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Potential function and probability distribution of a nonefiuilibrium system:
The ballast resistor
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The ballast resistor is a simple, one-dimensional device which has an instability far from equilibrium. The
steady-state solutions of the energy-conservation equation show a first-order phase transition. We derive a
potential function which is minimized in the steady state. The probability distribution of different states of the

system is related to this potential.

In recent years there has been considerable
interest in the spatial and temporal structures
which arise in systems far from equilibrium. '
These "dissipative structures, " of which the most
striking example is a living thing, maintain them-
selves by constantly producing entropy and charac-
teristically decay when this dissipation ceases.
They arise outside the linear range of irreversible
thermodynamics, and their general properties are
at present poorly understood.

Up to now, the most exhaustively studied dissipa-
tive structure has been the convection cell struc-
ture of a layer of fluid heated from below (the
Benard problem). ' We suggest that the ballast
resistor, a device which hBs been used as a practi-
cal current regulator for more than seventy years,
provides a simple and more easily analyzed exam-
ple which has the additional merit of being one di-
mensional. Although the basic mechanism of its
operation was elucidated many years ago by Busch'
and Zones' (its properties have also been dis-
cussed recently by Skocpol, Beasley, and Tink-
ham'), the ballast resistor has never been studied
from the point of view of irreversible thermody-

namicss.

The typical ballast resistor is a straight, horj. -
zontal iron wire in a tube of gas. The outside of the
tube is held at constant temperature. When a vol-
tage is applied to the wire, its temperature in-
creases. The wire will lose heat to the outside at
a rate A (per unit length). Given the description
of the gas in the tube, A. is a function only of the
local temperature T of the wire. The steady state
of a wire constrained to be at uniform temperature
is then described by

V =~A A. =~'a
where A is the resistance of the wire per unit
length, & is the current, and V is the voltage drop
across the wire divided by its length. This can be
expressed as

(A/R)l/2 V (AR)l/2 (I)

To examine the operation of the ballast resistor,
let us turn to a possible i-V characteristic (locus
of A = i'R) sketched in Fig. l. Both A, R, and
hence also V, are monotonically increasing func-
tions of temperature T; thus T also increases along
the characteristic in the direction of the arrow.
If for some temperature range 0 lnR/ST & 0 lnA/ST,
i will be a decreasing function of T, and the cor-
responding part of the characteristic will have
si/sV &0. The large values of dR/dT reciuired
may be obtained near a ferromagnetic or super-
conducting phase transition.

For most of the &-V curve, V is specified for a
given value of i . However, for i, & i & i, the char-
acteristic shows three possible values of V. A

simple argument shows that the negative-resis-
tance part of the characteristic, like the analogous
negative compressibility region of the equation of
state for a Van der Waals ft.uid, is unstable. As-
sume a wire operating at some current i„ i, i,
& Z „and consider a portion operating at point c
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FIG. 1. Characteristic i-V curve discussed in text.
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WdW =0.

We substitute W =-&dT/dx, where &(T) is the
thermal conductivity of the wire multiplied by its
cross section. After an integration by parts, we
obtain

dT =0,

We now use the energy-conservation equation
dW/dx = i'R —A to get our final result:

I

(2)l Tb
A. (A —i'R)dT =0.

TQ

Since a and b must correspond to points of the
characteristic with the same current, there is
only one such pair of points which will satisfy this
condition, and i will indeed be constant in the two-
phase region. We will henceforth define T, and T„
to be the temperatures which satisfy (2). It should
be noted that if we plot the characteristic in terms
of i' =A/R versus J ARdT, we will have an equal-

on the negative-resistance curve which fluctuates
towards higher V. This is a fluctuation towards
higher T and also into the region above the charac-
teristic curve where A. & i'R. Thus the tendency
will be for the temperature to rise even higher.
A similar argument shows points a and b are
stable, and so the wire will separate into regions
of temperature at points a and b on the curve.

This separation into regions of different uniform
temperatures constitutes a spatially ordered struc-
ture in some ways analogous to the Benard insta-
bility where a thermal gradient serves as a source
of energy dissipation and causes a spatially or-
dered velocity field. Here the applied voltage is
the source of energy, and a spatially ordered,
one-dimensional temperature field results.

