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Phase separation for a dense fluid mixture of nuclei*
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It is shown by Monte Carlo calculations that Quid mixtures of classical point ions in an uniform electron-gas
background separate into two phases primarily from potential-energy considerations. For protons and a
particles the critical temperature over an enormous pressure range is found to be near 1 eV, and only at
extremely high pressures (-10' Mbar) does the mixture become stable. Phase separation at lower pressures, as
in the interior of Jupiter (-40 Mbar, 1 eV), is shown to be unlikely on the basis of more realistic models
which modify, however crudely, the uniform electron approximation.

I. INTRODUCTION

It has been suggested" that under the pressure
and temperature conditions in the interior of giant
planets, such as Jupiter, helium may not be com-
pletely soluble in hydrogen. A more recent de-
tailed calculation' predicts phase separation for
such a mixture at sufficiently low temperature. In
order to help understand the physical basis of such
a possible phase separation a simple model, rig-
orously valid at sufficiently high pressure and low
temperature, has been worked out.

In that model helium and hydrogen are assumed
to be completely pressure ionized so that the elec-
trons can be considered to form a uniform back-
ground. This is an extension of the so-called one-
component plasma (OCP) considered earlier"' to
mixtures of nuclei. Applicability of that model de-
pends on the pressure not being so high that the
nuclei have to be treated quantum mechanically nor
so low that the clustering of electrons around the
nuclei (screening) is important, that is the pres-
sure is high enough so that the zero point or Fermi
energy of the electrons exceeds their Coulomb at-
traction to the bare nuclei. Under these circum-
stances the problem reduces to the evaluation of
classical statistical mechanical averages for the
ions which can be done rigorously, with inly in-
significant caveats, by either the Monte Carlo or
molecular dynamics numerical computational
technique. In fact some such results are already
available and have been exploited for present
purposes.

The above model is, however, not a very accu-
rate description of the state of matter at the center
of Jupiter where the pressure is estimated to be
about 40 Mbar and the temperature about 1 eV. At
that pressure hydrogen is certainly metallic' and
the zero point energy of the electron comparable
to the binding energy, so that the uniform electron

approximation is reasonable. However, helium is
not expected to become even metallic until about
100 Mbar' so that the uniform electron approxima-
tion is hardly justified below about 200 Mbar. '
Hence, under Jovian conditions it is necessary to
take screening into account and this can be done
by several approaches. The earlier calculation'
allowed the electrons to respond to the ionic po-
tential by treating the electron-ion interaction as
a perturbation which was carried out to third or-
der. Such a perturbation treatment is expected to
be valid only when the screening effects are small,
hardly the situation in Jupiter. Furthermore,
this earlier calculation approximated even the
QCP by equivalent hard sphere properties.

Alternatively an effective screened potential be-
tween the ions, through the assumption of a di-
electric function obtained from the linear response
of the electron gas to the ionic potential and hence
valid to first order in the screening, can be intro-
duced in the Monte Carlo calculations. Although
considerable calculations of this type have been
carried out for the one-component case,"only
preliminary calculations for mixtures are avail-
able, ' and they have not been utilized here, await-
ing more extensive results. Instead it was thought
most realistic to work out a simple model where
helium is completely screened or neutral and acts
merely to exclude electrons and protons of the one
component hydrogen plasma from its neighborhood.
An intermediate case of screening in which the
helium atom is singly ionized can also be easily
treated if the atom is approximated by a hard
sphere of the same charge as the surrounding one-
component hydrogeri plasma. However, the singly
ionized state of helium is not likely to be a realis-
tic representation over a wide region of pressure
in as much as once helium becomes metallic the
band structure is such that it would allow both
electrons to become delocalized.
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II. MONTE CARLO RESULTS

In the case of the completely degenerate electron
gas that forms a uniform background, exact re-
sults can be obtained by the Monte Carlo method.
The present thermodynamic considerations a,re
based on such calculations which have been sum-
marized by an empirical fit to the numerically
generated Helmholtz free energies, E, under var-
ious conditions. " This free energy of Ny ions of
charge Zy and N, ions of charge Z, conf ined to a
volume v in a uniform electron gas background at
temperature T can be written as the sum of three
contributions

