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Electron diffusion under the influence of an electric field near absorbing boundaries
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Numerical solutions have been obtained for the electron distribution function as a function of both energy and
position for the case of a uniform stream of electrons being absorbed at a collecting electrode under the
influence of a uniform electric field. Solutions are obtained from the Boltzmann equation for various power-
law dependences of the momentum-transfer cross section on electron energy. It is found that the electron
density distribution obtained by integrating the distribution function over energy varies significantly from the
conventional solution obtained by solving the electron continuity equation with drift velocities and either
transverse or longitudinal diffusion coefficients taken to be independent of position. The average electron
energy increases by —50% near the boundary for a cross section increasing linearly with energy making the
effective drift and diffusion coefficients a function of position.

INTRODUCTION

Electron drift and diffusion under the influence
,
of a uniform electric field in a gas has been the
study of extensive investigations. ' ' For pressures
of the order of 1 Torr or more each electron ex-
periences approximately 10' collisions per second,
and it has generally been believed that electron
motion can be represented to a fair approximation
by a drift velocity and a diffusion coefficient that
are independent of position. The present investiga-
tion is concerned with examining this premise and
concludes that for the large density gradients oc-
curring near an absorbing boundary this approxima-
tion is significantly in error.

Theoretical analysis of such electron motion has
been dominated by formulations using the Boltz-
mann transport equation, ' although some workers
have approached the problem using "mean-free-
path" methods. 4 ' The present paper follows
methods whereby the distribution function is re-
presented by the first two terms in a spherical
harmonics expansion in velocity space and on sub-
stitution in the Boltzmann transport equation one
obtains after some manipulation a second-order
differential equation in f'(e, z). The term f' is
the first or spherically symmetric part of the dis-
tribution function, e is the electron energy, and
z is the axial position. The validity of the two
term expansion has been shown' to be accurate,
at least for low electric fields and where there are
only elastic collisions. We assume the two term
expansion is also accurate for the cases of large
electron density gradients occurring in the ex-
amples discussed in the present paper. This
assumption is reasonable because the electron
mean free path & is of the order of only 1% of the
distance over which the electron density is appre-
ciably perturbed. We must await investigations

such as Monte Carlo' methods to test the validity
of this expansion near a boundary.

Although f'(e, z) is a function of z and thus it
would be expected that the diffusion coefficient
would be a function of z, from the time of Lang-
evin' in 1903 electron diffusion coefficients have
been regarded as being accurately given by an
average of &

~

v ~/3 over the velocity distribution
and to be independent of z. It was only in 1967 that
it was found" that measurements of widths of ele-
ctron pulses diffusing in an electric field indicated
that the effective diffusion coefficient longitudinal
to the electric field differed from the diffusion co-
efficient transverse to the electric field by about
a factor of 2 for hydrogen, nitrogen, and helium
and by up to a factor of 8 in argon. These mea-
surements were explained quantitatively in two
independent investigations as resulting from f'
being dependent on z through terms involving
spatial derivatives in the Boltzmann equation;
Parker and Lowke""' used an analysis specif-
ically applied to diffusing electron pulses, and
Skullerud" used an analysis similar to that of
Wannier'4 to determine the effect to first order
of spatial gradients in z.

Since these investigations, it has been assumed" "
that electron diffusion is represented by two dif-
fusion coefficients D~ and D~ which, respectively,
represent diffusion transverse and parallel to
the electric field where D~ and D~ are independent
of position. Such a representation successfully
provides" an explanation for the validity of the
partly empirical formula describing current ratios
as a function of gas pressure in the Townsend-
Huxley experiment. The difference between D~
and D~ arises because the average electron energy
and thus the drift velocity S" is a function of the
electron density gradient in the direction of the
electric field. A qualitative understanding of this
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difference can be given as follows. Representing
W by W, + W, (Bn/Bz)/n, the electron flux, nW
—B(nD)/Bz becomes nW, —(D —W, ) Bn/Bz if we
omit the term in BD/Bz; W and D are the local
drift and diffusion coefficients which are a func-
tion of z and 8', 3nd W, are assumed to be inde-
pendent of z. Thus the effective diffusion coef-
ficient in the electric field direction is D~ =D —5',
instead of D where generally D~=D. In this form-
ulation D~ is assumed to be independent of position
and no account is taken of higher-order effects of
density gradients that occur for example near an
absorbing boundary.

