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We apply the fully renormalized kinetic-theory formalism of Mazenko to the study of self-diffusion in a dense
one-component classical plasma. The memory function associated with the phase-space correlation function
for self-diffusion is expressed in terms of an effective two-body problem which allows us to make
approximations at a microscopic level in a straightforward manner. We use simple physical arguments to
obtain the effective interaction approximation" for the memory function in which a pair of particles interact
via a dynamically screened effective potential. This approximation for the memory function is a nontrivial and
natural generalization of the Balescu-Guernsey-Lenard form that includes the exact statics of the system,
treats screening at large and small distances consistently, and is valid for all wave numbers and frequencies.
The inclusion of the hydrodynamic modes in the memory function leads to an oscillatory long-time tail in the
velocity autocorrelation function. We calculate the self-diffusion constant as a function of density using the
effective interaction form of the memory function and calculate the memory function associated with the
velocity autocorrelation function using an interpolation procedure which incorporates the hydrodynamic modes.
Qualitative agreement with recent molecular-dynamics computations of the self-diffusion constant and the
memory function is found.

I. INTRODUCTION

We present in this paper a new approach to the
microscopic calculation of the time-dependent
equilibrium-averaged correlation functions of a
dense one-component classical plasma. The "one-
component classical plasma" (OCP) is an electri-
cally neutral system of charged classical particles
of one species embedded in a uniform background
of opposite charge. The background does not
contribute to the dynamics. The dense QCP pro-
vides an excellent model for understanding many
features of stellar' interiors and laser-compressed
plasmas' and has interesting properties and com-
plications associated with it due to the long-range
nature of the Coulomb potential.

The properties of an QCP can be characterized
by the dimensionless parameter' I' defined by

I"= e'/ke T'a, (1.1)

where a= (3/4rin)' ' and n is the number density.
The "weakly coupled" QCP and dense QCP are
characterized by I'«1 and I'& 1, respectively.

The tifne correlation functions of an QCP for I'
«1 can be obtained from the linearized Balescu-
Guernsey- Lenard' (BGL)kinetic equation. How-
ever the range of validity of this equation and of
the modifications which remove the short-range
divergence' of the BGI collision integral are re-
stricted to small wave vector k and small fre-
quency co as well as to I"« l. Qne goal of the
present work is to obtain a linearized kinetic equa-

tion which is valid for all k and & and which is ap-
plicable to a dense plasma. The "dense" or
strongly coupled QCP of interest here lacks a
small parameter in the usual perturbation theo-
retic sense.

We restrict ourselves in this paper to an in-
vestigation of the self-motion of the particles
and consider the velocity autocorrelation function

v, (f) =-,'(v, (t) v, (o)) (1.2)

giving the correlation of a tagged particle's
(particle 1, say) velocity at time t with its initial
velocity. In I;q. (1.2) ( ) denotes an average over
an equilibrium ensemble. We shall also consider
the self- dif fusion constant D which can be de-
termined from the time integral' of Va(t ):

dt Va(t) .

dt'M(t') V~(t —t') . (1.4)

Hansen, McDonald, and Pollack" have reported
extensive molecular- dynamics (MD) computations
of VD(t), and D for the OCP over a wide range of
F. The most striking feature of their results is a
coupling of the single-particle motions to the col-
lective density fluctuations. This coupling is man-
ifested at T'~10 md at long times in the ap-

It is useful to analyze the time dependence of VD(t)
by writing its rate of decay in terms of the "mem-
ory function" M(t):
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pearance of oscillations in V~(t) and M(t) at a
frequency near the plasma frequency ~~=(4nne'/
m)'~'. We present. a simple microscopic theory
which yields the oscillatory behavior of Vn(t) and
M(t) for long times. We also calculate M(t) and D
as a function of I', and obtain quaiitative agree-
ment with the MD computations of M(t) and D. A
brief report' of some of the results of this work
has been published.

The microscopic theory is based on the fully re-
normalized kinetic-theory' " (FRET) formalism
developed by Mazenko, whose notation we adopt.
Because of the complications associated with the
hard-sphere systems considered in Refs. 9-11,
the present application of the FBKT formalism to
the OCP might serve as a relatively simple in-
troduction to the formalism. The OCP is also a
useful model for the comparison of the results of
various approximations made within the FRKT ap-
proach with "experiment" (MD computations),
since the parameter I' which characterizes the
OCP ranges from less than unity to a maximum
value" of approximately 155 at which the OCP
crystallizes. In contrast to the OCP the analogous
dimensionless parameter for a hard-sphere sys-
tem has a maximum value of approximately 0.5
corresponding to close packing. (The dimension-
less parameter can be taken to be equal to en''/6,
where o is the hard-sphere diameter. )

Although the correlation function of interest is
V~(t), it is convenient to consider a generaliza-
tion of V~ for which the momentum and spatial co-
ordiantes of a tagged particle are treated on a
equal basis. The starting point of the formalism
is the exact kinetic equation satisfied by this two-
point phase-space correlation function. This equa-
tion defines a collision integral or memory func-
tion which represents the effect of the other N- 1
particles in the system on the tagged particle. The
main features of the FBKT formalism are the
expression of the memory function as an effective
two-body problem, the systematic inclusion of the
exact static correlation functions, and the analysis
of the correlation functions in terms of their con-
nected and disconnected parts. The formal re-.
duction of the N-body problem to an effective
two-body problem allows us to introduce approxi-
mations for the memory function in a natural way
and as part of a systematic and well-defined ap-
proximation procedure in which the terms that
have been neglected are known in principle. The
present analysis allows us to separate the in-
trinsically static effects from the dynamical ef-
fects; the inclusion of the exact static correla-
tions is especially important in an OCP since the
long-range static correlations dominate the
dynamics in an essential way. In contrast to the

present method another approach" to dense
plasmas is the decomposition, consistent with
the sum rules and general symmetry conditions,
of higher-order correlation functions in terms of
lower- order correlation functions. This approach
leads to nonlinear equations which are to be solved
for both the static and dynamic properties of the
system. The disadvantage of this approach is that
the limitations of the approximations are difficult
to determine and the nonlinear equations are dif-
ficult to solve.

In Sec. IIA we introduce the phase-space cor-
relation functions of interest for self-diffusion and
relate the velocity autocorrelation function to the
two-point phase- space correlation function C,. We
introduce the memory function Q, in Sec. II B and
obtain an exact expression for P, in terms of a
four-point correlation function which represents the
dynamical correlation of two particles in the med-
ium. This form for P, leads us in Sec. III to make
the "disconnected approximation" in which only
the disconnected part of the four-point correlation
function is retained. This leads to an approxima-
tion for the memory function that can be interpreted
as the physical process in which a pair of particles
interact, propagate independently through the med-
ium, and recollide with each other. In Sec. IVA
we make contact with previous work by neglecting
the presence of the medium on the pair of "in-
termediate" particles. This approximation leads to
a form for P, which is not useful for Coulomb
systems. We include effects of the medium in Sec.
IV B and assume that the intermediate particles
move in an average field due to all the other
particles. This assumption yields the "effective-
interaction-approximation" from for P, in which
a pair of particles interact via a dynamically
screened effective potential. This form for Q,
is a nontrivial and natural generalization of the
BGL form for P, to finite values of k and co and to
finite values of I'. In Sec. IVC we obtain the long-
time behavior of V~(t) by including the hydro-
dynamic modes associated with the collisional
effects of the medium and find that V~(t) is pro-
portional to t ' 'sin+~t. The qualitative behavior
of this long-time tail is in agreement with the MD
calculation' of V~(t).

