equation for elastic scattering,
namely,

[x+ 1&.„-—,'u']q&'& = o, (2.2)

yd V(&) + V(2)
OPt (2.3)

Here the first order or static potential is given by

v&'& = v., = (0
~

v~ 0&,

while the second-order part V"' reads

(0 I vln&(nl vl 0)
~-,'y' —x- (~„—&u,)+it '

(2.4)

The summation in Eq. (2.5) runs over all the tar-
get states, except the ground state.

Since we are dealing with the region of inter-
mediate and high energies we shall replace the

where g&' is the elastic scattering wave function
describing the motion of the projectile in the opti-
cal potential 'U„,. We shall first consider direct
elastic scattering; exchange effects which occur
when the incident particle is an electron will be
discussed at the end of this section. Calling V"„,
the part of the optical potential which governs
direct scattering, we write V",„to second order in
a multiple scattering expansion (in terms of the
full intera, ction V) a.s

+ G&') u', r, r'a r, r &) r' dr =O. 2.&O

This equation is still difficult to solve because
of the nonlocal character of V'". Previous studies
of Eq. (2.10), carried out within the framework of
the ejkpnal apprpxjmatjon, ' ' showed hpw ab-
sorption~3, x4 and polarjzatjoni8 effect+ can be taken
into account for small- angle scattering. However,
for large-angle electron- (positron-) atom elastic
scattering eikonal methods may lead to serious
inaccuracies in the intermediate- energy region.
The main reason for this is not the inability of
eikonal methods to handle large- angle sca.ttering
by long-range forces, " since the large-angle elec-
tron- (positron-) atom elastic scattering is domi-
nated by the short-range static potential. ' ' The
difficulty arises from the fact that only in inter-
mediate-coupling situations can the ejkonal method
describe accurately the large-angle scattering by
the gtatjc pptentjal jtgelf. ' Thug, jt j.g prefer-
able to treat the static potential exactly if one
wants to account correctly for large-angle scat-
tering.

In order to avoid the above-mentioned difficulties
associated with the use of the ejkonal approxima-
tion, we have therefore elected to solve Eq. (2.10)
approximately by following another procedure. We
first use the properties of the Born and Glauber
series' ' to obtain a local approximation to the op-
tical potential through second order, and then per-
form a partial wave analysis of the resulting
Schrodinger equation. The main problem is thus
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the determination of this local optical potential
through second order. It is to this question that
we now turn our attention.

We begin by considering the first-order or
static potential defined in Eq. (2.4). We use the
Hartree- Fock wave function

I
o& = (ZI) '"~

I e.,(»& I e..(2)&"
I e..(Z)& (2.11)

where A is the familiar antisymmetrizing operator
and the subscripts n,. denote a set of quantum num-
bers, including spin. Using Eq. (2.11), one can
evaluate the matrix element of Eq. (2.4) in a com-
pletely straightforward manner; one finds, of
course, just a sum of contributions from each
Hartree- Fock orbital. The static potentials ob-
tained in this way are very simple in form. They
behave like ZQ/~ at small distances and fall off
exponentially outside a distance of the order of the
size of the atom. Because of the strong Coulomb
potential at small distances, one expects that the
static potential will play a very important role in
large- angle scattering.

Now we turn to the evaluation of the second-
order part of the potential. Equation (2.6) for V"'
is difficult to deal with because of its nonlocal
character. However, it can be shown that a very
reasonable local approximation to V"' can be ob-
tained. I,et us write

] +00

Voy„(k, b) =-— V„(b,z) dz,
w 00

(2.17a)

potential. This long-range potential will have its
maximum effect at small angles, where it is re-
sponsible for the rapid, linear rise. of the differ-
ential cross section. It is worth noting that at
large x our polarization potential V„, falls below
its asymptotic value -n/2r4. This is just the
opposite of what would be obtained from a phenom-
enological Buckingham potential of the form
-n/2(r'+ a')', and is not surprising since Bucking-
ham's cutoff procedure is by no means unique. A
detailed discussion of the long-range behavior of
an effective potential related (but not equivalent)
to the optical potential has been given by Huo. "

In order to determine the absorption potential
V,b, we shall proceed in an indirect manner. We
begin by noting that if we treat V„+V„,+iV,„,by
the eikonal method, then we obtain for the optical-
eikonal (OE) amplitude [see Eq. (2.10) of II]

kf d2b efK b

2'
"(exp'�(VoX.~+ VOX,.i + f VOX.b.) ]- 1],

(2. 16)

where

(2.12)

where V„, and V,„,are purely real but energy de-
pendent. In a previous paper [see Eq. (2.25) of II]
we have obtained the following expression for

+00

V', y„,(k, b) = —— V„,(k, b, z) dz,

V,'y,~(k, b) = —— V,„,(k, b, z) dz .0 abs

(2.17b)

(2.17c)

x Ip p —L, p ——I, p —L, p

(2.13)

where p = x/a, a = k/2&, s denotes the sum of all
z coordinates of the bound electrons, I„ is a modi-
fied Bessel function, and L„ is a modified Struve
function. The second-order potential V„, domi-
nates the optical potential at large distances,
where it has the form f = . d'be'" "&0~(e'&ox& 1) ~02' (2.18)

Here we have written V, as the strength of the
Coulomb potential. It is of course equal to 1 in
atomic units but we will write it explicitly for a
short time in order to make the derivation given
below more transparent. Clearly, according to
Eqs. (2.4) and (2.5) V„contains one power of Vo

while V"' contains two powers.
If, on the other hand, we solve the electron-

(positron-) atom scattering problem by using the
many-body Glauber approach, "we find that the
Glauber amplitude is given by

cv ea' 135a4
&+—+-— -+y01 2+4 +2 +4 (2.14) where the Glauber phase-shift function y~ is given

by
2 being the dipole polarizability of the target atom
obtained in the closure approximation. That is,

(2.15)

Z

yo(k, b, b„.. . , bz) = ——„Q g0(b —b;)
i=l

(2.19)

Thus, V„, has precisely the polarization form
which one would expect at large distances. The
quantity a =k/2b acts as the cutoff radius for this yo(b- b,.) = ln[(b —b,)'/5'], (2.20)

and we have introduced the k-independent quanti-
ties
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b,. being the coordinate of the ith atomic electron
in the "impact-parameter" plane which contains
K and is perpendicular to the collision plane. If
we now expand Eq. (2.18) in powers of V, we have

dobe iK.b

2ni

x (fv, &o
I x, I

o& - -.' v', &o
I x,' I

o&+ ~ ~ ~ ) .

(2.21)

Similarly, expanding Eq. (2.16) we find that

'H

f«= . d'be'"' {ivoXot+ VoXboi —Voxabs2m

that the Glauber method is seriously deficient in-
asmuch as it gives no real part to the scattering
amplitude in second order. ' ' However, the
Glauber approximation has been shown' to do very
wel1. for the imaginary part of the amplitude, ex-
cept at small angles. We shall therefore use Eq.
(2.23b) to determine the quantity Xob„which can
be used to obtain an absorption potential V,„,.
The modifications required in order to deal pro-
perly with the small-angle region will be discussed
at a later stage. Thus, returning to Eq. (2.23b)
and using the Hartree-Fock wave function (2.11),
we obtain after some straightforwa, rd algebra

V2x2 + ) (2.22) X~&.= 2 n
r' XGb-b'

If we ask that Eqs. (2.21) and (2.22) should be
equivalent through second order, then upon equat-
ing the coefficients of V, and V', in these two equa-
tions we find tha, t

—1&0„,.( ') Ix (b- b')
l 4., ( ')& I']

o&= —„&o P x,(b b,.)Io& (223a)

X.'.= -'I:&o I xo I
o& - x'.&]

Z 2
=

2&. &olp g xs(b-b;)xs(b-b')Io&
i=1 /=1

X,.l= o

—2 0 gab-b; 0, 2 23b
i=i

(2.23c)

where the superscript G refers to the fact that

X,b, is only a (Glauber) approximation to X,„,. No

such superscript is necessary in the case of y„,
since y„obtained in this manner is in fact exact.
We note that Eq. (2.23c) merely expresses the
fact, which has been commented on elsewhere, ' '

The last term is the exchange contribution to y,b,
due to the fact that we are using Hartree-Fock
rather than Hartree wave functions. This should
not be confused with exchange effects involving the
incident electron and the ta, rget electrons which
have not yet been included in our optical potential.