In the present paper the theoretical approach in
Sec. II is related to previous investigations using
the Boltzmann equation. Numerical examples of
solutions near an absorbing boundary for the case
of a steady uniform stream of electrons impinging
on an absorbing metal electrode are given in Sec.
III. We show in Sec~ IV that for the simple case of
elastic collisions with a power-law dependence of
the momentum-transfer cross section on energy,
the electron density distribution n(z) is independent
of E/N provided the gas pressure is such that
D, /W, is constant: E/N is the ratio of electric
field strength to gas density and D,/W, is the ratio
of the transverse diffusion coefficient to the drift
velocity for no density gradients. ln Sec. V we
discuss effects of back diffusion to an absorbing
plate.

II. THEORY

A. General

The Boltzmann equation for the distribution func-
tion f(v, r) of electrons moving under the influence
of a uniform electric field E is'

8m' Bf' 8zeE B
(3' Bz 3tH BE

(3)

(4)

where 1Vi is the mass of the gas molecules, N is
the gas number density, k is Boltzmann's constant,
e is the electronic charge, and Q is the momentum-
transfer cross section.

On eliminating f' from Eqs. (3) and (4) we obtain
the basic equation in f' for the first term or spher-
ical part of the distribution function. This equation
ls

Bf E~ Bf Bf Bf
v ~ + ~ ~ +

Bl Qv

where v is the velocity of electrons, r indicates
the position of electrons, e is the electronic
charge, rn is the electron mass, and f is such
that f(v, r) dvdr is the number of electrons with
velocity v in the range dv, and at position r with-
in dr. (Bf/Bt)„, represents the rate of change of

f in time due to elastic collisions. On representing
f in Eq. (l) by the first two terms of a spherical
harmonics expansion in velocity space, i.e.,

f(v, r) =f'(e, z)+f'(e, z) cos9, (2)

where 0 is the angle between v and E, we obtain'
two equations independent of 0 by multiplying
Eq. (1), respectively, by 2msin0 d8 and
2msin0 cos0 d0 and integrating over 0 from 0 to m;

e is the electron energy m~v~'/2. These equations
al e

(5)

The physical significance of the terms of Eq. (5)
are as follows. Changes with time of the electron
distribution function f'(e, z) can occur due to the
electrons changing their energy, represented by
the first group of terrors within the square brackets
of B/Be, or to the electrons changing their position
represented by the second group of terms within
B/Bz. The terms in the first group represent, re-
spectively, changes in electron energy due to (i)
collisions with the gas atoms, (ii) collisions of
the second kind due to the gas temperature T, and
(iii) drift or (iv) diffusion in the electric field.
The terms within the second group in B/Bz re-
present changes in position due to drift and dif-
fusion.

Simple exa.ct solutions of Eq. (5) that give f' as
a function of the two variables e and z are general-
ly not possible. However the equation has been
used extensively in two approximate forms. First-
ly, all terms involving B/Bz are set at zero and
numerical" and analytic solutions of f'(c) have
been obtained for various forms of Q(c). These
solutions give the electron distribution as a func-
tion of energy for a uniform distribution of elec-
trons in space.

Secondly, Eq. (5) has been used after integrating
over energy. The first group of terms in B/Be
then all vanish as the terms in the square bracket
are zero at infinite energy and also at zero energy,
assuming Q(0) is finite. The equation then becomes
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the electron continuity equation, i.e.,

Bn B
—

B(nD)nW-

where

8neE '" «Bf'
3m'N Q B«

(6)

(7)

state solutions, the electron flux I' =nW -B(nD)/Bz
should be independent of z as follows from Eq. (6)
where W(z) and D(z) are evaluated from Eqs. (7)
and (8) using the derived solutions of f'(«, z).
Tests as to whether I'(z) is a constant for all values
of z provide a useful check on the validity of the
solutions f'(«, z).

