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Hartree-Fock states in the thermodynamic limit. II. Generalized Overhauser orbitals*
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Two infinite families of two-parameter generalized Overhauser orbitals are introduced and shown to satisfy

explicitly, for occupied states, the self-consistent Hartree-Fock equations in the thermodynamic limit. For an
attractive 8 interaction, they give lower Hartree-Pock energy than the usual plane-wave solutions, even for
relatively weak coupling and/or low density, The limiting members (possessing an infinite number of
harmonics) of both families appear to tend to a "classical static lattice" state, via a second-order transition for
one family and via first order for the other. The related density profiles and energy expressions are calculated
as functions of the two new parameters. A direct variation with respect to these parameters was done

numerically and results are presented graphically.

I. INTRODUCTION

In a recent payer, ' hereafter referred to as I,
several types of self-consistent Hartree-Fock (HF)
Overhauser-like' orbital wave functions, with low-
er energy for sufficiently strong interparticle 5-
potential coupling than the (so-called trivial)
plane-wave orbitals, were studied mainly for the
purpose of revealing the appearance of bifurcation
points in the energy, the nature of the "transition"
to a state with long-range order, etc. Their ap-
plicability to such problems as z-particle forma-
tion' and crystallization' in nuclear and neutron-
star matter, as well as to the formation of a Wig-
ner lattice' of point charges in a background of
opposite charge, was mentioned.

In the present paper, we wish to report a similar
analysis, but for two infinite families of orbitals
which are, first, a considerable generalization of
the previous ones, as they now contain any number
of harmonics instead of only one as before, and,
secondly, give aPPreciably louver energy than be-
fore. The results given herein refer only to the
attractive 5 potential between particles and as such
might appear purely academic. However, the use-
fulness of these new self-consistent orbitals for
N-body systems with realistic potentials can be
visualized, and work along these lines is now in
progress with the objective of establishing regimes
where the HF plane-wave (PW) state is unstable
against the appearance of HF states with long-range
order. A (sufficient) condition for PW instability
to occur is given in Appendix A; some of the states
studied herein are found to occur at even ueaker
coupling than that predicted by that condition.

We consider a Hamiltonian for N particles,
N

H= —
2

V'+ v;, (l)

and the single Slater determinant

4, =(N!) ' ' det[y-„(r)y„(q, ) t,

where p, is a Lagrange multiplier, then leads to
the HP equations

(yJ- (I'/2M)v', + U, ~y„) = e,a„„ (4)

with the self-consistent single-particle field
given by

h occ

LThe last equation leads to the well-known result'
that only the HF choice of g, U,.—which is added
to the kinetic energy in Eq. (1) to give an unper-
turbed Hamiltonian B„and subtracted from the
potential energy to leave a perturbation II,—allows
for a. complete cancellation of all U, ("external
field" ) insertions in the Feynman-Goldstone dia. —

grams for the exact ground-state energy, against
the corresponding "bubble" and "exchange bubble"
insertions. ]

A (trivial) solution of the nonlinear equations (4)
and (5) is given by the set of plane waves

orthonormalized in the cubic volume I.', and which
fills the Fermi cube of sides 2k, in 0 space, pro-
vided only that L» range of v». The associated
local density (if g particles occupy each space
s ta, te) is then

where k labels the spatial and q the intrinsic (spin,
isospin, . . . ) states. The variation, with respect to

y;(-),
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r
(0, 0, 0) plane wave (PW) (9)

(n n n)=( (»
(1,0, n)

"density wave" (DW-n) (10)

"density standing wave"

(DSW-n) (11)

with n =0, 1, 2, . . . . The set of orbitals Eq. (9) co-
incides with Eq. (6): the first (nontrivial) member
of Eq. (10), n= 1, was studied in I while the first
member of Eq. (11), n = 1, was recently found to
give n -cluster ing effe cts in the nuclear surface, '
under the effects of a Skyrme interaction.