E=E,+E +E .
The first term is the ideal gas contribution

F;./NkT = x,[ln(A.',p)+ lnx, ]

+x,[ln(X,'p)+ lnx, ] —1,
where the mole fraction of species 1 is x, =N, /
(N, +N, ), the number density p=N/v and X is the
de Broglie thermal wavelength of the nuclei. The
middle term accounts for the background electron
gas of a total of N]Zy+N2Z2 electrons, whose ener-
gy per electron in rydberg's is given by

F.,= 2.21/x ,'—0.916/r, —0.115+0.031 lnx, ,

where x, is the electron sphere radius in units of
the Bohr radius. At, finite temperatures the well-
known first correction in the expansion relative to
the Fermi energy has been added. Finally, the
last term obtained from the Monte Carlo results
has been fitted by"

F,/NkT = 0.89461I'+ 3.26591I' '

—0.50123 lnl —2.186,

where

I"= (x,Z, + x2Z2 )(x~Z, + x2Z2)' 'e'/kTa,

and where a is the ion sphere radius. This same
form was found to fit both the one-component re-
sults' and the mixture data" within statistical un-
certainty of the data. This form is hence well
suited to get the excess properties of mixing which
involves differences between thermodynamic pro-
perties. An earlier empirical free energy fit'
based on less extensive Monte Carlo data gave
qualitatively the same results but with large quan-
titative differences. The sensitivity of the re-
sults to E, underscores the need for additional
high-precision Monte Carlo data on the mixtures.

The excess mixing properties at constant pres-
sure AG= G„(x,p, T) —x,G,(p, T) —x,G,(p, T) re
quire knowledge of the Qibbs free energy, evalu-

ated by G= F v(-BF/Bv)r, where the subscript M
signifies mixture. A typical example of 4G at
various mole fractions of protons and at a tem-
perature below the critical temperature is given
in Fig. 1. Phase separation is indicated, since
8'n, G/sx ' & 0, and the standard double tangent con-
struction determines the concentration of the two
phases in equilibrium with each other. Such cal-
culations permit the construction of the phase dia-
grams at various pressures as given in Fig. 2.

At the highest pressure of 200 Navar shown in
Fig. 2, the model ought to be a realistic repre-
sentation, and hence phase separation below a
critical temperature of about 1 eV should corre-
spond to actual observations. Incidentally, mixing
at constant volume, which is theoretically easier
to treat, leads to virtually indistinguishable re-
sults to those at constant pressure at 200 Mbar.
At lower pressure where the model cannot be
taken seriously, the critical temperature does not
shift much, but is observed to rise a little. This
corresponds to the observation that the higher the
pressure the more the electron gas pressure dom-
inates, and hence the more ideal the mixture or
the lower the critical temperature becomes. A
comparison at 60 Mbar to an earlier calculation
that includes the effect of screening' shows that,
as expected, screening lowers the critical tem-
perature since it can be looked upon as reducing
the effective charge difference between the spe-
cies.

At 60 Mbar the results are also compared to the
predictions based on only the first term in the
above expansion for F,/NkT. As will be seen from
lattice model considerations, the coefficient of
that term as well as its functional form suggest
that it represents the potential energy contribution
to the free energy. Hence the qualitative argument
can be made that phase separation is caused by the
potential energy being lower in the pure phases
than in the mixture because, given the constraint
of a uniform charge distribution, local charge
neutralization is not as easily satisfied in a mix-
ture as in the two separated phases. This can
be quantitatively seen from the following argu-
ment. For a single-component latti. ce of point
charges in a uniform electron background at 0 K,
the potential or Madelung energy, U/N, per ion is
accurately approximated by surrounding each ion
by a charge neutralizing sphere of uniform density
electron gas. For that model U/N is calculated to
be 0.9 Z'e'/a whereas the exact result for a bcc
lattice is —0.8959 Z'e'/a. " A simple extension of
this model to mixtures requires that each different
ion species be surrounded by a different neutraliz-
ing sphere of the same uniform density electron
gas, so that
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FIG. 1. Typical excess free energy of mixing as a
function of mole fraction of helium at 60 Mbar below
the critical temperature at T =0.7 eV. The dashed line
indicates the double tangent construction from which
the mole fraction of the two phases in equilibrium can
be determined.
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equivalent to the form used earlier