8n " «f'nD=, d«,

4~ 2 '~&
n(z) = ——' ' «'t'f'(«, z) d«,

PE 2

(8)

(9)

and n is the electron density. In Eq. (6) the drift
velocity W and diffusion coefficient D are actually
functions of z as W and D from Eqs. (7) and (8) are
functions of f', and f' is a function of z. But in
practice Eq. (6) is generally used with W and D
assumed to be independent of z. Furthermore,
the values of W and D are evaluated from Eqs.
(7) and (8) using values of fo(«) obtained from Eq.
(5) assuming that there are no density gradients.

In the present paper we obtain numerical solu-
tions of f'(«, z) using Eq. (5) with all gradient
terms present. As f' is obtained in detail as a
function of both «and z the electron density n(z)
can be obtained directly from Eq. (9). For steady-

I

B. Boundary conditions

We consider the case of a uniform and steady
stream of electrons moving towards an absorbing
boundary or metal electrode at z =0. The function
f' is represented as a two-dimensional array from
z =-h, far from the boundary to z=0, at the ab-
sorbing boundary and from e =0 to 6, E being
chosen to be so large that there is an insignificant
number of electrons with energy greater than K.
Position h is chosen by trial so that f' at z = —h

is effectively unperturbed by the boundary and
Bfo/Bz =0

As Eq. (5) is a second-order differential equation
in both e and z, we require boundary conditions for
f' at both « =0 and «and also z =- h and 0.

(1) At z = —h, f'(«, -h) is simply the conventional
distribution function obtained by solving Eq. (5)
omitting all terms in B/Bz, i.e.,

6m N ' ' «Q'd«
M E o 1+ (kT/e)(6m/M)(«Q2N2/E~)

(10)

where « is now in eV and E in V/cm. For con-
venience we have chosen the normalization con-
stant A =f'(0, —h) to be 10'.

(2) At z = 0, which is the absorbing boundary, the
effective boundary condition is f'(«, 0) =0. We re-
quire that electrons can pass into the surface, but
that none come back from the surface, i.e., it is
assumed that there is zero reflection of electrons
at the surface. With a two term representation
of f in spherical harmonics, it is impossible to
make f=f'+ f' cos0 zero for all 0 in the range
2m&0 & r as is appropriate for a plane surface.
As an approximation we set f=0 for 8 = m, i.e. ,
f'(«, 0) =-f'(«, 0) is the boundary condition from
Eq. (2). Then using the expression for f' from
Eq. (4) we obtain

yo(«0) I ~ f
NQ Bz Bz '

where the term in Bf'/B«of Eq. (4) has been omit-
ted in comparison with the term in Bf'/Bz at the
boundary; X=1/NQ is the mean free path of elec-
trons. The boundary condition fo/& = Bf /Bz im-
plies that f' becomes zero at a distance & behind
the boundary. As & is only of the order of 1% of

the region over which f' is perturbed by the bound-

ary we take as an effective boundary condition for
our calculations f'(«, 0) =0.

(3) At « =«we set f'(«, z) =0. It is assumed that
there is a negligible number of electrons having

energy greater than e. The value of E is obtained

by trial so that increa, sing «by say 50% produces
a negligible change in the derived values of f'(«, z)
and in particular of the electron density distribution
n(z).

(4) At « =0 we set eEBf'/B« =-Bf'/Bz. This
boundary condition follows from the requirement
that Bf'/Bt be finite at « =0. On dividing Eq. (5)
by «'t' to obtain Bf'Bt, all terms on the right-hand
side are zero at « =0 except a term in (eEBf'/B«
+ Bf'/Bz)/«'~' To prevent .this term becoming a
singularity we require eEBf'/B«+ sf'/Bz to be zero
at «=0. It is assumed that near « =0, Q is finite
and nonzero.