I.et us illustrate Eq. (2.24) by two examples.
For a helium target, we have

where the spin algebra has been performed so
that

I
ls& refers to a purely spacial orbital. For

neon, exchange terms come in to give a slightly
more tedious expression:

X.'"'= (1~&'){&Is
I 411s&-

I &»141»&I'+ &2s
I 4 l2s& -

I
&2s 14 l2s& I'

+ 2&2P.
I xa12P.&

—21&2'.
I xa12P.& I

'+ &@"I xo12PJ —1&2P. I xo12Po& I'

(2.26)

Here we have made use of the fact that

(2.27)

I &n 1412P.& I
=

I &ns141+-& I
(2.28)

so 2p matrix elements have been largely elimi-
nated in Eq. (2.26). Notice in Eqs. (2.25) and
(2.26) that terms in lnb at small b coming from

when n = 1,2s, 2p„2p, since then the z integration
in the inner product yields identically zero by
symmetry. Also, it is obvious that

(n
I
xsoln& are exactly canceled by similar terms

from
I (n

I XI I
n& I', so that for small values of the

impact parameter y,„, tends to a constant. Thus,
as we should expect on physical grounds, the
dominant large-angle scattering will come from

y„, which is proportional to lnb for small 5, re-
flecting the r ' singularity in V„.

We now proceed to obtain an absorption potential
from y,b,. If we assume that there exists a local,
spherically symmetric Glauber absorption poten-
tial Vob, (k, x), then we may write from Eq. (2.17c)
(with V, = 1)
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+oO

ya»(k, b) = —— V,„,(k, (b'+ z')'~') d~
wOO

(r' —b') '~'Va„, (k, r)r dr . (2.29)

This is an Abel integral equation which is readily
solved for U~~, giving

Va»(k, r) =— (b' —r') '~'—by, „,(k, b) db .m, (2.30)

It is worth noting that y,b, is proportional to k '
[see Eq. (2.24)], so that Va» actually decreases
as k ' when k increases.

With ya» determined from Eq. (2.24), one may
then obtain V,„,(k, r) by elementary numerical
methods. However, as remarked earlier, the
Glauber amplitude suffers from serious defects
at small angles, and these defects translate into
an incorrect behavior of Vab, (k, r) for large r.
This arises simply from the fact that y,b„as ob-
tained above, falls off like b ' for large b, as may
easily be seen from Eqs. (2.20) and (2.24). How-

ever, it is known from the work of Joachain and
Mittleman" that for large b the true y,»(k, b) falls
off exponentially, the precise large-b behavior of

g,»(k, b) being given by~' (5/b)e '~, where 5 =a '
=26/k. Therefore the spurious b ' behavior of
yo», as obtained from Eq. (2.24), gives rise to an
absorption potential V,„,(k, r) which falls off like
r ' for large ~ instead of the much faster rate
(5/r)'~'e '" corresponding to the g,» of Ref. 14.

In order to eliminate this spurious behavior, the
following procedure was adopted: In I we dis-
cussed the contribution to the second Born term
f~, (in the closure approximation) from an orbi
tal (W'/n)'~'e *" It was. also shown in I that if
one looks at the leading part of Imfs, in powers of
k ' the following simple expression is obtained:

4, K'~4Z*' K, K+(K'+b')"'
k 5Z * (K' + 5')'~'

+2+ 8Z42 2 ~2 4zg2
(K'+ 4Z*')' k (K'+ 4Z*')' (2.31)

Furthermore, it is easy to show ' that the Glauber
approximation to this second-order term, Imfa„
is given by Eq. (2.31) but with 5= 0, i.e. ,

4 ~2+ 8Z~2 ~2+ 4Z~2 2 ~2 4Z2
k (K'+ 4Z*')' 2KZ* k (K'+ 4Z*')' '

(2.32)

Thus, if one transforms this back into position
space in an obvious way one obtains precisely
that part of VG„,(k, r) coming from the orbital in
question. If we now form the difference f„„,

=Imfs, —Imf~, we find that

2 K K+ (K'+ 5')'i'
f„„(K)=— lnK+ ln —(»)„,ln

K'+ 8Z*'
X (K'+ 4Z*')' (2.33)

The only Z~ dependence is contained in the sim-
ple expression multiplying the large parentheses
in Eq. (2.33), and thus it is a straightforward
matter to obtain f„„for a more-complicated or-
bital by simply differentiating with respect to Z*.
Adding up the contribution from each orbital, one
then gets a quantity f,"„',(K) which should be used
to correct the imaginary part of the Glauber am-
plitude. (Note that by summing over the closed
p shell, we may neglect the angular dependence
of the p orbitals. ) According to our previous dis-
cussion, if we define V„„via

V„„(k,r)e'"'~d r =f,';,',(K),
2m

(2.34)

then

V„,„(k,r) = —— K sinKr f;'„',(K) dK (2.35)

is precisely the quantity which should be added to
V,„,(k, r) in order to correct the large-r behavior.
Hence, the true absorption potential V,„,(k, r) will
be given by

V,„,(k, r) = V,„,(k, r) + V„„(k,r) . (2.36)

There is a small modification to this procedure
owing to the fact that, as can be seen from Eq.
(2.29) of I, there are terms contributing to Imfs2
which arise from interference between different
orbitals. Such contributions are mostly of the
potential scattering type and cause no difficulty
near the forward direction. Only the small inter-
ference between s and P orbitals needs some at-
tention; a procedure nearly identical to the one
given above yields a small modification off ';„',
and hence of V„„. Details are given in the Appen-
dix.

We may remark in passing that it is the pres-
ence of these extra terms coming from interfer-
ence between orbitals which makes it convenient
to use the Glauber approximation for the imaginary
part of the second-order term rather than directly
Fourier transforming 1m', .

In order to obtain a general picture of the be-
havior of V,„,as a function of x let us look back at
Eq. (2.33) for f„„.The three terms in the large
parentheses have very distinct behaviors when
transformed into position space. The first term
(lnK) gives rise to a function which for large r
takes the form of a power series in x ', beginning
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V(3)
corr (K 2 + 62) 1 / 2

K+ (K'+ 6')'i' K'+ 8Z*'
(K '+ 4Z*2)2

(2.37)

with r '. This is to be expected since an inspection
of Eq. (2.32) shows that this is the only term in the
Glauber amplitude which will give rise to anything
other than terms which fall off like e" " in posi-
tion space. " Therefore, in subtracting this term
from the Glauber amplitude one eliminates all
terms containing inverse powers of r.