We discuss the properties of the effective inter-
action in Sec. VA. In Sec. VB we relate the self-
diffusion constant D to the time integral of the
memory function M(f) and calculate D as a func-
tion of I using the effective-interaction approxima-
tion for M(t). [The relation of M(t) to P, is given
in Appendix A. j The Monte Carlo results'~ for
the two-particle static structure function are used
as input. The calculated values of D exhibit a
rapid variation in I' consistent with the MD values
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of B. In Sec. VC we approximate the intermediate
correlation functions with forms which interpolate
between their mean-field behavior and their long-
time hydrodynamic behavior. The. resultant form
for M(t) is evaluated numerically and found to be
in qualitative agreement with the MD results for
M(t) except for t = 0, where the disconnected ap-
proximation breaks down because of its incorrect
treatment of close -collisions.

We discuss the qua, litative features of our analy-
sis in Sec. VI and indicate areas of future work.

II. FORMALISM

A. Definitions

We present a review of the FHKT' " in order to
emphasize its physical features and mathematical
structure. Consider a system of N particles of
mass m in a volume 0 with the density n =N/0
a fixed constant. Since we are interested in the
correlation of the motion of a tagged particle
(particle 1) with itself and the other particles in
the system, we define the phase- space densities

be omitted. The dynamical van Hove self-cor-
relation function S,(k, (d), the I ourier transform
in space and time of the correlation in position of
a tagged particle with its initial position, is simply
related to C, by

ed, (d, te) =f d'tt d tt, C()t, (t (,„t)te. (2.7)

(2.8)

We shall also require the time-dependent phase-
space density correlation function

C(12, t) = (5f (1,t)5f(2, 0)),
which is the phase-space generalization of the
dynamic structure function S(k, (e),

(2.9)

nS(k, &u) = d'p, d'P, C(k, P,P„&u), (2.10)

Similarly VD(t), the velocity autocorrelation func-
tion defined in (1.2), is given as

1',(t) =
1 .„ f d'tt, d'tt. rt, )t C.(&=(),dd. , t)

f,(1)=N'i'5(1 —q, ), (2.1) with the spa, tial and temporal Fourier transform
of (2.9) defined as in (2.4) and (2.5). In (2.9), 5f(1)
is the deviation of f(1) from its equilibrium value,

f (1) = g 5(1- q;), (2.2)

C,(12, t —t') = (6f,(1, t) 6f,(2, t')), (2.3)

where f,(1, t) =e'~'f, (1), L is the Liouville operator,
and 6f, is the deviation of f, from its equilibrium
value. We work with the spatial Fourier transform

d f' cA'
C (k p p, t)= ' ' e*" "~ "' C,(1-2,t),

the temporal Fourier transform

(2.4)

where q, = (R;,P;) are the phase-space coordinates
of particle i and 1—= (r„P,). The velocity auto-
correlation function can be obtained from the time-
dependent phase- space self- correlation function

(f(1)&=nf.(t,)

=n(P/2)rm)'~'exp(- PP', /2m) . (2.11)

Qther dynamical functions of interest are the
three- and four-point correlation functions for
self- diffusion,

C,(1,23, t) = (6f,(1,t) 5(f,(2,0)f (3, 0))), (2.12)

C, (12, 34, t) = (5(f,(1, t)f(2, t))5(f,(3, 0)f(4, 0))) .

(2.13)

The exact static properties of the system enter
into the formalism through the initial value of the
time- dependent correlation functions. Momentum-
dependent static correlation functions will be de-
noted by a tilde, e.g. , C,(12) -=C, (12, t =0). In the
thermodynamic limit we have

(1 C+)=1f dt e" ' (1 Ct),d
w de

and the temporal Laplace transform

(2 5) C,(12)=n5(12)f,(p,), (2.14)

+d)O

C,(12,e) =C,(12) = —i dt e"'C,(12, t)
0

C(12) =n5(12)fc(p, )+n2fc(p~)f (p )k(r, —r2),

(2.15)
'" d&o' C,(12, (d')

2F Z —40
(2 6)

where

k(r) =g(r) —1, (2.16)

The relation C,(12, &u) = 21mC, (12,e = ~+i0') fol-
lows from (2.6). In the following (d will denote a
real frequency, z a complex frequency with I~
&0, and the e dependence of C,(12,e) will often

and the static pair distribution function g(r) is
defined by

n'g(r, —r, ) = P 6(r', R,)5(r, R,). (2.17). .
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A comparison of (2.14) and (2.15) shows that the
static correlations for the density fluctuations are
more complicated than for self-diffusion. This
relative complexity implies that S(k, (d) exhibits
a much richer structure than its counterpart
S,(k, &o). The momentum integral of P(12) is re-
lated to the static structure function S(r) by

nS(r, —r, ) = d'p, d'p, C(12)

=n5(r, —r,)+n'h(r, —r, ) . (2.18)

It is also useful to introduce the direct correla-
tion function C~ defined in terms of the Fourier
transform of h(r) as

C~(k) =h(k)[1+nh(k)] '. (2.19)

C,'(11)C,(12) = 5(12) .

[Repeated indices such as 2 in (2.20) imply an
integration" over that variable. ] The discon-
nected part of G, is given by

(2.21)

G,~(12, 34, t) = C,(13,t) C(24, t) . (2.22)

It is possible to define an inverse of G, such that

G,'(l2, 12)G,(12, 34) = 5 (13)6(24) . (2.23)

Note that in (2.22) and (2.23) there is no "ex-
change" term" (1-2,3-4) for G, in contrast to
its presence in the corresponding quantity for
density fluctuations. The difference between the
two quantities is that in 6, the indices 1 and 3 are
associated with the tagged particle, and the in-
dices 2 and 4 are associated with all N particles
in the system.