When the wire is operating in the two-phase
region, the current &, is constant, determined by
the i-V characteristic curve, and the voltage drop
across the total length depends upon the relative
amounts of phases a and b. We should now like to
see how the ballasting current s, can be deter-
mined from the i-V characteristic in a way analo-
gous to the Maxwell construction for a Van der
Waals gas. We start from the requirement that in
each region of uniform temperature I; and Tb the
rate of heat conduction along the wire R' must
vanish. As will be seen from the final result, the
derivation must start with the quantity W' in order
to arrive at a formula that does not involve the
unknown 8'. We therefore write

area construction like that of Maxwell.
One might ask whether this phase transition will

exhibit a critical point. The critical p'oint can in
fact be reached by raising the temperature T~ of
the exterior of the tube. The two-phase region
exists only for 81nR/BT &8 InA/BT; as T in-
creases with T constant, 8 lnR/BT will remain con-
stant, but eventually A -k(r —Zo) and 8 lnA /sT
=k/A -~. At the critical point one will have 8 lnR/
ST tangent to 8 lnA. /BT at one point and S lnR/&T
&S InA/aT elsewhere. The behavior could be in-
teresting near a ferromagnetic phase transition
where 81nR/ST diverges. In practice, the diver-
gence will be rounded off so that a critical point
will still occur for the ballast resistor; the de-
tailed behavior could however be influenced by
the nature of the divergence for 8 lnR/8T.

The general form of a set of i-V characteristic
curves for various values of T, or gas pressure
will resemble pressure-volume isotherms for. a
liquid-vapor system, but with the pressure axis
inverted. The inversion is explained by the fact
that equilibrium systems become more ordered
as they move towards zero temperature, while
dissipative systems become more ordered as they
move away from equilibrium. A similar inversion
is noted for the Benard instability; this system is
invariant under a change in sign of the velocity
field, and the upside down coexistence curve is
therefore symmetric, like that of a ferromagnet.
The ballast resistor, like the pure fluid system,
does not possess this intrinsic symmetry.

To derive a potential function minimized by this
system, we must start from the energy-conserva-
tion equation:

A(T}—i'R(T}= A.
6fx dx (3)

T (x)
g(T(x))—= dx &(T')[A(T') —i'R(T')]dT'

wire

(( ( )dI**) (4)

This potential function is of the same form as
the approximate free energy deduced by Van der
Waals and Cahn and Hilliard' for the interface
between two fluid phases. As can be seen from the
derivation of Eq. (2), the two terms in the potential

This equation has the same form as Newton's sec-
ond law, with I" -A —s'8, I-1, Ch-~dT, and
d~ - dk. Boundary conditions of fixed temperature
at the end points of the wire correspond to fixed
locations for the beginning and end of an orbit.
We can therefore spare ourselves the need to do a
calculation and immediately write the mathematical
analog of Hamilton's principle:
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become equal when the steady state is attained,
like the two terms of the Van der Waals interfacial
free energy at equilibrium.

Up to this point, our analysis has ignored fluc-
tuations. If fluctuations are included, one finds
that an ensemble of identically prepared systems
is. distributed over a range of accessible states.

Consider first a ballast resistor operating at
constant current near a uniform steady state. To
account for thermal fluctuations, we add a I.ange-
vin-type fluctuating external heat source Q(x, t).
Then the energy-conservation equation (3) becomes

BAT B26T
c —— =-+AT +~

Bt Bx
+Q(x t)

where
dQ . dR

d,T

(5)

In the Appendix it is shown that if all energy
transfers in the system can be described by the
fluctuation-dissipation theorem, Q is a Gaussian
random process with spectral density

(Q'(k (u)) = —k T' 4—+ +A.k22, A dA.

T dT (7)

-(CX+XH) Txe (9)

To obtain (LT'(t)) for a single spatial mode,
Eq. (9) with 7 =0 must be divided by the density
of states L/v, where L is the length of the wire.
As we will not be interested in fluctuations of
wavelength shorter than &/(dA/dT), we will drop
the Ak' term in the numerator of Eq. (9).

Since ~T is related to Q by the linear relation
(5), it is a Gaussian random process. Since we
know the second moment (9) of tk. T(k, t), we can

Equation (7) is valid for small temperature excur-
sions about a locally stable state; unfortunately,
it is probably not valid for the more interesting
case of large fluctuations which could cause a
transfer from metastable to stable states. If we
Fourier-transform (5) and insert (7), we obtain

2k T 4A/T +dA/dT +Xk2
tk. T k

(o. + A.k')'+ (u'c2

Performing the inverse Fourier transform in the
time domain yields

(t ) (k ))
k T 4 A/T +dA/dT + ()k

rrcv a+~&'

wr ite its distr ibution function:

P[ .e(T )k)=NexpI ', N=T'(k)

(10)
But the increase in the potential (4) due to a si-,
nusoidal temperature fluctuation ~'I' sinks' is

gg & I g +g g2 + & I p„2/2~ y2

Therefore,

P[NT(k)] NxpIe=:.k(k)-- c„T 4 dT

(12)
Since t),2(k) is proportional to b, T'(k), orthogonal.
modes will contribute independently to the poten-
tial. The probability of any temperature configu-
ration of the entire wire will then be given by

P[NT(x)) = N exPI-'lkz[NT(x)f

A.k~g' A 1 dg

Probability distributions of the same form as the
Boltzmann factor have been found in other non-
equilibrium cases as well. '