U/R= —0.9 e'(Z,x, +Z,x,)' '(x,Z, " '+x,Z, ' ')/a.

It is this result which motivated the first term in
the empirical free energy fit given above for
E,/RAT and which shows that the uniform back-
ground does not allow the charge neutralization in
the mixture to be as effective in lowering the po-
tential energy as in the pure components. The
60-Mbar example illustrates that this potential
term alone makes semiquantitative predictions of
the phase diagram and the further terms in I', /NOT,
representing the thermal energy contribution of the
ions, do not qualitatively alter the phase diagram.

It remains to demonstrate that the above approx-
imation for the potential energy of a mixture is
close to the value obtained for a lattice model of
a mixture, although for mixtures the lattice of
highest stability is generally not known. Hence
two different lattices were considered for the
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FEG. 2. Phase dia-
gram for mixtures of
hydrogen and helium
at the various pressures
indicated for classical
point charges in a uni-
form electron back-
ground. At 60 Mbar the
results for the lattice
model are indicated by
circles, and the dashed
curve represents the
results from an earlier
model. (Ref. 3).
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specific case of a 50% mixture, namely the CsC1
and NaCl structure in which the two different nu-
clei occupy the two different ion positions. The
potential energy can be evaluated by the usual
Ewald technique or more readily by taking advan-
tage of the symmetry with respect to the charges
of the ions and determining the constants from the
known limiting cases when Z, = Z, and when Z, = 0.
The result for the CsCl lattice is

U/N = —e'[0.349254(Z', + Z', ) + 0.197427 Z,Z, ]/a

and for the NaCl lattice is

U/X.= —e'[0.355528(Z', + Z,') + 0.169004Z,Z, j/a .

Both of these potential energies agree with the
neutralizing sphere approximation to better than
1% for the 50% proton-n-particle mixture, con-
firming that the first term in E,/NkT is repre-
sentative of the potential energy of the system.
The fact that a lattice, that is the configuration
correct in the high-density limit, can give a good
first approximation to the potential energy of a
flui. d of ions is because in such fluids the potential
energy is large relative to the kinetic energy and
that the long range forces make the potential ener-
gy relatively insensitive to small displacements
of the ions about their lattice positions.

If to the above potential energy, the background
electron gas energy, given earlier, is added, a
good approximation to the total energy or equiva-
lently at O'K, the free energy can be obtained.
From the dependence of these two contributions
on volume, it is then evident that at sufficiently
high density the electron gas term will dominate
so that both the mixture and the two pure compo-
nents at the same pressure will all have the same
electron density or, in other words, the mixture
is ideal with no phase separation possible. The
pressure at which the mixture will no longer phase
separate is shown for a hydrogen-helium mixture
in Fig. 3. The excess free energy 4G is seen to
decrease with increasing pressure which, as point-
ed out earlier, corresponds to a decrease in the
critical temperature and finally becomes negative
indicating that at a pressure of about 10' Mbar the
mixture is stable even at 0 K. At that high pres-
sure the mixture of classically behaving nuclei
would certainly be crystalline and so the lattice
model used should be applicable, however the
density is so high that the quantum mechanical zero
point energy of the nuclei cannot be neglected. "
This nuclear zero point energy is such that melting
of the ionic lattice is predicted. Nevertheless, the
calculation of the pressure at which the mixture
is stable is not expected to be significantly affected
by the melting effect since the stability considera-

tion involves energy differences between the mix-
ture and the pure components, both of which under-
go melting.