The second term [in(2/6) = in(k/5)] is just a
constant and thus gives rise to a term, propor-
tional to k 'ink, which also falls off in position
space like e ~ ". The third term in the la,rge
parentheses varies on a scale set by 5. Thus, it
is expected to fall off in position space like e '".
That this is indeed the case may be seen as fol-
lows. Using Eq. (2.35) we see that the term in
question will give a contribution to V„„which is
given by

We now turn to the problem of exchange effects
between the incident and atomic electrons. Sev-
eral attempts have been ma, de in the past to con-
struct a local pseudopotential to mimic the effects
of exchange in the optical model. We may mention
the pioneering work of Mittleman and Watson' and
the recent work of Furness and McCarthy. ' Both
of these pseudopotentials have the virtue of yield-
ing an exchange amplitude which agrees with the
Ochkur amplitude at high energy. Higher-order
effects are somewhat different in the two models,
but since these are poorly understood at the
present time we have elected to use the pseudopo-
tential of Mittleman and Watson, which is some-
what simpler to use than that of Furness and Mc-
Carthy. Moreover, in the energy range under
consideration here, these two methods give very
similar results, particularly at the higher ener-
gies. This pseudopotential may be written as

u2 2
V'" = — AP — ~ ln ~ — (2.42a,)u p,

where P~ is the Fermi momentum and is given by

Making the change of variable K= 6 sinhy, we get p = [32'p(2')]"'. (2.42b)

00

V,'p, =—,sin(62' sinhy)ycorr &Jr dry

X
(8Z*'+ 6' sinh'y)
(4Z*'+ 62 sinh'y)' (2.38)

CO

V,"„',=, , sin(62 sinhy)y dy . (2.39)

Clearly, if Q' is large, we may neglect the terms
in 6' in the fina. l ratio in the integrand of Eq.
(2.38). Hence,

Here p(2) is the (spherically symmetric) charge
distribution of the target atom, i.e. , the integral
over all space of p(2") is equal to Z. Consistent
with our determination of the direct parts of the
optical potential, we have evaluated p(2') in the
Hartree-Pock approximation, using Eq. (2.11) for
the ground-state wave function. The potential of
Eq. (2.42) is obviously highly localized, falling off
rapidly outside a typical atomic distance. In fact,
if P~/0 «1 we have for V,„the simple expression

This integral is elementary, giving V',",, = —2~p(2.)/0', (2.43)

(2)
62 K1(62').( )+ (2.40)

where Ko and K, are modified Bessel functions.
Since 6r is large, we may write this as

which explicitly shows the rapid falloff of V',"„. If
one treats V,'"„ in first Born approximation one
obtains the familar Ochkur result. '

Finally, combining the above results we write
our local approximation to the optical potential as

corr 2 g g2y (2.41)

in agreement with the result of Joachain and
Mittleman, ' Thus we see that the small-K be-
havior of Imf» is governed by a potential having
two very different terms, one falling off exponen-
tially with a scale set by the size of the atom, the
other falling off exponentially with a scale set by

, which is la,rge in the intermediate- and high-
energy regime. Any phenomenological attempt to
represent absorption by either a simple long- range
potential or a simple short-range potential will
thus suffer from serious difficulties.

where Vstp Vppgp V b and Vppt are given re-
spectively, by Eqs. (2.4), (2.13), (2.36), and (2.42).

It is perhaps worthwhile to close this section by
commenting in some detail on the connection be-
tween the optical potential given in Eq. (2.44) and
the EBS method of I; this connection is stra, ight-
forward and illuminates some of the approxima-
tions made in this paper. First, the term V„of
the optical potential, treated in first Born approx-
imation, gives exactly the term f» of the EBS
method. Second, V,„„treated in first Born ap-
proximation and combined with the imaginary
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contribution of V„acting twice in perturbation
theory, gives the leading piece of imf» (in powers
of 0 '). Similarly, V„„ treated in first Born
approximation and combined with the real contri-
bution of V„acting twice in perturbation theory,
gives a good approximation to Ref». It is not
completely correct to leading order in k ', but it
does give the leading small-angle and large-angle
behaviors correctly; in II it was shown that this
approximation to Ref» in helium was good to
about 15%%uo at intermediate angles and much better
than that at small and large angles. Third, the
real part of the term coming from V„acting
three times in perturbation theory, when com-
bined with the term representing the interference
between V„and V,„, in second order, gives an
approximation to Ref» which was also studied in
II. At angles greater than 30, this approxima-
tion is good to better than 10/o, but at small angles
it deteriorates rapidly, since long-range, third-
order potentials are completely missing from our
treatment. Fortunately, this error in f» comes
primarily in the region where the second-order
terms are very large. Finally, V',"„ treated in
first Born approximation duplicates in the large-
@ limit the Qehkur approximation to the first Born
exchange amplitude used in I.

Thus, the optical potential contains all the in-
gredients of the EBS method, the worst errors
occurring because of the omission of the third-
order term in ~,,&. Of course in treating the

optical potential of Eq. (2.44) exactly by the meth-
od of partial waves, one generates approximations
to all terms of perturbation theory, not just those
used in the EBS method. This feature is a very
important advantage when one applies the optical-
potential method to complex atoms.

III. ELECTRON AND POSITRON SCATTERING BY HELIUM

Using the Hartree-Fock orbital given in Ref. 44,
we have evaluated the optica, l potential for el.ec-
tron scattering by helium. The corresponding
optical potential for positron- helium scattering
is obtained simply by changing the sign of V„and
omitting V',"„. Our r suits for electron-helium
scattering at energies ranging from 100 to 700 eV
are given in Table I. Detailed comparisons with
the recent experimental results of Bromberg, ""
Crooks and Rudd, "Oda et al. ,

"Sethuraman et
al. ,

"and Jansen et al."are given in Tables II and
III. The agreement between the last three sets
of experimental values shown in Table II suggests
that the results of Crooks and Rudd at 200 eV
might be slightly on the high side, especially at
small angles. The agreement between our optical-
model results and the experimental results of
Befs. 26—28 at 200 e7 and Befs. 23, 25, 26, and
28 at 500 eV is seen to be excellent.

Also, there is good agreement between the
previously obtained EBS results of I and the
present optical-model results, the agreement

TABLE I. Differential cross sections (in a p/sr) for the elastic scattering of electrons by
helium in the energy range 100-700 eV, as obtained from the present ab initio optical-model
theory. The numbers in parentheses indicate powers of 10.

(deg) 100 200
Energy (eV)

300 400 500 700

0
5

10
15
20
25
30
35
40
50

60
70
80
90

100
120
140
160
180

4.03
3.22
2.43
1.78
1.29
9.51(-1)
7.06 (-I)
5.30 (-I)
4.04 (-I)
2.44 (-I)
1.57 (-I)
1.08 (-I)
7.89 (-2)
6.11(-2)
4.98 (-2)
3.74 (-2)
3 17 (-2)
2.91 (-2)
2.83 (-2)

2.99
1.98
1.25
8.33 (-I)
5.75 (-I}
4.06 (-I)
2.91 (-I}
2.11(-I)
1.55 (-I)
8.86 (-2)

5.43 (-2)
3.57 (-2)
2.49 (-2)
1.84 (-2)
1.42 (-2)
9.51(-3)
7.~8 (-3)
6.24 (-3)
5.94 (-3)

2.48
1.40
8.45 (-I)
5.55 (-I)
3.75 (-I)
2.55 (-I)
1.75 (-I)
1.22 (-I)
8.65 (-2)
4.64 (-2)

2.71(-2)
1.71 (-2)
1.15 (-2)
8.24 {-3)
6.19 (-3)
3.97 (-3)
2.94 (-3)
2.47 (-3)
2.33 (-3)

2.18
1.11
6.64 (-I)
4.30 (-I)
2.80 (-I)
1.83 (-I)
1.21 {-I)
8.12 (-2)
5.60 (-2)
2.87 (-2)

1.63 (-2)
1.00 (-2)
6.65 (-3)
4.68 (-3)
3.47 (-3)
2.19 (-3)
1.60 (-3)
1.34 (-3)
1.26 (-3)

1.98
9.34 (-I)
5.63 (-I)
3 56 (-I)
2.23 (-I)
1.40 (-I)
8.91 (-2)
5.83 (-2)
3.93 (-2)
1.95 (-2)

1.08 (-2)
6.58 (-3)
4.31 (-3)
3.01 (-3)
2.22 (-3)
1.38 (-3)
1.01 (-3)
8.38 (-4)
7.90 (-4)

1.72
7.49 (-I)
4.50 (-I)
2.66 (-I)
1.54 (-I)
9.03 (-2)
5.45 (-2)
3.43 (-2)
2.24 (-2)
1.07 (-2)

5.76 (-3)
3.44 (-3)
2.22 (-3)
1.54 (-3)
1-13 (-3)
6.96 (-4)
5.04 (-4)
4.19 (-4)
3.94 (-4)
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TABLE II. Comparison of various theoretical and experimental differential cross sections
for elastic electron-helium scattering at an incident-electron energy of 200 eV. All results
are in ao/sr. Numbers in parentheses are powers of ten.