III. NUMERICAL SOLUTIONS

A. Distribution function

Numerical solutions of f'(«, z) have been obtained
using two different methods of solution. In the



y24, 0 A. HAAMP C ~pAR ~EHO~gE, J ~J. J

5
t

ined usinwere obtalne " . . l ar
etho, solut jons

w erh eby initla
first m . t' e scheme, .

d by evaluat-odifie0 )

pf was
' erion o

if ication of
mined by

berne with

' 't fort e
licit sc

c y
o

devel-t each iteration w

op d. Th
obtain conver ons

t be obtaineabled so lutions to
btain a so uence was oo

ment was ood Goodhe first method.

constan

seofaun or
dary at z =b db bo din absorbe

on ene gy

trons being
ce of the cr
resist „, e

V. Valuesthat ln eeach case
the characterls i

a proximately
0t z/x

D/p, for the three cai, /N was 10 P.75 x
and D/twas,

l.e. , E
y31 ~

V, respectlv y;
it or pressure

i D /W, to becula et d values of

104

LI 3c 10o
C2
L

10

10
0 0. 5 1.0 1.5

Energy, eV

"cm,2ith q =6xlor Fig. 1 but wiSame as foPIG. 2. r
E/N =. 0.75&&10 Vcm, = 5 Yor,
cm.

105

104

103
«)

8 103

102—

0, 6
101

0. 2

Energy, eV

3) as a func-0 cm sec
xo and posi io

V p—Q =60' cm2, E/N=l
= 0.315 cm.

2
101—

1, r, eV
0

Energy,

-'/'4, Z/Nor ' . twith Q~efor Fig. 1 bu w. 3. Same as or
=0.185x10 "Pcm, = 9.
cm.



ELECTRON DIFFUSION UNDER THE INFLUENCE OF AN ~ ~ ~

the three cases, to within 2%. The resulting pres-
sures for a temperature of 20'C were 3, 4.5, and
19.6 Torr, respectively. The advantage of per-
forming calculations at a constant value of D, /W,
is that the electron density predicted in the con-
ventional way by solving the steady-state continuity
Eq. (5), with D =D, and W= W, independent of posi-
tion, is the same for all three cases, as is dis-
cussed later in relation to Fig. 7.

Results in Fig. 1 and Fig. 2 were obtained with
the small effect of the term in kT of Eq. (5) effec-
tively set at zero by putting T =29.3'K. The de-
rived values of 8'o and D, at z = -h agree with val-
ues derived analytically to within 2/z using Eqs.
(7) and (8). For Q ~ e '~' it is very difficult to ob-
ta, in accurate solutions because f' is highly peaked
around e =0, as shown in Fig. 3, and a fine mesh
size in c is required to accurately evaluate the in-
tegrations for W and D. Also f' falls off relatively
slowly at high energies so that E must be made
very large. To satisfy the requirement that Q be
finite at c =0 we made Q=4.41 &&10 "for &~0.15
eV so that Q does not vary strictly as e '~' over the
whole energy range. Furthermore in order for the
numerical method" to converge it was necessary
for T to be 293 K rather than 29.3 K.

B. Average electron energy, drift velocity, and diffusion

coefficient

The average energy, drift velocity, and diffu-
sion coefficient are shown in Figs. 4-6 as a func-
tion of z corresponding to the cases of Figs. 1-3.

'm'
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O
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0, 7 0. 6 0. 5 0. 4 0. 3 0. 2

Distance from Absorbing Boundary, cm

O. l
- 0
0

FIG. 4. Values of average energy e, diffusion coeffi-
cient D, and drift velocity 8' derived from the distribu-
tion functions of Fig. l.

.8

—16Q=6xl0 c

in that, because of the boundary condition eE Bf'/9&
+ af'/&z =0, there is a reduction of electrons near
e =0 if &f'/&z &0. Thus this term causes an in-
crease in the average electron energy. This term

l. Average energy

From Figs. 1-3 it is clear that the shape of the
distribution function and thus the average electron
energy varies as a function of position because of
the influence of the absorbing boundary. The aver-
age energy is calculated from

, 6

2
5

LD

(e) = e'~'f, (e, z) de fo dE'

It is seen from Figs. 4-6 that for all variations of

Q with e that have been investigated, the average
energy increases due to the negative density gra-
dients that occur near the absorbing boundary.
This result is consistent with previous results"'"
obtained for an electron pulse moving in an elec-
tric field where the electrons ahead of the centroid
where sn/sz &0 have an enhanced average energy.