B. Collisional effects

We treat collisional effects on the time evolu-
tion of C,(12) by introducing the function y, (12},
which gives the modification of the free-particle
motion of a tagged particle due to the other N- 1
particles. The memory function cp, is defined by
the generalized kinetic equatidn"

It will be important in the following to analyze
the correlation functions in terms of their dis-
connected and connected parts since the former
dominates the latter contribution at large particle
separation. Because C,(12, 34) possesses many
disconnected pieces, we are led to define a new
four-point correlation function

G,(12, 34) = C,(12, 34) —C,(12,2)C,'(23)C,(3, 34),

(2.20)

where C,(12, 34) and C,(12, 3) are the Laplace
transforms of (2.13) and (2.12), respectively, and
the inverse C,' is defined by

Free-particle streaming is given by the first
term on the left-hand side of (2.24). It is seen
that y, has the physical interpretation of a non-

local, non-Markoffian source function modifying
the free-particle motion; such an interpretation
leads to the description of y, as the memory
function for the self-diffusion correlation func-
tion. In field-theory language y, renormalizes
the single-particle motion. The memory function
y(12) for the density fluctuations can be defined
in the same manner by the generalized kinetic
equation for C(12):

(z — C k, pp', z — dspy k, Pp, z C k, PP', z

= C(k, pp') . (2.25)

In general, y, and p can be separated into a
z-independent (static) part and z dependent (colli-
sional) part, e.g. ,

W(k, pp', ~) = V'"'(k, pp')+ v "(k,pp', &) .

(2.26)

The static part can be evaluated without approxi-
mation. " As an illustration of the more compli-
cated static correlations in (2.25) compared to
(2.24),

W" (k, PP') =- (k plm)C (k)nf. (p), (2.27)

and the static part of y, vanishes identica11. y.
Note that p"' is independent of P'.

The evaluation of y, is the major problem in

developing a microscopic theory. Since q, re-
presents the effects of the medium on a tagged
particle, it is not possible in general to obtain

q, exactly. We can make progress by formulating

q, in terms of an effective two-body problem.
Since such a formulation has been given in Ref. 11
for the more complicated case of density fluctua-
tions, we only outline the method here. If (2.24),
which defines q„ is compared to the usual equa-
tion of motion" which relates C,(12) to C,(1,23),
we can obtain y, in terms of C,(1,23). We then
use the equation of motion satisfied by C,(1,23)
to obtain a formal expression for y, in terms of
G,(12, 34). The result is

q ()d)nf (d ) = —jd). d2I. I(ll)I.z(22)G (1);dd),

(2.28)

where Lz(12}=iV„,V(r, —r, ) ~ (&(,—V~ ) is the in-
teraction part of the two-particle Liouville oper-
ator. The form (2.28) is symmetrical and is in

I

z- C, k, pP', z —, d'pep, k, pp, z C, k, pp', z

=0,(k, PP ) (2.24}
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which defines the new four-point function G,. If
we combine (2.28) and (2.29) we find the desired
form

y, (12)nfo(p2) = —V, (1, 12)G,(12, 34) V, (2, 34),

(2.30)
where the "end-point" vertices are

'V, (1,23)= JdRL, (12)G,(1 223). (2.31)

V, is completely determined by the static corre-
lations of the system and, using the techniques
developed in the Appendix of Ref. 11, can be shown
to be given by

V, (1,23) = —n'f, (p,)f,(p,)g(r, —r,)L,(23)5(12),

(2.32)

where

L (23) =iP '['7„,lng(r, —r,)] ~ (V~ —&~,) . (2.33)

LI can be interpreted as a renormalized two-
particle Liouville interaction operator. Note that
V, is missing an "exchange" term which is pres-
ent in the end-point vertex for density correla-
tions. "

III. DISCONNECTED APPROXIMATION

A. Form of y,

We discuss a simple approximation for G,
which emphasizes the collective properties char-
acteristic of a plasma and which leads to a real-
istic first approximation for p, . Recall that G,
represents the dynamical correlation of two part-
icles, one of which is tagged, and consider the
process in. which two particles are initially well
separated but interacting, propagate indepen-
dently of each other, and then reinteract. That is,
in the intermediate state, we ignore the mutual
interactions between the two particles and em-
phasize their interaction with the remaining N —2
particles in the medium. These qualitative con-
siderations imply that we approximate G, by its
disconnected part G,D [see (2.22) and (2.29)]:

the form of an effective two-body problem in
which G,(11,22) represents the dynamical evolu-
tion of two particles, labeled by phase-space co-
ordinates 1 and 1, where particle 1 is tagged and
1 is not. We wish to replace the "bare" interac-
tions L~(11) between these particles in (2.28) by
an effective interaction which is determined by
the static correlations. We "separate out" the
static correlation in G, and write

G,(12, 34) = G, (12, 12)G,(12, 34)G,(34: 34),

(2.29)

V, (1, 1'2') = (- ), ( ), p[ k. (,—,,)]
x exp [iq ~ (r, , —r, ,) ]V, (kq, p,p, .p, , ) .

From (2.32), (3.3), and the form

C '(~.P,P,) = ~(P, —P.)&nf.(P.) —C~(&),

we find the simple result

V,(uq, p,pp.)=- p'C, ( )qq. &,, (5,p- p).

(3.4)

(3.5)

(3.6)

Note that V, (kq, pp, p, ) is independent of k and p,

G,(ll', 22', t) =G,D(11', 22' t)

= C,'(11)C,'(22)C '(1'4) C '(2'3)

xC,(12, t)C(43, t). (3.1)

(Recall that integration over repeated barred in-
dices is implied. ) For consistency we have had
to approximate the static correlation function
G,(12; 34) by its disconnected part to obtain the
disconnected part of G, from G, . C, and C in
(3.1) are the exact correlation functions given by
(2.24) and (2.25), respectively, and include the
interaction of the particles with the medium.

It is clear from the form of (3.1) that G,~ re-
presents the independent motion of two particles.
We refer to (3.1) as the disconnected approxima-
tion —it is the basic approximation of this paper.
This approximation, which has been described
qualitatively here, can be made part of a system-
atic approximation procedure" in which the addi-
tional contributions to G, and hence y, can be
calculated. The major process that has been
neglected in the disconnected approximation is
dynamically uncorrelated binary collisions of the
type treated by the Boltzmann equation, in which
the two particles are initially localized and pro-
pagate mostly under their mutual interaction. It
might be expected that this process would be im-
portant for short times and for large 1. We will
delay discussion of the contribution of close col-
lisions to future work.

'

We gain additional insight into the physical in-
terpretation of (3.1) by obtaining the explicit form
of q, implied by (3.1). If we substitute (3.1) in
(2.30) and use the fact that C,'(12) = 6(1—2)
[nf, (p,)] ', we have

y, (12)nf, (P,) = —V, (1, 12)C,(13)C(24) V,(2, 34),

(3.2)
where

V,(1, 1'2') = V,(1,1'2)C "(22')/nf, (p, ,) . (3.3)

The analysis of cp, is conveniently performed in
terms of the spatial Fourier transform
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B. Effective-interaction approximation

The main quantity of interest is not the phase-
space memory function y, but the velocity auto-
correlation function as given by (2.8). From (2.24)
it is seen that owing to the coupling between the
momentum indices it is necessary to solve a non-
linear integral equation for C, and then to inte-
grate' the solution over the momenta. We can
solve (2.24) using the method of kinetic modeling. "
This method consists of replacing (2.24) by a se-
ries of approximations where, presumably, the
series eventually converges to the exact solution.
It is shown in Appendix A that in the simplest ap-
proximation (equivalent to the one-Sonine-poly-
nomial approximation) the solution to (2.24) yields
the following approximate relation for the memory
function of the velocity autocorrelation function in
terms of the phase-space memory function:

1
M„(t) =

x d'P, d'P2pi 'p2&s k=O, PjP2, t p

(3.8)

In the above IVp kpT and the subscript 1P indi-
cates the one- Sonine-polynomial approximation.
If we insert (3.7) for p, in (3.8) we obtain M» in
terms of S,(q, t) and S(q, t). In order to preserve
the exact static behavior of S(q, t) we write

S(q, t) = S(q)G (q, t) . (3.9)

We note that S,(q, t = 0) = G (q, t = 0) = 1. If we sub-
stitute (3.7) in (3.8) and use (3.9) we obtain

d3
( ) 3( V) (2 )

q [P (I)]

x S(q)S,(q, t)G(q, t) . (3.10)

We emphasize that (3.10) follows directly from
two approximations, i.e. , (3.1) and an approxi-

and depends on P, in a trivial manner. We take
the spatial Fourier transform of (3.2), substitute
in (3.6), perform the momentum integrations im-
plied in (3.2), and obtain the form

q, (t, p,P„t)nf, (P,)
d3=- n' 2,[P 'c~(q)]'q ~ &pp &p,

x c,(k q, P,p„ t)s(q, t), (3.7)

where S(q, t) is the temporal Fourier transform
of (2.10). The form (3.7) for y, is a direct con-
sequence of (3.1). It is seen from (3.7) that the
disconnected approximation implies that the tagged
particle's motion is coupled to the density fluctu-
ations in a simple manner.

mate solution of the kinetic equation (2.24).
The t =0 limit of (3.10) can be written using

(2.16) and (2.19) in the form

d3
M„(t=o)=- .q'[-O'C, (q)][S(q)-1]

(3..11)
The form (3.11) is convenient for showing the
breakdown of the disconnected approximation at:
very short times, since the exact result" for
M(t= 0) is

(d
M(t = 0)=,q'V(q) [S(q) 1]=—'.

(3.12)

The quantity V(q) is the Fourier transform of the
interparticle potential. Because of the uniform
background which makes the OCP electrically
neutral, the integral in (3.12) is identically equal
to &o~/3. Note that in the limit I"« I the quanti. ty
—P 'C~(q) - V(q) and (3.11) agrees with (3.12). The
discrepancy between (3.11) and (3.12) is not due
to the neglect of close collisions (large q) but to
their incorrect treatment; the integral over q in
(3.11) is convergent for both large and small q
because of the consistent inclusion of the exact
statics.

IV. INTERMEDIATE CORRELATION FUNCTIONS

The disconnected approximation was shown in
Sec. III to lead to a form of the memory function

y, in terms of the intermediate propagators C,
and S. In principle, the form of the intermediate
propagators should be obtained from a self-con-
sistent solution of (2.24) and (3.7) for C, and a
similiar set of equations for C. In lieu of such a
sophisticated approach, we show that the use of
relatively simple forms for the intermediate cor-
relation functions leads to reasonable results for
y, and M(t), gives us some insight into the level
of complexity of microscopic calculations, and
indicates areas where further work is necessary.

A. Free-particle approximation

The simplest approximation for the intermediate
correlation functions is to assume that the "inter-
mediate" particles are free. This "free-particle"
approximation leads to a result for y, which is
not useful for Coulomb systems. We consider it
here in order to make contact with previous work
and to illustrate the simplicity of the method.

The free-particle forms for S, and 6 can be
found by solving (2.24) and (2.25) with

y, = y"'= cp"'=0. The solutions are

C,(q, p,p„z) =nfo(p, )6(p, p, )(z q. p,/I)-'
(4.1)
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()(», ») = f&')»f ((»)(»- t( (»/~)'. (4 3)

G(q, z) = Q(q, z),

where

(4.2)
We take the Laplace transform of (3.7), substitute
in (4.1)-(4.3) and obtain

w. ()», (»(», »)A((»)-( ~)' (2 ), d (»(() c (»H ~(» t(»R ~»» (k q. -g~ -,=y~).

d
M» (») )( (» ) Jy )» (() ('»(»)I

x S(q)exp( —q'V', P) .

The long-time behavior of M, ~ (f) for an OCP is
of interest and is determined by the behavior of
the integrand of (4.5) for q «(V,t) '. The small-q
behavior of the exact S(q) and C~(q) are given by

(4.5)

S(q) =q'/4mnPe' (4 5)

—P'C~(q) = 4me'/q' . (4.7)

If we use (4.6) and (4.7) in (4.5), we find that the
long-time (t » &~') behavior of M~»~(t) for an OCP
is given by

M,", (t) -(e'/5) (mP'/~)"'t-'. (4 8)

As will be discussed in Sec. V. M~ yields re-

The static structure function S(q) in (4.4) is a,

measure of the initial correlation of the two parti-
cles; their effective interaction is -p 'CD(q). For
a weakly coupled system the interparticle poten-
tial is nonsingular and much smaller in magni-
tude than P"'. In this limit —P 'CD(q) - V(q),
S(q) -1, and (4.4) reduces to the results of Ref.
17 for the case of self-diffusion; in the additional
limits of small k and z, y, reduces to the lin-
earized Fokker- Planck form. '

The form of M»(t) corresponding to (4.4) is
easily seen to be

suits for the self-diffusion constant D of an OCP
which are in disagreement by two orders of mag-
nitude with the MD computations of D. Thus we
conclude that although M contains the exact
statics, the dynamical approximations that lead
to (4.4) and (4.5) are not adequate for a system
with long- range correlations.

B. Effective interaction approximation (EIA)

The simplest realistic approximation for the
intermediate untagged particle is that it moves
in an average field due to all the other particles.
This assumption is equivalent to setting q"'= 0
and retaining only the static term q)") in (2.24).
The resultant equation for C(k, PP', z) can be in-
terpreted as a linearized Vlasov equation' and
solved exactly" to give G(q, z) as

G(q, z) = Q(q, z)/~(q, z), (4.9)

where e(q, z) is the dielectric function generalized
to retain the exact statics and is given by

e (q, z) = (I + [S(q) —1]zQ (q, z ))/S(q) .

The corresponding approximation for the inter-
mediate correlation function of the tagged particle
is the free particle form (4.1), since the static
part of p, vanishes identically. We substitute
(4.9) and (4.1) in the Laplace transform of (3.7)
and use the fact that for a stable system S(q, z) is
analytic in the upper half z plane to find

q,""(&,PP', z)f.(P') =
(

(4.12)

""(&PP' z)f (P') = . .S(q)[p'C, (q)P v v ' '
. (4.11)

We can use the identity Q/e = [Q+ (S —l)z
l
Q'

l
1/S

l
& l' to write (4.10) in the physically transparent form

e(q, z —(k- q) p/m)
x (Q(q, z —(k —q) p/m)+z[S(q) —1~ IQ(q z- (k- q) p/m) l'~f (P)5(p- p') .