(deg)

Present
theory

Crooks and
Rudd (Ref. 24)

Experimental values
Bromberg Sethuraman
(Ref. 26) et al. {Ref.27)

Jansen et al.
(Ref. 28)

0
5

10
15
20
25
30
40
50
60

70
80
90

100
110
120
130
140
150
160-

170
180

2.99
1.98
1.25
8.33 (-1)
5.75 (-1)
4.06 (-1)
2.91 (-1)
1.55 (-1)
8.86 (-2)
5.43 (-2)
3.57 (-2)
2.49 (-2)
1.84 (-2)
1.42 (-2)
1.14 (-2)
9.51 (-3)
8.20 (-3)
7.28 (-3)
6.65 (-3)
6.24 (-3)
6.01 (-3)
5.94 (-3)

1.93

7.13 (-1)

3.25 {-1)

1.O3 {-1)

4.23 (-2)

2.33 (-2)

1.41 (-2)

1.05 (-2)

8.43 (- 3)

1,73
1.12

5.27 (-1)
3.78 (-1)
2.76 (-1)
1.52 (-1)
8.91 (-2)
5.57 (-2)
3.72 (-2)
2.63 (-2)
1.90 (-2)
1.45 (-2)
1.18 (-2)

2.63 (-1)
1.57 (-1)
9.30 (-2)
5.38 (-2)
3.57 (-2)
2,47 (-2)
1.77 (-2)
1.40 (-2)
1.15 (-2)
9.8 (-3)
8,0 (-3)
6.8 (-3)
6.0 (-3)

1.68
1.08
7.39 (-1)
5.28 (-1)
3,85 (-1)
2.81 (-1)
1.51(-1)
8.85 (-2)

~ ~ ~

TABLE III. Comparison of various theoretical and experimental differential cross sections
for elastic electron-helium scattering at an incident-electron energy of 500 eV. All results
are in ao/sr. The values in brackets have been interpolated from experimental results at
nearby angles. Numbers in parentheses are powers of 10.

(deg)
Present
theory

Experimental values
Bromberg Bromberg Oda et al. Sethuraman
(Ref. 23) (Ref, 26) (Ref. 25) et al. (Ref. 27)

Jansen et al.
(Ref. 28)

0
5

10
15
20
25
30
40
50
60

70
80
90

100
110
120
130
140
150
160

170
180

1.98
9.34 (-1)
5.63 (-1)
3.56 (—1)
2 23 (-1)
1.40 (—1)
8.90 (—2)
3.39 (—2)
1,95 (—2)
1.08 (-2)
6.58 (—3)
4.30 (—3)
3.01 (—3)
2.22 (—3)
1.71 (-3)
1.38 (-3)
1.16 (—3)
1.01 (-3)
9.04 (-4)
8.38 (-4)
8.01 (—4)
7.90 {-4)

9.62 (-1)
5.76 (-1)

2.28 (-1)
1.42 (-1)
9.22 (-2)
4.09 (-2)
2.05 (-2)
1.11(-2)

9.47 (—1)
5.71 (-1)
[3.63 (-1)]
2.26 (-1)
1.43 (-1)
9.15 (-2)
4.10 (-2)
2.02 (-2)
1.13 (—2)

6.87 (-3)
4.48 (—3)
3.13 (-3)
2.30 (-3)
1.79 (—3)

5.87 (-1)
3.79 (—1)
2.28 (-1)
1.41 (-1)
9.22 (-2)
4.28 (—2)
2.05 (-2)
1.16 (—2)

[7.2O (-3)]
[4.75 (—3) l

[3.15 (-3)l

[2.10 (—3)l
[1.51(-3)]
[1.15 (-3)]
[9.5o (-4) l

[9.10 (—4)l

9.41 (—2)
4.13 (—2)
1.85 (-2)
1.11 (—2)

6.10 (-3)
3.83 (—3)
2.54 (-3)
1.78 (-3)
1.31 (—4)
9.3 (-4)
7.6 (—4)
7.3 (—4)
6.7 (-4)

9.06 (-1)
5.50 (—1)
3.55 (—1)
2.29 (-1)
1.46 (-1)
9.33 (—2)
4.12 (—2)
2.03 (—2)
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FIG. 1. Small-angle differential cross section for the
elastic scattering of 300-eV electrons by helium. The
solid curve is the optical-model result using Kq. (2.44)
of this paper. The filled circles represent the experi-
mental values of Ref. 26. The filled squares are the ex-
perimental results of Ref. 28.

FIG. 2. Same as Fig. 1 but for large-angle scattering.
The triangles are the experimental results of Ref. 27.

TABLE IV. Comparison of various differential cross sections (in ap/sr) for electron-helium scattering at 400 eV, as
obtained from several approximations. Numbers in parentheses are powers of 10.

(deg)

0
5

10
15
20
25
30
40
50
60

70
80
90

100
120
140
160
180

First Born
approx.

6.28 (—1)
5.83 (—1)
4.75 (—1)
3.51 (—1)
2.45 (-1)
1.66 (—1)
1.12 (-1)
5.34 (-2)
2.76 (—2)
1.57 (—2)

9.51 (-3)
6.24 {—3)
4.36 (—3)
3.21 (—3)
2.00 (-3)
1.45 (-8)
1.21 (—3)
1.14 (-3)

Opt. model with

Vst only

6.27 (-1)
5.82 (—1)
4.75 (—1)
8.53 (-1)
2.47 (-1)
1.69 (—1)
1.15 (-1)
5.59 (-2)
2.97 (—2)
1.72 (—2)

1.08 (—2)
7.26 (-3)
5.17 (—3)
3.87 (—3)
2.47 (-3)
1.83 (-3)
1.53 (—3)
1.45 (—3)

Opt. model with
d =Vopt= Vst+ ~po~

no exchange

1.54
7.71 (—1)
5.31 (—1)
3.76 (-1)
2 58(—1)
1.75 (—1)
1.19 (-1)
5.73 (-2)
3.03 (—2)
1.76 (—2)

1.10 (-2)
7.41 {-3)
5.28 (-3)
3.96 (—3)
2.53 (-8)
1.87 (-3)
1.57 (—3)
1.48 (—8)

Opt. model with
Vopt= ~st+ Vpo&+& Vabsy

d =

no exchange

2.00
9.83 (-1)
5.78 (—1)
3.73 (-1)
2.43 (-1)
1.60 (-1)
1.06 (-1)
4.98 (-2)
2.59 (—2)
1.49 {-2)
9.26 (—3)
6.20 (—3)
4.40 (—3)
8.29 (—3)
2.10 (-3)
1.55 (-3)
1.30 (—3)
1.22 (-3)

Opt. model with

opt = Vst+ Vpo1+i Vabs
d

Ochkur exchange

2.17
1.09
6.58 (—1)
4.28 (—1)
2.79 (-1)
1.82 (—1)
1.20 (—1)
5.52 (—2)
2.82 (—2)
1.59 (-2)

9.76 {—3)
6.35 (-3)
4.54 (-3)
3.37 (—3)
2.13 (-3)
1.57 (—3)
1.31 (—3)
1.24 (-3)

Opt. model with
Vopt= Vst+ ~poi

+i Vabs+ V()pt

2.18
1.11
6.64 (—1)
4.30 {-1)
2.80 (-1)
1.83 (—1)
1.21 {—1)
5.60 (-2)
2.87 (—2)
1.63 (-2)

1.00 (—2)
6.65 (-3)
4.68 (—3)
3.47 {—3)
2.19 (-3)
1.60 (-3)
1.34 (—3)
1.26 {—3)
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TABLE V To'tal cross 'sections (ln units of ap ) for electron-helium scattering.