There are three terms involving z in Eq. (5)
which perturb the electron energy distribution
from the zero density gradient distribution, and
we label these terms, respectively, terms A, 8,
and C. Term A, involving Sfo/Sz in the first
square bracket, is probably the most significant

. 3—
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FIG. 5. Values of average energy e, diffusion coeffi-
cient D, and drift velocity W derived from the distribu-
tion functions of Fig. 2.
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FIG. 6. Values of average energy e, diffusion coeffi-
cient D, and drift velocity W derived from the distribu-
tion functions of Fig. 3.

can be given a physical interpretation in two equi-
valent ways. (a) The term accounts for a local in-
crease in input power due to diffusion current as
can be seen by multiplying the term by e and inte-
grating over all energy by parts to obtain

Ee 3 (Dn-)/az. Thus for an/az & 0 one obtains an in-
crease in energy because of heating by the diffu-
sion current. (b) An alternate physical picture in-
dicating that the average electron energy is in-
creased by the electric field in conjunction with a
negative density gradient is seen by the following.
For a uniform electron distribution about as many
electrons enter a small volume after being scat-
tered forwards as enter after being scattered in the
backward direction. Those electrons scattered
backwards are decelerated by the electric field and
have a slightly lower electron energy. Those elec-
trons scattered forward are accelerated and have
a higher electron energy. However, if an/az is
negative, the number of electrons scattered back-
ward is less than those scattered forwards and the
effect is a slightly increased average electron en-
ergy.

The second and third terms involving z in Eq. (5)
cause changes in electron energy because electrons
of different energies drift at different rates and
also diffuse at different rates. Unlike the effect of
term A either a heating or a cooling effect can re-
sult, depending on the energy dependence of Q.
For example for term C, if Q~a, as D-(e'~'/NQ),
electrons of high energy diffuse slower than elec-
trons of low energy and the increase of electron
energy resulting from term A is enhanced; sym-
bols () indicate averages over the distribution
function. More usually, as for a constant cross
section, term C results in "diffusion cooling. ""

2. Drift and diffusion coefficients

The derived values of drift and diffusion coeffi-
cients are shown in Figs. 4-6 as a function of z,
as obtained from Eqs. (7), (8), and (9). Of course
the whole utility of these coefficients is destroyed
if they become a function of position, as in the
present examples. Then it is simplest to regard
the distribution function f' as the fundamental
quantity, without reference to drift and diffusion
coefficients. Nevertheless it is of interest to de-
rive these quantities, as there certainly are local
coefficients which it is seen can either increase
or decrease as one approaches the absorbing
boundary. Whether 8' or D increases or decreases
on approaching the boundary is consistent with the
relations D-(e' '/Q) and W-(c ' '3(a/Q)/ae) from
Eqs. (7) and (8) for the various dependences of Q
and E, .
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1, 5 1. 0 0. 5

Distance from Absorbing Boundary, cm

FIG. 7. Normalized electron density calculated from
the distribution functions of Figs. 1-3. All curves are
appropriate to Do/Wo 0.315 om. ——

C. Electron density

Probably the most useful physical quantity is the
electron density, which has been evaluated as a
function of z using Eq. (9) and is shown by the
solid curves of Fig. 7. For the three cases con-
sidered, Do/Wo is constant at 0.815 cm. Thus if
the electron density is calculated in the conven-
tional way by solving the steady-state electron con-
tinuity equation, Eq. (6), with D =D, and W= W,
assumed to be independent of position, the analytic
solution n/n, =1 —e' o~ oisobtained for all three
cases where n =0 at x=0 and n -~, as z-- ~.
This solution is shown by the short dashed curve
of Fig. 7. D, /W, is thus a characteristic distance
over which n varies by the fraction 1 —(1/e) of the
density far f:."~m the boundary. It is seen that the
more accurate treatment from the Boltzmann
equation gives significantly different results, par-
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ticularly for the cross section Q ~ &.
Also solutions of Eq. (6) are shown in Fig. 7

using longitudinal diffusion coefficients" "D~ for
D, and W = lV„where D~ and W, are assumed to
be independent of position. Values of D~/D0 for
Q{1:e where m =1 and 0 are respectively taken"
as 0.18 and 0.5. The value of D~/D0 for the cross
section approximately corresponding to t =-—,

'
was calculated" to be 1.65. It is seen from Fig. 7
that these solutions are also not good approxima-
tions to the Boltzmann solutions, the departure
from the conventional solution using D, being over-
estimated. However from a more detailed analy-
sis, our numerical solutions from the Boltzmann
equation in the region where density gradients are-
small are consistent with the solutions obtained
using D~ for the diffusion coefficient.