The quantity —p'C~/l e
l

can be interpreted as
the effective interaction and is discussed in Sec.
VA. The form (4.11) will be referred to as the
"effective- interaction" approximation" for y,

It is easy to see that in the limit I'&1, a weakly
coupled OCP for which S(q) and CD(q) reduce to
their Debye-Huckel forms, 4 and for small k and
z, @H" reduces to the well-known linearized
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Balescu-Guernsey- Lenard (BGL) form. ' Hence,
(4.11) is a natural generalization of the BGL form
for y, which retains the exact statics of the system
and is valid for all k ands.

Because of the presence of the exact static cor-
relation functions, pE'" is free of a short-range
divergence" in contrast to the BGL form of p, .
However, as discussed in Sec. III, the integrand in
(4.11) is not correct for large q because of the use
of the disconnected approximation.

%e postpo'ne a discussion of the time-dependence
of MBA (f) to Sec. V and state here the result (5.12)
thatfor long timesM ' (t)-t 'coselt. The cose~f
factor arises from the zero of e associated
with the long-wavelength collective behavior of
the plasma oscillations. It is also shown that ME'A

yields numerical results for the self-diffusion
constant which are in qualitative agreement with
the molecular-dynamics computations for a wide
range of I'.

C. Long-time limit

The effective-interaction approximation for M(t)
gives reasonable values for D but does not give
the long-time behavior of M(t) correctly since the
mean-field approximations for S, and 6 neglect
the hydrodynamical modes that dominate the long-
time behavior of the exact S, and G, and con-
sequently the long-time behavior of M(t). The
hydrodynamic behavior (small q, large f) of S,(q, t)
and G(q, t) is known exactly" and is given by

The inclusion of the hydrodynamic behavior of the
intermediate propagators in (4.16) is equivalent to
the ideas used in mode-mode coupling theories.
The form (4.16) represents the coupling of the
single-particle motion to the long-lived, long-
wave length density fluctuations in the system.

We can evaluate the long-time behavior of (4.16)
without approximation for an OCP since the long-
time behavior is dominated by the small-q behavior
of the integrand. In the limit of small q the exact
S(q) and C~(q) are given by (4.7) and (4.6), re-
spectively. '~ The result is

M»(f)- 3»„f ' 'cos(d~t. (4.17)
3~m D+r„„2 '~'

The result (4.17) is the exact long-time limit of
(3.10). We see from (4.17) that for long times
the coupling of the motion of single particles to
the long-wavelength density fluctuations leads to
a long-time tail which oscillates about zero with
a frequency &~ is qualitative agreement with the
MD computation of the "exact" M(t). The cor-
responding long-time behavior of VD(t) is shown
in Appendix B to be

3P y D+. I' ~2»~2

'~'~~e'

Note that D and I'„„appearing in (4.17) and (4.18)
are the exact transport coefficients.

The behavior of M(t) for intermediate times is
considered in Sec. V C.

S,(q, t) = exp(- q'Dt)

G(q, t) = (1 —Cv/C~) exp(- q'Dr t)

(4.13)

V. NUMERICAL EVALUATION

where

+ —~ cos~~t exp(- q'I'„„ f/2), (4.14)
P

4/3q+ g C~
nn &&+

+ T
V

(4.15)

In the above C~ and Cur are the specific heats, g
is the shear viscosity, P is the bulk viscosity, and
D is the self-diffusion coefficient. D~ is the ther-
mal diffusion coefficient and is related to the ther-
mal conductivity X by D„=?(/mn C~. Note the
presence of the cos&u~t factor in (4.13). MD re-
sults" show that for I'=1 the ratio y= C~/C„
differs from unity by -3%; for I' ~20 the dif-
ference is less than 1% and decreases with in-
creasing I'. Thus, in the following we set C~= C~
and combine (3.10), (4.13), and (4.14) to obtain

?( v)' f (2 ), S(?)(() ( (?)I?

x exp[—q'(D+ I'„„/2)t] cos(d~ t .

(4.16)

We now calculate the memory function M(t) and
the self-diffusion constant D of a one-component
classical plasma within the disconnected approxi-
mation using an iterative approach. The effective-
interaction approximation ME'" is chosen as the
zeroth-order approximation to M(t) and used to
obtain the zeroth order or "bare" D. This choice
for the zeroth-order approximation is motivated
by the fact that M~'" contains the essential physics
of the OCP, i.e. , screening and plasma oscilla-
tions, retains the exact statics of the system, and
reduces to well-known results in the limit of small
I'. We next consider the contributions to M(t)
arising from the inclusion of the hydrodynamic
modes.

A. Effective interaction

In Sec. IV 8 it was pointed out that the quantity

4« ~) =- P'co«)/l~« '=~+f0')I (51)
can be interpreted as an effective frequency- and
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F(v) = e " dx e" (5.3)

and

B(v) =Mme" . (5 4)

F(v) is frequently referred to as Dawson's in-
tegral. " The dielectric function can be related
to Z by using (4.3), (4.10), and (5.2) to obtain

I
e (k, v+ i0')

I
= D(k, v)/S(k) (5.5)

where

D'(k, v) = (1+2[S(k) —1]vF(v)P

+ QS(k) —1l B(v)P . (5.6)

wave- vector- dependent interparticle potential.
The static (&u =0) behavior of C can be obtained
from (4.10) and is given by 4(q) -=4(q, 0)
= —P 'C~(q)S(q). C(q) is screened at large distances
as can be seen from its exact small-g behavior
determined by (4.6) and (4.7), that is, 4(0) = (nP) '.
The spatial Fourier transform of 4(q) can be
written as C (r)/k~ T = 1 —g(r). The Debye-Huckel
approximation for 4(r) is C»(r) = (e'/r)e "
where D'= (47tne'P) ' A.comparison of C(r) using
the Monte Carlo values of g(r) as input with C»(r)
is shown in Fig. 1 for I'=20. It is seen that C(r)
is bounded for all x and approaches a constant as
r-0 in contrast to the behavior of 4 nH(r).

To analyze the behavior of 4(q, ~) for &u &0 we
first define the plasma dispersion function"

+ 00 e"2

Z(v) =V m dx . , =- 2E(v)+iB(v),x —v- io'

(5 2)
where

~ 4.0—

2.0—

C)

05 I.Q

QJ/gp

l.5

The dimensionless "frequency" v and "wave vec-
tor" k are given by v = (31'/2}'t'(cu/&a~k) and k
=qa, where a=(3/4')'t'. For large v, 2vF(v)- 1+ 1/2 v' and for small k, S(k) -k'/3I'. Thus
from (5.5) and (5.6) it is easy to see that in the
limit of small k, &(k, v) has a zero for v

= (3I'/2) ' 'k ' or ~ = re~. The zero in & and pole in
4 at (d = co~ corresponds to the well. -known col-
lective plasma oscillations. The frequency and
wave-vector dependence of 4(q, ur) is evaluated
numerically and shown in Fig. 2 for I'=20. It is
seen that the plasma oscillations are well defined
for 0& 2.