Theoretical values
Energy Total Bethe-Born EBS theory Present

(eV) (Ref. 51) (Ref. 1) theory

Experimental values
Brode Normand Jansen et al.

(Ref. 29) (Ref. 30) (Ref. 28)
de Heer and Jansen

(Ref. 31)

100
200
300
400
500
700

5.00
2.98
2.20
1.73
1.45
1.10

4.57
2.90
2.14
1.72
1.45
1.10

6.16
3.37
2.38
1,86
1.54
1.16

3.94
2.63
1.90

3.43
2.14
1.37
0.93

5.3

2.3

1.5

4.05
2.68
2.03
1.66
1.39
1.06

being poorest at large angles, where the conver-
gence of perturbation theory is slowest. Since
the optical model treats the static potential,
which is very important in large-angle scatter-
ing, exactly to all orders of perturbation theory
the optical model is more accurate than the eiko-
nal-Born series method at large angles.

A graphical example of the agreement between
experiment and theory is given in Figs. 1 and 2,
which illustrate the situation at 300 eV. Figure 1
shows the small-angle region, and Fig. 2 shows
the large-angle region. Once again, the agree-
ment between the optical-model results and the
experimental values obtained by various workers
is excellent.

It is interesting to see how the various parts of
the optical potential contribute to the differential
cross section for elastic scattering by helium.

Table IV gives the relevant information. We see
that at large angles V„, and V',"„have very little
effect, as we should expect from the work of Ref.
18. At small angles V„, is particularly important,
as was pointed out in Sec. II. The absorption po-
tential plays a role at. all angles; the fact that

V„, has a rather long range means that it has a
significant effect in the small-angle region, while
the fact that V,„, interferes with V„ in second
order to give a real term of order k ' means that
it will also have a significant effect at large an-
gles. Finally, it is clear from Table IV that it
makes very little difference whether exchange
effects are included via a pseudopotential or by
directly adding the Ochkur amplitude as was done
in the EBS treatment. '

Table V shows the total cross section o~, which
is related to the imaginary part of the forward

TABLE VI. Differential cross sections (in ap/sr) for the elastic scattering of positrons by
helium in the energy range 100-500 eV, as obtained from the present ab initio optical-model
theory. Numbers in parentheses are powers of 10.

(deg) 100 200
Energy (eV)

300 400 500

0
2
5

10
15
20
25
30
35
40

50
60
70
80
90

120
150
180

8.12 (-1)
7.52 (-1)
6.56 (—1)
5.00 (-1)
3.71 (-1)
2 77(—1)
2.09 (-1)
1.59 (-1)
1.23 (—1)
9.51 (—2)

5.81 (—2)
3.65 (-2)
2.39 (-2)
1.64 (—2)
1.18 (-2)
5.77 (-3)
3.90 (-3)
3.44 (-3)

6.69 (-1)
6.54 (-1)
5.87 (-1)
4.48 (-1)
3.31(-1)
2.44 (-1)
1.78 (-1)
1.29 (-1)
9.37 (-2)
6.84 (—2)

3.78 (—2)
2.22 (-2)
1.40 (-2)
9,41 (—3)
6.69 (-3)
3.19 (-3)
2.13 (-3)
1.87 (-3)

6.10 (-1)
6.29 (-1)
5.70 (—1)
4.25 (-1)
3.05 (-1)
2.13 (—1)
1.46 (-1)
1.00 (-1)
6.91(-2)
4.84 (-2)

2.52 (-2)
1.43 (-2)
8.83 (-3)
5.85 (-3)
4.12 (-3)
1,92 (-3)
1.27 (—3)
1.11(-3)

5.79 (-1)
6.21 (-1)
5.59 (—1)
4.05 (-1)
2.78 (-1)
1.84 (-1)
1.20 (-1)
7.84 (-2)
5.21 (—2)
3.55 (-2)

1.78 (-2)
9.88 (-3)
6.01 (-3)
3.94 (—3)
2.75 (-3)
1.27 (-3)
8.36 (-4)
7.30 (-4)

5.60 (-1)
6.19 (—1)
5.49 (-1)
3.86 (-1)
2.53 (-1)
1.59 (-1)
9.91 (-2)
6.24 (-2)
4.04 (-2)
2.69 (-2)

1.31 (—2)
7.19 (-3)
4.33 (-3)
2.82 (—3)
1.96 (-3)
8.99 (-4)
5.88 (-4)
5.12 (-4)
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TABLE VII. Total cross sections (in units of ap) for positron-helium scattering.

Theoretical values
Energy Total Bethe-Born EBS theory Present

(eV) (Ref. 51) (Ref. 1) theory

Experimental values
Coleman et al. Jaduszliwer et al. Dutton et al.

(Ref. 33) (Ref. 34) (Ref. 35)

100
200
300
400
500

5.00
2.98
2.20
1.73
1.45

4.57
2.90
2.14
1.72
1.45

3.96
2.68
2.05
1.67
1.42

3.14
2.12
1.65
1.41

3.49
2.48
1.93

3.20
2.23
1.88
1.67

elastic amplitude via the equation

o r —- (4w/k) Imf„(8 = 0).

Of the theoretical values shown, the Bethe-Born
result" is closely related to the EBS result since
in Ref. I the average excitation energy was chosen
so that the imaginary part of the second Born
term in the forward direction agreed with the
corresponding Bethe- Born value of the total cross
section" at 500 eV. This required an average ex-
citation energy of 1.3 a.u. In this work we used
an average excitation energy of 1.15 a.u. , which
gives the physically observed polarizability when
used in Eq. (2.15). The agreement between the
optical-model results and the EBS results is seen
to be good at energies above 100 eV, the two dif-
fering typically by about 10/o. The experimental
values all agree fairly well with each other at the
lower energies, but the values of Normand' seem

to fall seriously on the low side at the higher en-
ergies. The last column of experimental results
was obtained by de Heer and Jansen" by adding
the large elastic and ionization cross sections,
which are rather reliably known, to the excitation
cross section, which are probably not as reliable
but which are small in magnitude. These results
of de Heer and Jansen are thus likely to be quite
accurate. Agreement between the last column of
Table V and our optical-model results is good
down to about 200 eV but is clearly worsening
rapidly as one goes to lower energies. This is
perhaps not surprising since the optical model is
essentially a perturbative technique when used in
the ab initio spirit presented here; in addition,
the omission of the third-order optical potential
is likely to be particularly important at small
angles. It would be interesting to add the real
part of the third-order potential, which could be

TABLE VIII. Differential cross sections (in ap/sr) for the elastic scattering of electrons
by neon in the energy range 100-700 eV, as obtained from the present ab initio optical-model
theory. Numbers in parentheses are powers of 10.

e

(deg) 100 200
Energy (eV)

300 400 500 700

0
5

10
15
20
25
30
35
40
50

60
70
80
90

100
120
140
160
180

14.7
12.1
9.22
6.57
4.45
2.89
1.82
1.12
6.79 (—1)
2.54 (—1)

1.22 (—1)
8.63 (—2)
6.95 (-2)
4.92 (—2)
2.91 (—2)
4.65 (—2)
1.95 (—1)
4.04 (—1)
5.03 (—1)

15.2
11.0
7.09
4.37
2.67
1.61
9.70 (-1)
5.89 (—1)
3.66 (-1)
1.64 (—1)

9.55 (-2)
6.93 (-2)
5.71 (-2)
5.22 (—2)
5.39 (—2)
7.94 (-2)
1.28 (-1)
1.77 (-1)
1.97 (-1)