IV. SCALING PARAMETERS

From the previous sections it is seen that in
general solutions of f0(e, 2) and n(z) will be de-
pendent on two experimental variables, E/N and
also N. However for the model situation where

the momentum-transfer cross section Q varies as
some power m of the electron energy, it is shown
in this section that n(z) is independent of E/N,
provided that N is chosen such that D, /W, is con-
stant and that the term in kT is negligible. Thus
&2(z) can be regarded as being just a function of
D, /W, .

The solutions f0(e, z) will depend generally
on both E/N and N. On substituting Q =Q,e and
performing the integration for the distribution
function when there are no density gradients we
obtain from Eq. (10) if T =0

612&Q2 q m+1

f'( ) =A-p -M(2m+2) E/N-

This expression suggests using t = e "/(E/N) as a
scaling parameter to eliminate E/N as a param-
eter We. substitute c =((E/N)'/( "' and

1 / (m+1) . (1/(m+1 )-1
d(

,N BZ+ 1

in Eq. (5), to obtain for the steady-state equation,
after dividing by E,

16&((m+I) S,/( „)„, Me Sf' (m+1) (E/N)'/' "' Sf'
nw tl m/(+ &-11 s 2 & Qof + 6m~ 2 (m-1 &/&m+1 & s 2 11/(m+1) 1

Plcvf c 0

(E/N)1/{m+1) e(m+ ] ) S2f 0 (E/N)1/(m+1) S2f 0

2Q ((m 1)/(m+1& E (&/{m+1& 1 (11)

In Eq. (11), the same parameter C= (E/N)'/(""'&/E

appears in front of the three terms in 2; E/N and
N are otherwise eliminated from the equation.
Thus solutions of f0((,z) are dependent only on C,
and provided N is chosen to keep C a constant,
solutions are independent of E/N.

On substituting Q= Q0e and e= (gE/N)'/' "' in
Eqs. (7) and (8) we obtain D, 00(l/E)(E/N)' " ' a,nd W,
cc (E/'N)2/ &m+». Thus D /W cc (1/E)(E/N)1/&m+» and
it is seen that keeping C constant is equivalent to
keeping D,/W, constant. The solutions f0(),z) and
n(z) can thus be regarded as being a function of
just D,/W„provided that Q 00m .

V. BACK DIFFUSION

To represent electron back diffusion to a metal
electrode from which electrons are emitted is dif-
ficult. For a steady-state one-dimensional case,
electrons will generally be emitted from the elec-
trode with an energy not equal to the equilibrium
energy of the applied uniform field, as in photo-
emission, or the electrons will be emitted in a re-
gion of highly nonuniform electric fieMs, if space
charge effects occur.

Yet our solutions yield some insight into the

I

processes of back diffusion for the idealized physi-
cal situation of a source of electrons introduced at
the equilibrium energy at a distance h in front of
the negative electrode. Such a source of electrons
might be introduced by a beam of ionizing electrons
parallel to the meta, l plate. Our model has some
similarities to other physical situations. For ex-
ample in the Townsend-Huxley experiment, elec-
trons initially emitted thermionically from a fila-
ment, enter a cylindrical diffusion chamber
through a small hole in the center of a plane meta, l
plate. After strong radial diffusion, there is sig-
nificant back diffusion of electrons against the
electric field to the negative plate, where they are
absorbed. In a further example, our model can
represent the back diffusion to a plate for elec-
trons emitted photoelectrically from the plate,
where h i.s the distance at which the electrons at-
tain the equilibrium energy appropriate to the ap-
plied E/N.

The solutions for back diffusion for the simple
case of an electron source at distance h from the
negative plate are directly related to the solutions
for forward diffusion to an absorbing electrode.
%e represent the solutions for forward diffusion of
the type given in Figs. 1-3 by f', (e, 2) and the solu-
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2 j /

(12)

tion of the uniform density ca,se by f', (&), as given
by Eq. (10). Then F(e, z) =f00(c) —f„'(e,z) satisfies
Eq. (5) and has boundary values such that F(e, -h)
=0 and F(&, 0) =f', (e). Thus F(e, z) is the solution
for back diffusion for our simple model that at
z =0 there is a source of electrons with the equili-
brium energy distribution and at z =-h there is an
absorbing boundary.