B. Effective-interaction approximation for D

The self-diffusion constant D can be directly
related to the time integral of the memory func-
tion M(t) of the velocity autocorrelation function
by'

FIG. 2. Effective frequency and wave-vector-dependent
interaction C (k, ~) for I'=20 as a function of u/u& for
various wave vectors q=ka. The logarithm of nC (k, cu)/k~7'

is shown because of the rapid variation of 4(k, cu) near
c =c'& fork&2.

D1 y2
0 dt M(t) . (5.7)

0—
-02—

0
I I I

l.0 2.0 3.0

FIG. 1. The (dimensionless) static effective inter-
action as a function of the interparticle distance x (in
units of a) for I'=20. The solid line represents 4(r)/k~T
=1-g(r), with the Monte Carlo values of g(r) as input.
The dashed line represents the Debye-Huckel approxi-
mation @'DH(x)/k&T = (I'/~) exp[ —(3I') r].

dr M(r). (5.8)

It is more direct to obtain M~K~" (7} from (3.10)

The relation (5.7) is exact and follows from (1.3)
and (1.4). We will calculate D in the one Sonine-
polynomial approximation (see Appendix 8) by
substituting M»(t) in (5.7). This approximation
will lead to qualitative results for D. We reserve
an examination of highermrder polynomial solutions
for D to future work. It is convenient to rewrite
(5.7) in dimensionless units and introduce the
dimensionless quantities D =D/a&~a', T=t&u~, and
M=M/&u2~, so that (5, 7) becomes



MICROSCOPIC THEORY OF SELF-DIFFUSION IN A. . . 1288

S, (k, v) =e ' ' i'". (5.9)

The "mean-field" form of G is found from (4.9)
and (5.5) and is given by

2S(k) '" e" cos[kvr(2/3I')'i']
G(k T) = ~ dv

Da(k )

rather than from (4.11) and (3.8). S, is found
from (2.7), (4.1), and the general relation be-
tween the Laplace and Fourier transform and has
the Gaussian form

from (3.10) and (5.9)-(5.11). The large-f behavior
of M~»~ (f) is easily determined to be

M,~" (f) - , e'—(2mP'/vv)' i't '
cost@ f, (5.13)

which should be compared with (4.8) and (4.17).
To calculate D we use (5.8) and the explicit. form

of M, ~ (v) discussed above, perform the r integral
analytically, and write the zeroth-order approxima-
tion to D in the one-Sonine-polynomial approxima-
tion as

(5.10) D,*"'=D,*=(277r/F)' '(I +I,) ' (5.14)

In (5.10) we have used the fact that D(k, v)

=D(k, —v). The form (5, 10) for G implies that
G(k, v) reduces to the free particle form (5.9) for
k»1, since in this limit S(k) and D(k, v) ap-
proach unity. If we express (5.10) as a complex
integral, it is easy to establish that G(k, v. = 0)= 1
as expected, and G(k=0, t) =cos&u~t. This oscil-
latory behavior of G for small k is a consequence
of the collective plasma oseillations. For k cor-
responding to S'(k) «0.1, the integrand in (5.10)
is a rapidly varying function of v and difficult
to treat numerically. We are led to adopt the ap-
proximation that for k(ko

G(k, v) =cos&u„ve ' ' i'r (k&k,), (5.11)

(5.12)

where k, is determined by the condition that S(ko)
=0.1. Note that k, is an increasing function of 1
as is indicated by the small-k behavior of S(k)
=k'/3I'[see (4.6)]. For k)k„G(k, v) can be ob-
ta, ined from (5.10) by standard numerical methods.
The dimensionless "dispersion relation" ~,
(5.12), is determined from the real part of the
zero of c(k, v) for small k and reduces to unity
for k =0. The dispersion relation also has a small
imaginary part which leads to the damping of the
plasma oscillations. Since the contribution of
G(k, r) for k &k, to D will prove to be relatively
unimportant, we have chosen in (5.10) the damping
factor to be of the free-particle form e ~ '
The advantage of the Gaussian form is that it will
allow us to make a simple interpolation formula
between (5.11) and the hydrodynamic limit (4.14).

The presence for small k of the oscillatory
cos&~7 factor in the mean-field form for G leads
to large cancellations in the time integral of M(v)
The absence of the plasma oscillations in the free-
particle form for G [see (4.2) or (5.9)] indicates
why ME" and M yield large quantitative dif-
ferences in the calculated vlaues of D. lt is also
expected that the contribution to D* for k(ko
should be small compared to that for k &k,.

An explicit form [see (5.21)] of M~~" can be found

where

dk k'{[S(k)—1]'/S(k))e 'i4'"' (5.15)

TABLE I. Comparison of molecular-dynamics and mi-
croscopic calculations of the dimensionless self-diffu-
sion constant D* as a function of I". The integrals I~ and
I2 are defined in (5.15) and (5.16) respectively and are
related to Do* by (5.14).

19.7
110.4

0.146
1.18
2.97

6.53
21.1
94.9

0.69
0.092
0.0090

0.46
0.060
0.0051

and

co m~2

I2= — Sk —1. 2
— —. 5 16

0

In I, and I, we have used (2.15), (2.18), and (2.19)
to express C~(k) in terms of S(k). I, and I, are
evaluated numerically using as input the "exact"
Monte Carlo computations" of S(k). The values
1"=4,20, and 110 are considered, for which the
"cut off" parameter k, is found to be 1.0, 1.8, and
2.8, respectively. The results for I„ l„and D,*
are given in Table I and compared to the molecular
dynamics values DMD. Note that I, «I, as expected.
We see that the calculated values of Do exhibit a
rapid variation in I' consistent with the behavior
of DMD and that the ratio Df/D„D is approximately
1.5 for 1 =4 and increases to approximately 2 at
1"=110. The slow convergence of the Sonine-
polynomial expansion for the calculation of the
transport properties of a plasma is known" for
1"«1 and in this limit causes the one Sonine-
polynomial calculation of D to differ from the
exact result by a factor of approximately 1.5. The
nature of the convergence of the Sonine-polynomial
expansion for arbitrary I' is not known. We con-
jecture that the slow convergence will persist and
that the additional discrepancy between DM~D and
2Do/3 for I'= 110 mainly arises from the error in
ME'" (f) for very short times due to the incorrect
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treatment of close collisions within the discon-
nected approximation. The additional contribution
to D from the inclusion of the hydrodynamic modes
important in the long-time behavior of M(t) is
briefly discussed in Sec. VC. The qualitative
agreement between D,*and DMD leads to the con-
clusion that the effective- interaction approxima-
tion yields a good zeroth-order approximation for
the self- diffusion constant.