15.0
9.73
5.75
3.41
2.01
1.18
7.03 (-1)
4.30 (-1)
2.77 (-1)
1.42 (-1)
9.34 (—2)
7.11 (—2)
5.92 (-2)
5.36 (—2)
5.27 (—2)
6.07 (-2)
7.49 (-2)
8.73 (-2)
9.22 (-2)

14.8
8.80
5.04
2.93
1.69
9.76 (-1)
5.76 (—1)
3.58 (-1)
2.38 (—1)
1.31(-1)
8.84 (—2)
6.68 (-2)
5.43 (-2)
4.72 (—2)
4.37 (-2)
4.33 (-2)
4.65 (-2)
4.96 (-2)
5.09 (-2)

14.6
8.15
4.62
2.64
1.49
8.42 (-1)
4.96 (—1)
3.11(-1)
2.11(-1)
1.19 (-1)
8.05 (-2)
5.95 (—2)
4.69 (-2)
3.93 (—2)
3.49 (—2)
3.14 (-2)
3.10 (-2)
3.15 (—2)
3.17 (-2)

14.3
7.36
4.12
2.25
1.21
6.64 (-1)
3.89 (—1)
2.48 (—1)
1.71 (-1)
9.69 (-2)

6.32 (—2)
4.46 (—2)
3.35 (-2)
2.67 (-2)
2.24 (—2)
1.80 (-2)
1.62 (-2)
1.56 (—2)
1.54 (—2)
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TABLE K. Comparison of various theoretical and experimental differential cross sections
for elastic electron-neon scattering at an incident-electron energy of 300 eV. All results are
in ay/sr. Numbers in parentheses are powers of 10.

(deg)

Theoretical values
First Born Present

approx . theory

Experimental values
Bromberg Jansen et al. Gupta and
(Ref. 26) (Ref. 28) Rees (Ref. 40)

0
5

10
15
20
25
30
35
40
45

50
55
60
70
80
90

100
110
120
130

140
150
160
170
180

9.77
9.31
8.11
6.57
5.06
3.78
2.78
2.04
1.50
1 ~ 11

8.34 (—1)
6.36 (-1)
4.92 (-1)
3.08 (-1)
2.05 (-1)
1.45 (-1)
1.07 (-1)
8.35 (—2)
6.76 (-2)
5.69 (-2)

4.96 (—2)
4.47 {—2)
4.15 (—2)
3.97 (—2)
3.92 (-2)

15.0
9.73
5.75
3.41
2.01
1.18
7.03 (—1)
4.30 (-1)
2.77 (—1)
1.92 {—1)

1.42 (-1)
1.12 (—1)
9.34 (-2)
7.11(-2)
5.92 (-2)
5.36 (-2)
5.27 (-2)
5.54 (-2)
6.07 (-2)
6.75 (—2)

7.49 (-2)
8.17 (-2)
8.73 (-2)
9.09 (-2)
9.22 (-2)

8.95
5.47
3.46
2.12
1.32
8.39 (-1)
5.» (-1)
3.68 (—1)
2.64 (-1)
1.96 (-1)
1.52 (-1)
1.27 (-1)
9.59 (—2)
8.07 (—2)
7.64 (-2)
7.72 (—2)
8.08 (—2)

8.63
5.48
3.46
2.19
1.39
8.77 (-1)
5.68 (-1)
3.83 (—1)
2.72 (-1)
2.03 (-1)

5.65
3.40
2.08
1.26
8.65 (-1)
5.59 (-1)
3.86 (-1)
3.04 (-1)

2.29 (-1)

1.38 (-1)
1.02 (-1)
8.4 {—2)
7.1 (-2)
7.0 (-2)
7.1 (—2)
7.8 (-2)
8.7 (-2)

1.11(-1)
1.53 (-1)

obtained without serious difficulty from the
Glauber approximation. We should note, however,
that although the third-order optical potential is
missing, a major part of the third Born term is
included as a result of treating V„, V,», and

V„, to all orders of perturbation theory.
Finally, in Tables VI and VII we present our

positron results. Research activity in positron-
atom scattering is in its infancy but is growing
rapidly. We show in Table VI the angular distri-
butions for positron-helium elastic scattering. It
is interesting to see how radically they differ
from the corresponding electron-helium elastic
scattering results given in Table I, especially at
small angles. The dramatic forward peaking seen
in Table I is not present since now the polariza-
tion contribution is opposite in sign to that of the
static potential. In fact, beginning at 300 eV one
sees a slow rise, followed by a slight dip near
zero degrees. In Table VII, we give the total
cross sections obtained by using our values of
Imf„(8=0) in Eq. (3.1). The agreement between
the optical-model results and the EBS results is
fairly good, but the comparison with experiment

shows that the optical model treatment does not
lower the EBS (perturbation theory) results suf-
ficiently.

IV. ELECTRON AND POSITRON SCATTERING FROM

NEON

In Table VIII, we give a summary of our optical-
model results for electron-neon elastic scattering
at energies ranging from 100 to 700 eV. The
Hartree-Fock orbitals of Ref. 44 were used as in
helium to evaluate the various terms appearing in

Eq. (2.44). An average excitation energy of 1.5
a.u. was found to give the experimental polariza-
bility when used in Eq. (2.15), and we adopted this
value for all energies in electron-neon and posi-
tron-neon scattering.

Tables IX and X compare the optical-model re-
sults at 300 and 500 eV with recent experimental
values of Bromberg, "Jansen et al. ,

"and Gupta
and Bees. ' The agreement between the various
experiments is quite good, with differences never
much exceeding 15%. The agreement between ex-
periment and theory is at about the same level of
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TABLE X. Comparison of various theoretical and experimental differential cross sections
for elastic electron-neon scattering at an incident-electron energy of 500 eV. All results are
in ao/sr. Numbers in parentheses are powers of 10.

(deg)

Theoretical values
First Born Present

approx. theory

Experimental values
Bromberg Jansen et al. Gupta and

(Ref. 26) (Ref. 28) Rees (Ref. 40)

0
5

10
15
20
25
30
35
40
45

50
55
6Q

70
80
90

100
110
120
13Q

140
150
160
170
180

9.77
9.02
7.23
5.23
3.58
2.39
1.59
1.07
7.31(-1)
5.11(—1)

3.67 (—1)
2.69 (-1)
2.02 (—1)
1.22 (—1)
7.95 (-2)
5.54 (-2)
4.09 (—2)
3.17 {-2)
2.57 (-2)
2.16 (—2)

1.88 (-2)
1.70 (—2)
1.58 (-2)
1.51 (—2)
1.49 (—2)

14.6
8.15
4.62
2.64
1.49
8.42 (—1)
4.96 (-1)
3.11(—1)
2.11(—1)
1.54 (—1)

1.19 (—1)
9.66 (-2)
8.05 (—2)
5.95 (—2)
4.69 (—2)
3.93 {—2)
3.49 (—2)
3.25 (—2)
3.14 (—2)
3.10 (—2)

3.10 (-2)
3.12 (—2)
3.15 (—2)
3.17 (—2)
3.17 (—2)

7.87
4.67
2.73
1.56
9.13 (—1)
5.63 (—1)
3.57 (—1)
2.46 (-1)
1.81 (—1)

1.38 (—1)
1.11(-1)
9.11(—2)
6.89 (-2)
5.68 (-2)
4.75 {—2)
4.24 (—2)
3.92 (—2)

7.51
4.61
2.72
1.60
9.56 (—1)
5.83 (-1)
3.68 (—1)
2.47 (-1)
1.80 (—1)

1.40 (-1)

4.55
2.39
1.53
9.03 (—1)
5.80 (-1)
3.79 (—1)
2.62 (—1)
1.80 (—1)

127(—1)

7.9 {—2)
5.9 (—2)
4.8 (-2)
4.2 (—2)
3.8 (-2)
3.3 (-2)
3.1 (—2)
3.0 (-2)

2.9 {—2)
2.9 (—2)

accuracy, being best at small angles. A similar
situation is shown in Figs. 3-8, where we present
results at 200, 400, and 700 eV. Included in

these figures, in addition to the full optical-model
results, are the first Born differential cross sec-
tion and the static-approximation cross section
obtained by approximating the optical potential
simply by V„. For the full optical model, it is
clear that the agreement is better at small angles
than at large angles. Note that the first Born ap-
proximation does very poorly at all energies.