II. SELF-CONSISTENT ORBITALS AND

DENSITY PROFILES

The family of orbitals called "density-wave"
states, Eq. (10}, is then given by

Q~ (x) = Ce'~"*(1+o.e"*)" (DW-n); n =0, 1, 2, . . . ,

p( ) =g g le-, ( )I'=NIL'=-p. =g(k./. )',
Q OCC

and thus spatially constant (homogeneous).
We consider an infinite family of orthonormal

two-parameter orbitals given, for each space com-
ponent, by

Q, (x) = Ce'"*"(1+i). cos"&qx e'"2'")"&, u complex,

—ko&k„& ko, q=—2kom (m =+1,+2, . . . ), (8)

n„n„n, =0, 1,2. . .
where Q is a normalization constant and m and z
are the two parameters to be eventually varied.
These states can be shown (cf. Appendix 8) to ex-
plicitly satisfy the HP Eqs. (4) and (5), for any o
and m, for occuPied orbitals, for any two-body po-
tential independent of the center of mass of the two
particles and of range much shorter than the nor-
malization length I.. Only three sets of subfamilies
of Eq. (6) are treated here, namely,

—k, & k„&k„q = 2k,m (m =+ 1, a 2, . . . ), (15)

where, for l non-negative integer,1)) i (l 1), l

I, —= — dx cos'x = —,'[1+(-)' jg p )tf

(16)

For o real, a sum rule (cf. Appendix C) can be
used to reduce the double sum in Eq. (15) to a sin-
gle one, giving for the local density profile

(p„/g)'i'(I+ oi cosqx)'"
.p(x}= "gn (2n)1 2i

We form determinants Eq. (2), having a simple
cubic lattice local density, by occupying states,
dimension by dimension. For g-tuple occupancy
this means that (N/g)'i' is an integer; furthermore,
particle conservation requires that

I./2
(N/g)'i' = dx p(x)

-I, /2
(16)

which, in view of the periodicity of p(x), reduces
to, for m =+ 1 (cf. below)

X/3 1
du p([g/p, l'i'u/2) -=dug„(e, u),

Pp -1 -1

(y ) 0, n=0, 1, 2, . . . , (19)

the point g=0 corresponding to the lattice "site"
while u=y1 to the two associated "intersites. " The
family of functions g„(n;u), for the orbitals Eqs.
(12) and(15), respectively, are

ilar.
The family denoted "density-sta. nding-wave, " Eq.

(11), reduces to

Q,„(x)= Ce'~"*(I + a cosqx)" (DSW-n), n =0, 1, 2, . . . ,

—ki) & k„&ki), q = 2kom (m = a 1,+ 2, . . . ), (12)

In three dimensions, it gives rise to a (local) den-
sity profile

p(r) =gp(x)p(y)p(z),

where, for a real (cf. below}

p(x) = (p,/g)'i'(I+ n'+2o cosqx)"
n n 2 2j

(13)

(14)

where p, is the global density given in Eq. (7).
Clearly, the expressions for p(y) and p(z} are sim-

gus" (~;u) = „,„„(DSw-n).ns))) (1 + Q cos)iu)
j-p gj

(20b)

= 42n~,"n»& (21)

Figures 1 and 2 show graphs of these functions for
three values of e' and several values of n. The
tendency towards a "static classical lattice" as n

grows is appreciated. In fact, one can prove this
for at least one value of o(=1), as then, for u= 0, .

"n'
g& (1 ~ 0) —22)) g 22n/(3n}

zj =0
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where the Sti rling approximhtioe

lnm 1 = min m —m + ln42mm,

suit& the uncommon th d
last step of E . (21)

ir term wasas used in the
o q. 21 . We have also that

(22}

Ff

g.""(i;0)=2'" g(, ".)I., g„'"(&;0),
i =0

(23)

since, from Eq. (16),

n 2g
2 f n

for all i non-ne a igative integer, the last ine u

f p ica ion of the du lic
us, gus" (1;0) also d'a so diverges as

s er an &2'. I'urthe
"inter sites" u=+1, one has
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lim g„(1;u)=6(u) (28)

for any real non-n
fact, a stronger ver ' . an

on-negative a (equalit if

h d, l f
r version of Eqs. (21 an

me y, from Eq. (20a) and (21)

Dw 1 ~g„(1;u) = [-,(1+co sou)]"/I1 ' = — u 2„- 2(1+co sou) ]"v'2nv

if u=0

(28)