C. Interpolation formula for N(t)

We seek a first-order approximation M,"~'(t) by
approximating the intermediate correlation func-
tions S, and G using forms which interpolate be-
tween their mean-field behavior (5.9) and (5.10)
and their long-time hydrodynamic behavior (4.13)
and (4.14). In the spirit of our iterative approach
M,'~ (t) will be expressed in terms of the transport
coefficients obtained from the zeroth-order ap-
proximation. It is straightforward to choose a
simple interpolation form for S„since it has the
same Gaussian q dependence in both (5.9) and
(4.13). We adopt the form"

S,(k, r) = exp[ k'W, (-~)/2], (5.17)

W (r) = 2Df (7'+ 31"Dg[exp(- 7/3I'D„*) —1]]. (5.I'8)

Note that WD is expressed in terms of D, deter-
mined in the effective- interaction approximation.
However, since D,* was obtained in Sec. V B
in the one-Sonine-polynomial approximation, we
take Do~ in (5.18) to be the values shown in Table
I corrected by an overall factor of 3. The choice
of an interpolation formula for G is more com-
plicated because of the presence of a cos&~t
factor in both (4.14) and (5.11). We make a simple
modification of (5.11) so that G(k, 7) includes the
hydrodynamic modes for k&4, :

G(k, 7) = cost@~7 exp(- k'W„„(7)/2) (k &ko), (5.19)

W„„(~)= 4ri*[r+2g*I'(e '~'r"* 1)]. (5.20)

=0.12, 0.078, and 0.12, respectively.
We combine (3.10), (5.17), (5.19), and (5.10) and

write M,"~'(7) in the form

MI p(v) = (2/2 7m'I') [M~ (w) + M~ (v) ], (5.21)

kp

M, (~) = dk k4([S(k) I]'/S(k)] co s(u„r

&& exp[—k'[W~(~)+ W„„(7)]/2], (5.22)

M, (~) = dk k'[S(k) —1]'exp[- k'WD(~)/2]
ll

p 2
Qve

xcos[kr(2/31')'i'v]D '(k, v) .

(5.23)

Note that if we set W~(7) = W„„(7)= k'7 /6I' in (5.22)
and (5.23), the form of M,'~~ (r) reduces to M~s~'"(r).

It is necessary to include the hydrodynamic modes
in (5.21) in order to obtain a realistic approxima-
tion for M(7) in the range 0&~6 20 considered in
the MD calculation. For example, an inspection
of (5.18) and (5.21) shows that the hydrodynamic
diffusive mode contributes to M"'(r) for 7 & 7D
-31D*, which ranges from O(5) to O(1) in the
range of I' considered. The optimal determination
of a cutoff parameter k, and a better interpolation
formula for G as well as S, requires further in-
vestigation. We expect however that we have de-
scribed G and S, in the hydrodynamic region
(k «1, r» 1) and the free-particle region (7 «1
or k» 1) accurately. It is assumed that G is well
represented by the effective interaction approxima-
tion in the intermediate ~ range for k&k, and by

0.55 i

\

For k &ko, G(k, 7') is given by (5.10). In (5.20) we
have neglected the bulk viscosity and considered
only the shear-viscosity contribution to I'„„
[see (4.15)]. The dimensionless viscosity q*
= g/nm &o~a'. A zero-order calculation of q* would
require the effective- interaction- approximation
form for Q"'. We anticipate that such a calcula-
tion of g* would lead to reasonable values. Since
we have not as yet performed such a microscopic
calculation, we adopt the results for g* obtained
from a generalized hydrodynamics calculation. "
The qualitative features of this calculation are
that g* decreases rapidly with increasing I' for
I'&10, passes through a minimum around I'=20,
and then increases slowly with increasing I'. For
I'= 4, 20, and 110 the numerical results are g*

r=ll0. 4
I

8 ~-~ 16
l2

FIG. 3. Comparison of memory function obtained from
molecular dynamics (dashed line, Bef. 7) and from the
microscopic theory [solid line, Eq. (5.21)] for I'=19.7
and 110.4. The time scale is in units of ~& and M(t) is
in units of M~
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the interpolation formula (5.19) for k &k,. S, and

G are expected to be slowly varying functions in
the intermediate space- time region.

The interpolation formula (5.21) for M,"~'(~) is
evaluated numerically using the Monte Carlo com-
putation" of S(k) and the numerical values of D*
and g* as indicated B.bove. The results for I'= 4, 20,
and 110 are compared to the exact MD results'
for M(r) in Fig. 3. It is seen that the calculated
M, ~~'(r) is in qualitative agreement with the MD
values for M(7) except for 7. near zero, for which
the basic approximation (3.1) breaks down.

In principle we should use the M"'(~) to ob-
tain the first-order correction to Do~ which would
arise from the inclusion of the hydrodynamic
modes. However since we have calculated D,*
only in the first-Sonine-polynomial approximation
and have not performed a microscopic calcula-
tion of g,* we have not yet performed such an in-
vestigation.

VI. DISCUSSION

It has been shown that we can find relatively
simple approximations that lead to a reasonable
description of the dynamical properties of an
equilibrium classical one-component plasma for
which there is no intrinsic small parameter.
Many simplifications were made in the analysis
in order to make clear the essential features of
the method. In this section we discuss the qualita-
tive features of our results and indicate areas of
future work.

A striking feature of our calculation and of the
MD results is that for large I' the single-particle
motion is dominated by its coupling to the col-
lective plasma oscillations. The dominance of
the collective oscillations at high density for a
wide range of k and (d can also be seen from the
MD results' for the dynamic structure function

S(k, ~). An essential difference between an OCP
and a neutral fluid, with short-range interactions,
is that the collective plasma oscillations dom-
inate the long-wavelength response of an OCP in
both the short-time (mean field) and the long-
time (hydrodynamic) limits in contrast to the col-
lective sound mode in a neutral fluid, which is
important in only the hydrodynamic limit. Another
consequence of the long-range nature of the Cou-
lomb potential is that the frequency of the dis-
persion relation of the plasma oscillations in both
the long-time and short-time description of an
OCP is identical and finite in the long-wavelength
limit. It is easy to see that the collective pro-
perties of an OCP extend over a wider range of
k and + as I' increases. For short times or high
frequencies (&u» &o~) collisions are not important,

and the mean-field description of S(k, v) is valid.
In this case we found in Sec. VB that the plasma
mode is well defined for k«k, . Since k, is an
increasing function of I', the collective properties
of an OCP for ~ » ~~ extend over a wider range
of k as l increases. The hydrodynamic descrip-
tion is valid for k &1 and for times greater than
the mean time between collisions. Since a mea-
sure of this time is D, which is a decreasing
function of I', the hydrodynamic description ex-
tends over a larger range of time as I' increases.

We have seen that the fully renormalized kinetic-
theory approach' " is a flexible formalism which
can be successfully applied to both dense plasmas
and dense neutral fluids. The basic features of
the formalism are the introduction of a memory
function in a generalized kinetic equation to de-
scribe the effects of the interactions, the ex-
pression of the memory functions in terms of an
effective two-body problem, and the systematic
inclusion of the exact static correlation functions.
For the case of a plasma a simple approximation,
(3.1), which takes into account the long-range cor-
relations in the system was introduced for the
dynamical evolution of two particles in the medium.
This simple approximation is part of a systematic
and well- defined approximation procedure in which
the terms that have been neglected can be analyzed
and estimated.