Of particular interest is the comparison be-
tween the static results and the full optical-model
results. We see that inside about 20' the lack of
a polarization term and the omission of absorp-
tion effects are very serious, but at larger angles
V„does quite well; indeed, it typically does
about as well as or occasionally better than the
full optical model. A likely reason for this is
that absorption and exchange tend to cancel each
other at large angles and have to be handled very
carefully in order to achieve excellent agreement
with experiment. It is likely that the present op-
tical-model treatment is somewhat deficient in

treating the absorption potential because of our
reliance on the Glauber approximation. This
gives just the leading piece of the second-order
absorption term in powers of k '. Thus, at zero
degrees the imaginary part of our second-order
amplitude with the elastic intermediate state ex-
cluded (obtained by Fourier transforming V,„,)
will give via the optical theorem the Bethe-Born
approximation to the reaction cross section, not
the full Born- approximation value. In a recent
study, Saxon' has shown that below about 500 eP
the Born and Bethe-Born reaction cross sections
for neon begin to differ substantially. This dif-
ficulty could in principle be avoided by the use of
the full second Born term to provide the absorp-
tion potential. However, given the complexity of
the Hartree-Fock orbitals in neon, this would be
a very complicated task. Saxon's study of the re-
action cross section shows that the full Born ap-
proximation reduces the effects of absorption be-
low the result given by the simple Bethe-Born ap-
proximation, in the right direction to improve
agreement with experiment in our work.

Another source of error is the inaccuracy in-
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herent in the use of the Hartree- Fock wave func-
tion instead of a more-complicated correlated
wave function. A simple quantity which can be
used to give a rough assessment of wave-function
error is &0~ s'~0) appearing in Eq. &2. 15). At
small angles both Ref~ and Imf» depend directly
on this quantity. Using the Hartree-Fock wave
function for neon one finds

dA
(a.u.)

e +Ne

200 eV

whereas an improved treatment" with correlation
gives

&Oi g,'i 0),.„=1.88;

i.e. , the Hartree Fock value lies nearly 10% above
the more-precise correlated value. One can make
approximate corrections for this effect, and when

one does so, one finds changes in the elastic dif-
ferential cross section which can be as large as
about 10%.

Regarding exchange, the importance of a non-
perturbative treatment in the case of neon is seen
from the dash-dotted curve in Fig. 4, which shows
the differential cross section obtained by using
V"„, to approximate the optical potential, which
is then treated exactly to all orders and has ex-

d 0'
(a.u.)

dA

10

10
30 50 70

t

90
I

110

8(deg)

I

130 150 170

FIG. 4. Same as Fig. 3, but at large angles. We have
omitted the first Born approximation since it represents
the physical situation very poorly and have added a dash-
dotted curve to illustrate the results obtained by using
Vopt to approximate the optical potential and then adding
exchange via the Ochkur approximation to the exchange
amplitude.

15
e+N

20

(a.u. )
dQ

10
e +Ne

10

0
0 10 20 30

FIG. 3. Small-angle differential cross section for the
elastic scattering of 200-eV electrons by neon. The
solid curve is the optical-model result using Eq. (2.44)
of this paper, the dashed curve is the first Born approx-
imation, and the dotted curve is the result obtained by
using only V,t to approximate the optical potential. The
filled circles, squares, and triangles represent, respec-
tively, the experimental results of Hefs. 26, 28, and 40.

0
0 10 20 30

FIG. 5. Same as Fig. 3 but at 400 eV.
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(a.u.)
(r dA

e +Ne

400 eV

10

10

10
30 50 70

I

90

8(deg)

130 150 170

0
0

8(deg)
I

l0
I

l5 20

FIG. 6. Same as Fig. 5 but at large angles. Again me
have omitted the first Born approximation.

change added via the Qchkur approximation to the
exchange amplitude. This treatment drastically
distorts the angular distribution at angles greater
than about 30 . Similar conclusions may be drawn
from Table XI, which shows various approxima-
tions to the scattering amplitude. In particular,
the sensitivity of the differential cross section to
exchange in the vicinity of the minimum is very
striking. We have found that similar results are
obtained when one treats the full Mittleman-
Watson exchange potential to first order in per-
turbation theory.

In Fig. 9 we show the various terms which con-
tribute to V"„, at 200 eV. As one would expect,
V„ is strongly dominant at small distances, but

by the time one reaches a distance of about 2 a.u.
the absorption and polarization effects begin to
dominate. Finally, at about 4 a.u. the polarization
term becomes the controlling factor in the optical
potential, giving an asymptotic behavior

(4.1)

The exchange pseudopotential is not shown in Fig.
9 since it falls off with increasing distance in a
manner very similar to that of V„. Qf course,

FIG. 7. Small-angle differential cross section for the
elastic scattering of 700-eV electrons by neon. The
solid curve is the optical-model result using Eq. {2.44)
of this paper, the dashed curve is the first ]3orn approxi-
mation, and the dotted curve is the result obtained by us-
ing only V,t to approximate the optical potential. The
filled circles represent the experimental results of
Ref. 26.

because of the factor k ' in Eq. (2.43) it is smaller
in magnitude than V„.

Finally, Table XII shows the total cross section
obtained by using Imf„(6=0) in Eq. (3.1). The
agreement among the various experimental values
is quite good, and except at 100 eV the optical-
model results are in reasonable agreement with
experiment. As in helium, things begin to deteri-
orate badly as one goes to 100 eV, presumably
reflecting the perturbative nature of our optical
potential.

In terminating our discussion of electron-neon
elastic scattering it is worth emphasizing the very
poor quality of the first Born approximation in
this intermediate-energy region. (See Figs. 3 and
5.) As discussed in I, the first Born approxima-
tion in helium is starting to be quite reasonable
at an energy of 400 eV except at small momentum
transfers. In fact, if one integrates the optical-
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IO

IO'

cl0
&&

(o.u. )

model differential cross section for electron-
helium elastic scattering and compares the re-
sult with the integrated first Born differential
cross section, one finds that the two differ by
only 1$'%% at 400 eV, the Born cross section being
the smaller of the two. For electron-neon elastic
scattering the situation is strikingly different,
with the integrated Born result being a factor of
2.11 greater than the corresponding optical-model
result at 400 eV.

The last two tables give our positron-neon elas-
tic scattering results. Table XIII gives the angu-
lar distributions from 100 to 500 eV. As in the
case of helium there is a slight dip at small angles
above 300 eV. Table XIV summarizes our results
for total cross sections and compares them with
the recent experimental values of Paul. 4' The
agreement between experiment and theory is seen
to be satisfactory.
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TABLE XI. Comparison of various differential cross sections (in ao/sr) for electron-neon scattering at 400 eV, as
obtained from several approximations. Numbers in parentheses are powers of 10.

(deg)

0
5

10
15
20

25
30
40
50
60

70
80
90

100
120

140
160
180

First Born
approx.