The above properties together wi th the normaliza-
, which is independen

the theorem':
ent of n, leads to

gDw(& .+1) (1 )2n ~ 2i =0 if o. ~1
i =0 n »1

(26)

for both families DW-n and DSW-n.
pro ile about each si

istic of a "stati
site character-

s a ic classical lattice. "

gDsw(~ ~ ~ 1) —(1 ~)2" =0 if (@~1I -e
i =0 n »1

(26)

III. HARTREE-POCK ENERGY AND

DIRECT VARIATION

and, using Eq. (24) 7

(o' '+ 1}~ g (u ) + 1) (27} v =v& r-.r, , ), v, constant, (30)

For a Hamiltonian E . 1q. with a 5 interaction,
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the energy with HF determinants Cp,

E = (4'ol&l@'o»

will contain potential energy

(31)

N 1./2 3

(4,~v, g &(r,, )~C',) ™v,) p'(x) dx . (32)

In terms of dimensionless energy per particle e and

coupling constant A defined as

s'(P) = 0 and s"(j3) )0 (38)

was substituted into Eqs. (35) and (36) and the re-
'sulting non-positive energy differences

should.
A direct va, riation of Eqs. (35) and (36), in the

remaining parameter P, was carried out numeri-
cally for each value of the coupling A. The value P
satisfying both

s = 2ME/h k+, X = 3M voko/m'k', (33) ~s(Z) -=~(1,P; X) —s,„(Z) 0 (39)

the plane-wave (PW) HF energy, i.e. , Eq. (31) with
a determinant made of PW orbitals Eq. (6), is just,
for g=4,

c»(X)=1+X. (34)

On the other hand, the corresponding evaluation of
Eq. (31), with HF orbitals Eqs. (12) and (15), is
somewhat tedious but straightforward. We thus
simply state the results.

For the "density-wave" (DW-n) orbitals one has,
putting P

—= ~n P, for g=4,

sn„„(~m ~, P; X) = 1+12m'. Z,"=.(",)'i'II'

are plotted in Fig. 3 vs -A. , as only for attraction
is ~e ever non-positive.

Bifurcation points in the energy [equality in Eq.
(39)] occur for a well-defined critical value of
P'=P„ for each family member. The "transition"
to the new (nontrivial) state can be characterized
according to the way in which the long-range order
(LRO) appears in the density profile: smoothly or
abmPtly; and we have (i) first order (abt'uPt ap-
pearance of LRO) if P, &0, (ii) second order
(smooth appearance of LRO) if P, =0. We further
note that all but the first member (n = 1) of the
DSW-n family is stabler than the PW state for
coupling X weaker than the critical value sufficient
for unstabilizing the PW state, under attractive
6 interaction, which can be found from Eq. (B12)
to be (for PW-Fermi cube)

(35)
A. & —&

———0.5555. . . (instability) (40)

the energy depending only on ~n~', we henceforth
take n*= z for this family. The last inequality sig-
nifies that the energy is minimized in the param-
eter m is non-negative) for the lowest value of jm]
permitted by Eq. (12), namely, ~m~ =1.

For the "density-standing-wave" (DSW-g) or-
bitals, assuming o, *=o (cf. below), which allows
reducing double to single sums by using the sum
rule (Appendix C), one gets with P=—n', for g=4,

„((m ~, P; X)

'— 1+ 12m aP Zi =o 2$ a&P

E» =.(:",)I.,P'

Z;"=.(,'",)I„P'
(~n (2n) pi) snss -n(1 p P t )t (36)~f =0

where, again, minimization in m gives ~m ~= 1, by

inspection. The assumption of + real is suggested
by the result, easily proved, that

,„,((m(, o., o.*;X) e,„,()m (, o.*= n, X),

(37)

if A &0, namely that the energy is not lowered (at
least for n. = 1) by taking o. complex, for an attract-
ive 5 interaction. Both Eqs. (35) and (36) reduce
to the PW case Eq. (34) as P - 0, as of course they

and is marked on Fig. 3. [The corresponding value

"10

FIG. 3. HF energy gain 4e, (Kq. 39), vs coupling
parameter & for the delta interaction, in dimensionless
units defined in Eq. (33), for both orbital families and
several values of n, corresponding to the "order para-
meter" value P which minimizes the respective energies
Eqs. (35) and (36) at each (negative) value of ~. Open
circles denote bi.furcation points. Shaded "edge" de-
notes the critical value- of ~ =- s = —0.555. . . , below5