III. SCREENED HELIUM MODELS
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FIG. 3. The excess free energy of mixing for a 50%
hydrogen-helium mixture from the bcc lattice model at
O'K as a function of the logarithm of the pressure.

A primitive model at lower pressures where the
uniform electron background approximation be-
comes poor is to consider the helium as a hard
sphere which is singly ionized and the hydrogen
atom as still completely unscreened. The hard
sphere diameter can be picked to correspond to
the known size of the He' ion which is in the range
of 0.5 to 1 A. The protons and other He' ions are
not likely to approach a He' ion within that distance
anyway since the ions interact via the repulsive
Coulomb energy. The free electrons on the other
hand, are considered to be merely excluded from
the volume occupied by the singly charged hard
spheres.

Indeed, previous studies of the radial distribu-
tion function' of a one-component plasma of singly
charged point ion under the conditions of a pres-
sure of 10 Mbar and a temperature of 0.5 eP, cor-
responding to a value of e'/kTa = 50 indicate, that.
two singly charged ions have a vanishing probabil-
ity of approaching each other within 1 A. Hence
a,s far as the ions are concerned the hard sphere
might as well not be there at these low pressures.
Thus it is safe to assume that the main effect of the
bound electrons is to exclude the free electrons
from the region occupied by them. The Gibbs free
energy of mixing is easily calculated from the pre-
vious OCP calculations at the appropriate electron
densities. The result is given in Fig. 4 for two
different charged-sphere radii at a pressure and
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FIG. 5. The excess free energy of mixing of protons
and neutral helium atoms in a uniform electron back-
ground at 0.5 eV and the various pressures indicated.
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FIG. 4. The excess free energy of mixing for protons

and singly charged helium ions in a uniform electron
gas background at 10 Mbar and 0.5 eV at bvo different
helium ion radii as indicated.

temperature where hydrogen is just becoming
metall. ic in the interior of Jupiter. No phase sepa-
ration is indicated where the previously completely
unscreened case did show such phase separation.
This result is not unexpected in view of the above
observation that the two ionic species interact in
a virtually identical manner.

Inclusion of any attractive interaction of the neu-
tral helium atom with either the protons or elec-
trons would stabilize the mixture even further. An
extension of the above model that is valid when the
screening of the helium in still stronger, considers
the helium as neutral or a sphere with no charge.
The hydrogen is still considered as a one-compo-
nent plasma and the protons and electrons are
again excluded from a hard sphere of size o.= 1 A,
that is, confined to a volume v —N, zo'/6. If it is
further assumed, as is rigorously valid for suf-
ficiently long-range forces, that the properties of
the QCP are independent of the configuration of the
spheres, the free energy can be written as a sum

To accurately evaluate the helium-helium free
energy F„,in the mixture as well as in the pure
component, a more realistic representation of the
intermolecular potential, V(x) than hard spheres
is necessary. For that purpose atomic beam de-
duced intermolecular potentials" "were ade-
quately represented by Ax ', where A is taken to
be 5 eV. From previous Monte Carlo calculations"
for particles interacting by A~ ', the free energy
can be obtained for that system. The resulting
Qibbs free energy of mixing at a temperature of
0.5 eV and several pressures, shown in Fig. 5,
indicates no phase separation.

This model ignores the energy shift of the helium
bound-state level due to interaction with the sur-
rounding plasma. Our result of no phase separa-
tion should not be affected by this since the shift
will be mainly a function of the electron-gas den-
sity. For the calculations presented in Fig. 4 the
electron-gas density for the pure He' and for the
50/0 mixture of (He', H') differ by less than 5/q.
The bound-state level shift is thus very nearly the
same for the pure He' and for the He' in the mix-
ture and, therefore, cancels in AG. These con-
siderations as well as the earlier mentioned per-
turbation treatment show that screening lowers
the critical temperature and in the case of the
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above two models inhibits phase separation com-
pletely. Since the above two models should be a
more realistic representation of the state of mat-
ter in the interior of Jupiter, no phase separation
is expected there.
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