The values of electron density, average energy,
drift velocity and diffusion coefficient appropriate
to back diffusion, are then derivable from the
values for forward diffusion. We denote values
for back diffusion and forward diffusion with sub-
scripts 5 and f, respectively. Thus the densities
for back diffusion n, are related with those for
forward diffusion by

0. 5
C)

0 0
0 . 2 . 4 . 6 . 8 l. o 1.2

Distance from Absorbing Boundary, cm

FIG. 8. Back diffusion from a source at 1.2 cm, E/N
=10 "Vcm, P =3 Torr for Q =60' cm .

if it is assumed that the densities are normalized
so that n, =1 at z =0. The average electron energy
is given by

(13)

Wq = (Wo —W~n~)/(1 —n~),
D~= (D, —D~n~)/(1 nf) .

(14)

(15)

In Fig. 8 are shown solutions of n, W, D, and

(&) for the case of back diffusion to a plate 1.2 cm
from the injected electrons where @= 60@ cm'.
Values of E/K=10 "V cm'and Narc for a pres-
sure of 3 Torr at 20'C, as for the solution for
forward diffusion of Fig. 1. It is seen that the
average electron energy is reduced below the aver-
age energy for a uniform distribution. Such a re-
duction in energy is expected if the term repr'e-
senting the loss of energy due to diffusion against
the electric field is dominant. The fall off in elec-
tron density n is greater than that predicted by the
conventional solution using the continuity equation
with the transverse diffusion coefficient Dp Dp as
shown by the dashed curve in Fig. 8. The solid curves
were obtained by the two numerical methods and are
consistent with values that are predicted from Eqs.
(12)—(15)using previous values derived for forward
diffusion. However it is diff icult to obtain high nu-
merical accuracy using these equations when 1 —nf in
the denominator is close to zero.

(e), is the average energy for the case of no density
gradients. Similarly, using Eqs. (7) and (8)

VI. CONCLUSIONS

TABLE I. Character istic perturbation distance. The
distance over which the electron density varies by the
fraction (i —i/e) near the boundary as calculated by the
Boltzmann equation (B.E.) and by the longitudinal dif-
fusion coefficients (Dl/W) for Q cx: e . In all cases jap/Wp
= 0.3i 5 cm.

B.E. (cm) D~/S' (cm)

0
-0.75

0.i6
0.30
0.34

0.06
O. i6
0.52

(1) The conventional calculation of the electron
density near an absorbing boundary by solving the
electron continuity equation does not give accurate
solutions. The shape of the electron distribution
function as a function of energy varies with posi-
tion near the boundary. As a consequence the dif-
fusion coefficient, drift velocity and average elec-
tron energy become a function of position.

(2) Use of position independent, longitudinal dif-
fusion coefficients give solutions of only slightly
greater accuracy. Although longitudinal diffusion
coefficients are valid for small density gradients"
and also give good agreement" with the widths of
diffusing electron pulses in an electric field, these
diffusion coefficients cannot be used for all phys-
ical situations where there are large density gra-
dients.

(3) The values of Do/Wo, or more accurately D~/W»
are of value in giving an order of magnitude esti-
mate in the distance over which an absorbing
boundary disturbs the electron density where it
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acts as a collector for a steady stream of elec-
trons. Values of this fall-off distance, i.e. , the
distance over which the electron density varies
by 1 —1/z are compared in Table I.

Although the quantity Do/W, cannot be used in the
continuity equation to accurately predict electron
densities, it can nevertheless be accurately mea-
sured in the Townsend-Huxley experiment. This
conclusion is reached because for large chamber
lengths and high gas pressures, results' are ob-

tained to within 1/0, independent of gas pressure.
Then the values of D,/W, can be used'" together
with measurements of 8', to derive accurate mo-
mentum-transfer and collision cross sections using
Eqs. (5), (7), and (8).
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