The calculations presented here of the memory
function of the velocity auto correlation functions
and of the self-diffusions constant have been rel-
atively crude and the results qualitative. How-

ever, the calculation lead to reasonable agree-
ment with the molecular-dynamics results, il-
lustrate the nature. and level of complexity of
microscopic calculations for a dense plasma,
and indicate areas where further work is needed
and additional applications are possible. The
present calculations can be made quantitative if
we use the method of kinetic modeling" (de-
scribed briefly in Appendix A) to obtain a quantita-
tive solution of the generalized kinetic equation
(2.24), and if we correctly treat the close col-
lisions. Neither extension of the present calcula-
tion poses any essential difficulty.

It would be of interest to investigate the van
Hove self-correlation function, S,(k, ~), since MD
results" for S, are expected to become available
in the near future. Such a calculation would in-
volve the calculations of a k-dependent memory
function and thus, in general, the numerical eval-
uation of an angular integral.

Although we have only considered the motion of
a tagged particle in this paper, the approach can
be applied to the study of the phase-space density
correlation function (2.9) and its associated mem-
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ory function (2.25). Such an investigation would

yield numerical results as a function of I' for the
transport coefficients (e.g. , the shear and bulk
viscosities and thermal conductivity), and numeri-
cal results for the dynamic longitudinal and trans-
verse current correlation functions as a function of
I", 0, and ~. These calculations would be of much
interest since the available MD results would
serve as a test of the microscopic theory, which
could be extended to yield new information about
the dynamics of the OCP. It is also straightfor-
ward to extend the FRET formalism to multi-
component systems" as well as to quantum sys-
tems. It would be of interest to investigate the
behavior of the transport coefficients, in particu-
lar the thermal conductivity as a function of density
and temperature of a laser-compressed plasma in
which quantum effects are important. Such a plas-
ma corresponds to the case' in which the positive
ions are classical and characterized by a I of
2-5 and the electrons are highly degenerate. We
hope to consider these problems in future work.

V.,(k, z) = d'hd'$'4. ($)t!,(h')O. (k, k(', z)lV, (h').

g, „„($)= (l!m!n! ) '~'H, (g„)H„((,)H„(g,),
where

H, ($) = 2 'i'H, ($/v 2) .

(A5)

(A6)

JI, is the usual Hermite polynomial. " The calcu-
lation of the matrix elements p ~ is one of the
major tasks of kinetic modeling.

The approximate y„(3.7), satisfies the conser-
vation of particles condition

d'$ V.(k, h$', z) = o

(A4)

Although we are interested in the limit 0 = 0 t see
(2.8)], we consider the general case of finite k,
for which y, does not have rotational symmetry.
In this case the usual Sonine polynomials" are no
longer an appropriate choice for the basis func-
tions, and we choose the functions
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satisfy the orthogonality and completeness condi-
tions

d )WO (A1)

(A2)

We wish to thank J. P. Hansen for sending us his
tabulated results for S(q). We are thankful to the
National Science Foundation and to Shang-keng Ma
for support when this work was initiated. One of
us (H. G.) would like to a,cknowledge the support
and hospitality of the Physics Department of Bar-
Ilan University and to thank Daniel I,ieberman for
his help with the numerical calculations.

~,(k z)= d'td'('0 (h)4 ($')&,(k fk', z)

(A8)

The solution of this matrix equation for N large
is the second major task of kinetic modeling.

To solve for V~(t) we use the general relations

V.( )=V'.t. -M( )l'

but does not satisfy conservation of momentum
and energy since the tagged particle can exchange
momentum and energy with the medium. To model
rp, in (A3) we isolate the hydrodynamic state
g, =—g»0= 1 associated with number conservation,
assume that the off-diagonal matrix elements are
small compared to the diagonal matrix elements,
and for n&2 approximate the diagonal matrix
elements by @22 @001 00l the first nonhydrody-
namic matrix element. (Recall that

(,=—P», ——$,.) With these assumptions and the
use of (A2) we write (A3) as

~.(k, «', z) = - ~..(k, z)!U.(&) + ~,.(k, z)5(& - &') .

(A7)

In general we construct a kinetic model of order
N by assuming that y ~= y»5 ~ for all n, P&N.
The substitution of the order-N generalization of
(A7) into (2.24) yieMs a matrix equation for

and write y, as

~.(k, «'.z) = P C.(&)t,(&')iV.(&)9..(k, z).

The matrix elements y 8(k, z) are defined by

{A3)

p'2
= lim —'

C22 (k, z),
ywP

(A9)

where Vn(z) and M(z) are the Laplace transforms
of VD(t) and M(t) defined by (1.2) and (1.4), re-
spectively-. The substitution of the approximation
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(A7) into (2.24) yields

1—C„(k,z)

A„(k, z)+ q22(k, z)[A„(k,z)A22(k, z) —A,', (k, z)]
1+ ya2 (k, z)A„(k,z)

The long-time behavior of VD(t) and M(t) will be
extracted from the behavior of V~(s) and M(s) in
the neighborhood of their dominant singularities.
For the case (B2) the t-~ behavior of VD(t) is
regulated by a pair of branch points lying at
s =+z~~. We have

where
(A10) VD(s) = —iVO(2n'~'(o~C) ' [(s—i(oq)'~' (s+i~~)'~']

((.(5)4,(5) IV.(h)

z —V,k k —q„(k,z)
' (A11)

APPENDIX B

In the limit k-O, (A10) reduces to the form given
by the usual one-Sonine-polynomial expansion and
the approximate relation (3.8) follows. We plan
to consider in future work the contribution of
higher-order matrix elements to C».

V,(t) - (I/x) Im(e'"~'X(t)~),

M(t) - (V',/x) Im(e'"o'X(t)/V'(i~, )j,
(B6)

(B6)

(B4)
for s near the branch points. In this case Vo(s)
approaches a unique, finite limit as s -+ i~& along
any direction in the half-plane Res & & &0. Under
this condition, which is a slight generalization of
the condition that the diffusion constant exists, it
can be shown' that for t-~

The relation between the long-time limit of
M(t) and Vo(t) fo.r the case where their long-time
behavior is nonexponential has been given in Ref.
32. We apply these results to the case where for
f -~„M(t) is given by [see (4.16)]

where

X(f) = doe "'[V.(~) V(n)]— (Bv)

VD(t) -—Vao(2v~~C) 't '~' sin&o~t . (B2)

To make contact with the notation of Ref. 32,
we define the Laplace transform VD(s) as

+co

VD(s) = dt e "Vo(t) .
0

(B3)

M(t) -Ct ' ' cos~~t (Bl)
where C is a constant. We will show that for
f~oQ

V„(g) = V~(i~~+ r)e'") . (B8)

We first apply the above to the more familiar case
where VD(t)-f '~', i.e. , ur~=O. Then since
VD(0) =D, we have VD(t) -—(mD/kaT)'M(t) for
f -~. In our case X(t) - V', (2&u~Ct'~') ' and
V n(i~~) = —iV,'(2v~~C') ', and the result (Bl)
follows from (B2), (B5), and (B6). Note that in
the present case Vo(t) and M(t) differ in phase
as well as amplitude.
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