We have thus shown how, near the uniform steady
state, the probability distribution for the tempera-
ture T(x) of the wire depends on the functional Z.
Haken' has shown that if the system satisfies the
rule of detailed balance, it will have a potential
function of a form resembling Z. The ballast re-
sistor may not always satisfy the detailed-balance
criterion; nevertheless, it is tempting to conjec-
ture that a distribution like (13) remains valid
even away from the uniform steady state. This
conjecture has a number of corollaries regarding
the behavior of the system far away from the uni-
form steady state. To the extent that these corol-
laries can be tested, they appear to be correct.
The testable corollaries are as follows:

(i) Absolute minima of (4) correspond to stable
states, and relative minima correspond to meta-
stable states. This is confirmed by the Maxwell
construction (2).

(ii) Since, if fluctuations are ignored, systems
evolve from less probable to more probable states,
C should always decrease. This may be confirmed
by differentiating (4) directly':

dT dT d dT dT dA. dT d dT
dt [

" dt dx dx g dx dx dt dx dt

dT 2 dT AT
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&„ is the heat capacity per unit length of wire. The
first term is always negative. The second term
vanishes because the temperature is fixed at the
boundaries, as was assumed in the derivation of
(4).

(iii) Given the existence of a probability distribu-
tion like (13), the theorem of Landau and Lif-
schitz, "ruling out long-range order in one-dimen-
sional systems, will apply. This implies that the
most likely state, corresponding to the minimum
of 2, which has long-range order, differs from
the mean state. An argument can be constructed"
which takes fluctuations into account while avoiding
not only any assumptions like (13), but also weaker
assumptions about relative probabilities of differ-
ent states of the system which would suffice to
prove the theorem of Landau and Lifschitz. This
argument indicates that the ballast resistor does
indeed lack long-range order.

We therefore conclude that the potential function
deduced from the macroscopic state equation of
the ballast resistor is in.timately connected with
its probability distribution. Whether this rela-
tionship can be extended into a general theorem,
analogous to the H theorem of classical statistical
mechanics, remains to be seen.
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sion of dc voltage in terms of the current:

V = sR"'+ z2R"'+ z'R(" + ~ ~ ~

They show that there is a general relation (for
h(&&«keT):

B(V2&«& k TR«+&&

Since our current is small enough to give a con-
stant resistance at constant temperature inR'""'
«R"', and therefore the higher terms in the ex-
pansion of V2„may also be neglected. We are left
with the equilibrium fluctuations. The mean-square
noise voltage across any length L of wire is there-
fore

x'+ l'
2

n t ~ BE (x' (u)dx' = —k TRl

where E„ is the noise in the electric field at any
point, and Jo E„dx is a Gaussian random variable.
A theorem of Chandrasekhar" states that if (14)
holds, then V„(k, v) is a Gaussian random variable
with

(V„(k, (&&)'& = (2/&&)kaTR,

where V„(k, ur) is defined by

I- /2

V„(k, (u) = E(x, (u) e'~dx.
-I.i2

Now we can calculate Q, (k, &u). Since the mean
power delivered is i R, Q, is the difference be-
tween the instantaneous power delivered and i'R
(we take the limit L-~):

Q (k ~)=— dxe "" dte '"'1
e

The spectrum of the noise source Q may be cal-
culated by treating it as the sum of two sources
of heat in the wire: random heat flows within the
wire and between the wire and the gas, which we

shall denote by Q„, and fluctuations in electrical
power dissipation due to Johnson noise in the wire

Q, . If we assume these are independent Gaussian
noise sources, then we have

&Q (k, ~)'& = (Q.(k, ~)'& + &Q&(k, &d)'& .

We consider first Q,. We may expand the noise
voltage, which may be a function of the applied
current, about equilibrium as follows:

(V &
—(V2&&o&+ j(V2&&» / j2(V2&&2& y. . .

Bernard and. Callen" compare this with the. expan-

x [2E,E„(x,t)+E'„(x, t)],

where E, is the mean electric field. E2 may be
neglected because (E'„&'~' «E,. Then,

&9 (k ~)'& = (4E',/R') (V.(k, ~)'&

8 E2 8" k TR= —gk T.R2 B —
~ B

A. and R are here the heat flow and resistance at
the mean temperature. We will now calculate the
remaining term Q„. Consider a single mode of
wave vector k' of the wire. This mode will satisfy
a Langevin equation of the form (near steady state):

e„„ t&. T(k, t) =- +Xk' t T(k, T)+q„(k, t).d 8Q

The gener alized fluctuation-dissipation r elation"
can be applied when the relationship between heat
flows and temperature gradients is linear. It
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implies directly that

(Q„()., a)') = —k 7' +xk')
2 2 8&

Vfe therefore conclude that

whenever the ballast resistor is operating in a
regime where heat flows at any point are propor-
tional to temperature gradients.
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