which the HF PW state with Fermi cube filling can
rigorously be established to become unstable (cf. Ap-
pendix B) to the appearance of a lower-energy HF state
with inhomogeneous local density p(r). All hut the first
(n =1) member of the "density-standing-wave" (DSW)
family are seen to appear, with greater stability than
the PW, at aveaker coupling. (The case DW-1 was dis-
cussed in I.)
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FIG. 5. Critical value of ~, i.e. , at which the new
HF energies begin to be stabler than the PW HF energy,
for both orbital families, for several values of n (indi-
cated on dots), plotted against n '. Extrapolation to
n ~ suggest &, =-0.08 for the "density-standing-wave"
(DW) family.
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FIG. 4. Critical P values, i.e., at which the new HF
energies begin to be stabler than the PW HF energy,
for both orbital families, for several values of n (indi-
cated on dots), plotted against n ~. A tendency to
achieve a zero (second-order transition) or very small
value„as n grows indefinitely, is appreciated'for the
"density wave" (DW) family, while it grows without
limit (first-order transition) for the "density-standing-
wave" family, as n grows.

for PW Fermi sPheye instability is -(4/3m')'i'
= —0.5131.]

Figure 4 shows the critical P, values for different
members of both families, plotted vs n '. Ex-
trapolation to n- ~, if possible, appears to suggest
that P, either tends to zero (second order) or, at
lea, st, to a very small value ("almost" second or-
der) for the DW family, while P, grows without lim-
it (first order) for the DSW family. Figure 5 shows
the critical A., values (which mark the bifurcation
points in Fig. 3) vs n . Again, extrapolation to
n- ~ indicates the limiting critical coupling values
of ——1.26 (DW) and - —0.08 (DSW).

IV. DISCUSSION

The results presented, though here limited to
5-potential interacting particles, can be applied to
the study, in a self-consistent HF picture, of pos-

sible long-range order in the ground state of such
N body sy-stems like (1} nuclear matter, particu-
larly &-clustering effects' at subnuclear densities
(i.e. , at the nuclear surface); (2) neutron matter,
particularly crystallization, 4 probably at supranu-
clear densities; (3) He' and He4 systems; and,
(4) the electron (or Wigner) lattice problem, ' for
which, as the interparticle forces are repulsive,
spin-ordering can be introduced in the generalized
orbitals, as in I, to yield (considerably) stabler
states for repulsive 5 interactions. These applica-
tions are in progress.

APPENDIX A: HF SELF-CONSISTENCY

A brief sketch is given here of the proof that t'he
generalized orbitals Eq. (8), which include as spec-
ial cases those studied in this paper, Eqs. (12) and

(15), explicitly satisfy the HF equations (4) a.nd (5)
for occupied states. The proof is done in one di-
mension, the extension to three being direct.
Equation (8) can be rewritten

xexp[i(n, +n, l, + l, —21,)qx] (Al)

where for simplicity we take ~= o,*, and the sums
are over all non-negative integers allowed by the
binomial coefficients present. The kinetic energy
term in Eq. (4} is then

( ')(',)(' ')(', '),„.. ., . (kn(n, nn, kq(, —2()q('
ill'3'8

L, /2
x dx exp(i[h —h'+(n, 1, + l, —2l, —n, l,' —l', + 21,')(l)xf

-I, /2
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which, since in the limit L ~ the integral gives L6~ ~ „where L is an integer, reduces, given the con-
ditions on occupied k„and on q given in Eq. (8), to a constant times 5» . The proof is complete if the po-
tential energy part of Eq. (4) gives a similar result. We have, using Eqs. (5) and (A1), and letting the
variable x, =—x.+ x„

x ' dx2
-L /2 " -I /2-x 2

dxv(x) exp(- i[k'+ (n, +n, l,'+ l,' —2l, )q](x+x, )]exp[. i[h+ (n, +n, l, + l, —2l, )q]x~j

x( exp[i[k+ (n, +n, l, + l, -2l, )q](x+x,))exp]i[h+ (n, +n, 13'+ l," -2l,")q]x,]

—exp(i[k+ (n~+n21 + i~ —21,)q]x2] exp [i[h + (n, + n, l,"+ l,"—2l,")q](x+x,) })

provided only that the interaction is independent of
the center of mass —,'(x, +x, ) of the two particles.
If L»range of v(x) the x, dependence in the inte-
gral over x can be neglected and the integration
over x, carried out first. In analogy to the kinetic
energy case above, the final result leaves a con-
stant times 5,.„Q.E.D.