9.78
9.16
7.65
5.85
4.23

2.97
2.06
1.02
5.32 (-1)
3.01 (-1)

1.84 (-1)
1.21 (—1)
8.45 (—2)
6.24 (-2)
3.92 (-2)

2.87 (-2)
2.41 (-2)
2.27 (-2)

Opt. model with
Vst only

5.16
4.76
3.81
2.72
1.81

1.16
7.47 (—1)
3.36 (-1)
1.84 (-1)
1.23 (-1)
9,42 (-2)
7.97 (—2)
7.21 (-2)
6.84 (-2)
6.69 (—2)

6.83 (-2)
7.00 (—2)
7.07 (-2)

Opt. model with

pt Vst+ Vp
d

no exchange

10.6
6.27
4.25
2.88
1.87

1.19
7.61 (—1)
3.42 (-1)
1.87 (-1)
1.25 (-1)
9.57 (-2)
8.09 (—2)
7.32 (—2)
6.95 (-2)
6.80 (-2)

6.96 (-2)
7.15 (-2)
7.22 (—2)

Opt. model with

Vopt = Vst + Vpol + i V,b, ,d

no exchange

13.8
8.04
4.57
2.67
1.56

9 15 (-1)
5.48 (—1)
2.24 (—1)
1.18 (-1)
7.71 (-2)

5.85 (-2)
4.88 (-2)
4.34 (-2)
4,04 (-2)
3.79 (—2)

3.75 {-2)
3.76 (—2)
3.77 {—2)

Opt. model with

Vopt= Vst+ Vpol+ &Vabsd

Ochkur exchange

15.7
9.33
5.45
3.23
1.88

1.07
6.11 (—1)
2.08 (—1)
8.50 (-2)
4.63 (-2)

3.44 (-2)
3.20 (—2)
3.34 (-2)
3.61 (-2)
4.18 (—2)

4.59 (-2)
4.81 (—2)
4.87 (—2)

Opt. model with
Vopt= Vst+ Vpol

+ i Vabs+ Vopt

14.8
8.80
5.04
2.93
1.69

9.76 (-1)
5.76 (—1)
2.38 (—1)
1.31(-1)
8.84 (-2)

6.68 (-2)
5.42 (—2)
4.72 (-2)
4.37 (—2)
4.33 (—2)

4.65 (—2)
4.96 (—2)
5.09 (-2)
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0-10
m, n=1

(Al)

-1-10

-2-10

-10
0

~Vpg)

p (g.U,)

4 5

FIG. 9. Quantities Vst Vabs and Vpo] as a function of
the radial coordinate of the incident electron for elec-
tron-neon elastic scattering. V,t is independent of the
electron energy; for V,b, and Vp, l we have taken the
energy to be 200 eV.

Brussels, where much of the work presented here
was carried out.

where K,. = k; —q, K&.= k& —q, and k"= k' —2&. The
first of the three terms in the square brackets has
been analyzed in I, and that analysis was the basis
of the discussion in the text involving Eqs. (2.31)-
(2.33). The key point is that when K becomes
small (i.e. , when k, =kz) the integral on dq is
nearly singular and, in fact, if one sets b =0 so
that p,. = k, , the contribution to the amplitude
actually diverges when K= 0. This situation does
not obtain for the second term of Eq. (Al). Here
both of the matrix elements vanish at least as
rapidly as K& or Kf and thus cancel the factor
E,.'K&', which stands before the square brackets.
There is thus no difficulty in the integration on
dq, even if 4=0.

However, in the third term of Eq. (A1), where
m is an s state and n is a p state (or vice versa),
the two matrix elements vary like K, or K& when

K,. or Kf is small, so the factor K,.'Kf' is not
canceled. Specializing to the case when P„ is a
typical P orbital,

APPENDIX

The interference between s and P orbitals can
be seen clearly in Eq. (2.29) of I, which we re-
produce here:

and P„ is a typical s orbital,

TABLE XII. Total cross sections (in units of ao) for electron-neon scattering.

Energy
(eV)

Theoretical values Experimental values
First Born Present Normand Jansen et al. de Heer and Jansen

approx. (Ref. 53) theory (Ref. 30) (Ref. 28) (Ref. 31)

100
200
300
400
500
700

29.5
16.8
11.9
9.27
7.57
5.66

14.2
9.64
7.53
6.29
5.45
4.40

9.41
6.96
5.38
4.52

10.2

6.1

3.6

11.3
7.94
6.44
5.49
4.77
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TABLE XIII. Differential cross sections (in so/sr) for the elastic scattering of positrons
by neon in the energy range 100—500 eV, as obtained from the present ab initio optical-model
theory. Numbers in parentheses are powers of 10.

(deg) 100 200
Energy (eV)

300 400 500

0
2

10
15
20
25
30
35
40

50
60
70
80
90

120
150
180

3.78
3.50
3.10
2.44
1.85
1.37
1.00
7.23 (-1)
5.15 (-1)
3.65 (-1)
1.83 (-1)
9.69 (-2)
5.73 (-2)
3.87 (-2)
2.92 (-2)
1.67 (-2)
1,20 (-2)
1.08 (-2)

4.24
4.13
3.75
2.89
2.06
1,41
9.42 (-1)
6.21 (-1)
4.09 (-1)
2.74 (-1)
1.35 (-1)
7.76 (—2)
5.09 (-2)
3.62 (-2)
2.72 (-2)
1.44 (—2)
1.00 (-2)
8.89 (-3)

4.60
4.65
4.23
3.10
2.08
1.33
8.38 (-1)
5.26 (—1)
3.36 (-1)
2.23 (-1)
1.12 (-1)
6.59 (—2)
4.31(-2)
3.02 (-2)
2.23 (-2)
1.13 (—2)
7.74 (-3)
6.84 (-3)

4.89
5.07
4.56
3.18
2.03
1.24
7.43 (—1)
4.51 (—1)
2.84 (-1)
1.88 (-1)

9.51 (-2)
5.59 (-2)
3.61 (-2)
2.49 (-2)
1.8 1 (-2)
8.95 (-3)
6.05 (-3)
5,33 (-3)

5.14
5.42
4.78
3.21
1.95
1.14
6.60 (-1)
3.93 (-1)
2.45 (-1)
1.62 (-1)
8.16 (-2)
4.76 (-2)
3.03 (-2)
2.07 (-2)
1.49 (-2)
7.21 (-3)
4.83 (-3)
4.24 (-3)

one readily finds for the corresponding contribu-
tion to the third term of Eq. (Al) (setting y, »
= n&+ P~ and y„= o.,+ P,)

192
Q A, B~A,B,

j~ksSs t

1
X dq 2 ~ ~2

g —k —2&

1 K+K —K
A ', Z', (A', + y'„)'(Z', + y'„)' (A2)

Since one wants only the part of this expression
which is singular at K = 0 as 4- 0, one merely
decomposes whenever necessary products like
K (K', +a') ' via partial fractions. All the singu-
lar integrals can thus be brought to a form where
Eqs. (2.38b) and (2.39b) of I can be employed. In
this fashion the singular part of Eq. (A2) can be

reduced to

2 A. + (A. &+ 52)&~&
&m fz fn) f' ln& —&, 5a„,in

(A3)

through leading order in k '. Subtracting the 5-0
(A 0) limit from this expression one finds

-/(I/z/n)/*(inrc+an—

K K+(K'+ll')' ')
(lt 2+ 52)1/2

(A4)

It is this expression, multiplied by 4 (two spins,
two orderings of m and n), which must be added to
f„„ofEq. (2.33) to give the full V„„,when used
in Fq. (2.35).

The great similarity between Eq. (A4) and Eq.

TABLE XIV. Total cross sections (in units of ao) for positron-neon scattering.

Energy
(eV)

Theoretical values
F irs t Born Present

approx. (Ref. 53) theory

Experimental values
Paul

(Ref. 42)

100
200
300
400
500

29.5
16.8
11.9
9.27
7.57

8.42
6.74
5.68
4.95
4.41

6.4
5.5



146 F. W. B Y RON, JR. AND CHARLES J. JOAC HAIN

(2.33) should be noted. Since the expression of
Eq. (A4) falls off only like k 'K ' as K- ~, we
have in practice cut it off at large K in the same
fashion as in Eq. (2.33), i.e. , by a factor which is
1 when K is much less than the inverse of a typi-

cal atomic size and which falls off rapidly for
large K. This is clearly called for, since an in-
spection of Eq. (Al) shows that the expression
under consideration actually falls off quite rapidly
as K-~.
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