BP . 2 Bz/N&0 with P=—po
——

Po ~Pa
(B,l)

Proof. Consider a Slater determinant with N or-
bitals such that the local density is slightly inho-
mogeneous, but the total volume I.' and N are con-
stant, i.e.,

p(r) = p, + p, (r),

Ip, (r)ip. l
« 1,

j d'r p, (r) =0.
I 3

(B2)

APPENDIX B: HF PW INSTABILITY

A (sufficient) condition on the Fermi gas density
and coupling strength, of any Fourier-analyzable
two-body interaction, for plane-wave instability,
in the HF equations, to occur has been discussed
elsewhere. " Here we give a simpler proof, and in
the main text apply the resulting criterion to the
delta interaction used therein.

The theorem states that there exists a non-plane-
wave HF state with lower' HF energy F. as well,
therefore, as lozeex vacuum state energy W„when-
ever

expanding,

e(p, + p, ) =Z/L'-
= e(p.)+ e'(p.)pi(r)+ 2e"(p.)pl(r}+ (B4)

The HF energy difference is then

aZ -=Z —Z = d'r [e(p, + p, ) —e(p, ))

= -'e "(p ) f d 'r p', (r) e ~ ~ ~ (B5)

where the last of Eqs. (B2) was used. Since the
last integral in Eq. (B5) is non-negative, we have
that

~ (0~e"(po)(O~BP/9 p &~0. (B8)

The last result follows from Eqs. (Bl}and (B3)
which give

1 9&e"(p, ) =-
Pa ~PO

(B7)

W, = (r)+(V), (B8)

where U is the single-particle HF potential, de-
fined self-consistently by

(U&=2(v&, v=- Q v„, (B

and all. expectation values being between HF de-
terminants. But, using Eqs. (B8) and (B9},

This completes the proof regarding the HF energy.
Furthermore, the HF vacuum state energy

The HF energy per unit volume, for the homoge-
neous case, is

Z=(a)=(T)+(U)+(v) —(U)=W, —(v)
= —.'W()+ a( T). (B10)

e(p ) =-Z/L'= pP/» (B3)

while for the inhomogeneous case it is, by Taylor-
Since the tilde above refers to the inhomogeneous
state,
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bR &O~WO&WO+ ('I') —(T) &Wo, (B»)
the last inequality following from the fact that the
kinetic energy difference, by the Bayleigh-Ritz
variational principle, is non-positive. Note, how-
ever, that onLy when Eq. (B7) is negative can one
conclude anything definite" Ias this involves com-
bining the last two inequalities in Eq. (Bll)] and one
arrives at

BP/spo &O~Wo &Wo, (B12)

namely the existence of a lower- energy HF vacuum
state. In particular, any two-body interaction ca-
pable of binding in first-order with the plane-waves
determinant satisfies" Eq. (B12).

We note finally, that the instability (sufficient)
condition Eq. (B12) is more generaL than random
phase approximation (RPA) instability theory, as
this is generally" restricted to long wavelengths,
whereas the inhomogeneity allowed in Eq. (B2) can
be either (a.) of long wavelength, (b) of finite
wavelength (a periodic oscillation of finite "lattice"
spacing), or (c) an aperiodic oscillation including,

in particular, a solitary wave or "soliton"" (e.g. ,

a single "droplet" ) solution characteristic of non-
linear equations" such as the HF equations.

We state and prove a sum rule over binomial co-
efficients (zI) and quantities Q~, z, . .. symme-
tric in their integer indices k;. The identity was used
throughout the above to reduce double to simple
sums. It is

where the summation indices take on a/l non-nega-
tive values allowed by the associated binomial co-
efficients.

Proof. For n=1 the theorem is obvious. Suppose
it is true for some arbitrary positive integer value
of n. For n+1 one then has, putting j = k„+k„„,

Since now the sum over k„affects only the last two
binomials, we have

I

(C2) then gives

(C2)

(C3)

by the Vandermonde identity. The right side of which completes the proof.
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