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Virial expansion of the free energy of a molecule with N inequivalent associating particles
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It is pointed out that, for a system of X particles which can associate reversibly with a molecule, to second
order in perturbation the standard free energy is linear in each particle density plus terms in their pairwise
products. This means that, because of symmetry, only X(X+ 1)/2 standard chemical potential parameters
need be determined. The system is, therefore, highly overdetermined by available experimental studies.
Furthermore, this form for the standard chemical potential is sufficiently orthogonalized so that evaluation of
the individual elements of the chemical potential matrix can be made from data without noteworthy accuracy.
Such a fitting process is carried out using data for hemoglobin, with oxygen, hydrogen ions, chloride ions, and
2,3 diphosphoglyserate as the associating particle systems. The analysis allows one to fit the Hill index, the
Bohr effect, the equilibrium association constants, the shift of the oxygen gas pressure axis with changes in the
pH, the chloride ion and diphosphoglyserate solute concentrations, and with temperature. The oxygenation
data taken in a hyperbaric environment are interpreted to yield changes in the hemoglobin molecule's volume
as the number of associating particles is varied.

INTRODUCTION

¹p,,
with p, ,- =aG/BN, . Euler's theorem states that a
homogeneous function of degree h of the variables
N,. must obey the equality'

I G(N„. . . , N, ) =gN, '„' . (2)

Since an extensive parameter must be a homo-
geneous function of degree 1, Eq. (1) follows im-
mediately.

The derivatives of the free energy are contin-
uous, so one has the additional restriction on the
chemical potentials that

This is equivalent to saying that p. ; is a homo-
geneous function of degree 0. This foll.ows from
the corollary to Euler's theorem which states that
the &th partial derivative with respect to any of its
variables of a homogeneous function of degree h

is a homogeneous function of degree 0 —&. In this
case k —& is 0.

The explicit calculations of the thermodynamic

Gibbs's original work studying equilibrium in a
multicomponent system developed the concept of a
chemical potential p, ; to display the explicit depen-
dence of the Gibbs free energy on the number N;
of particles of the ith component of the system. '
Since the free energy is an extensive quantity,
Euler's theorem on homogeneous functions may be
used to determine the form of the Gibbs free energy
to be

variables for liquids, imperfect gases, and strong
electrolytes do not get much further in deter-
mining the general dependence of the chemical po-
tential p, , on the other particle numbers ¹,j 4 i, ,
than is arrived at by Landau and Lifshitz, namely,
that the free energy can have a term varying as
N;N, /V, with V the volume of the system. ' ' This
result follows directly from Eq. (3) since if p; is to
be a homogeneous function of degree 0, then it can
only have a component which varies with X, as
N, /V. Conversely, lj. , must have a component of
equal magnitude which varies as N;/V.

These results are possibly more familiar under
the name of a virial expansion. ' Any bulk variable,
that is, any extensive parameter of a homogeneous
physical system of indistinguishable particles, of
which (pressure)&& (volume) is a specific example,
can be expressed in terms of the number of par-
ticles as

PV =NkT[1+B(T)N/V +C(T)N'/V'+ j. (4)

The coefficients I, B, C, etc. , functions of T,
are called the first, second, third, etc. , virial
coefficients. They are the ideal gas, the pair
correction, the triplet correction, and so on. '
The powers of V in the correction terms are suffi-
cient to preserve the property that P V is a homo-
geneous function of degree 1. We have written the
virial coefficients with positive sign, but since at
temperatures sufficiently small with respect to the
gas critical temperature B(T) and C(T) are gen-
erally observed to be negative, there is a lowering
of the Gibbs free energy from that of an ideal gas
at these temperatures when the particle density is
increased. This must be the property of a system,
for example, which shows a Joule-Thomson cooling
with constant enthalpy expansion, sT/sp~„& 0. Even
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quantum systems such as 'He and 4He are observed
to have negative 8 and C below their critical tem-
per ature s.'

The second virial coefficient arises from expand-
ing the system potential energy in pair terms. For
systems with no first-order pair terms, say, a
Van der Waal's gas, these terms are from the
second- and higher-order perturbation terms. "
The third virial coefficient, the triplet term,
comes in this case from the third- and higher-
order perturbation terms from three-body poten-
tials, plus third-order contributions from two-
body potentials. This is the widely used result of
the calculations of Axilrod and Teller which is
used to discuss the nonpairwise additivity of the
total potential which the triplet term implies. ""

For a system with distinguishable particles,
the N's in Eq. (4) are generalized by distinguishing
them with subscripts. The virial coefficients also
are indexed to each pair term, each triplet term,
and so on. The terms are then summed over the
vir ial coefficient indices.

The useful properties of the virial expansion for
nonideal mixtures can be summarized as:
(i) The extensive parameters are homogeneous
functions of the particle numbers, and vary, in
successive approximations, as Q; N;g;, gB,~N;N/
V, QC;,~N;N, N~/V2, etc.5

(ii) The apparent grouping of the virial expansion
terms as pair, triplet, N-piet, interactions is
misleading, since though pair potential terms alone
lead to the second virial coefficient, both two-
body and three-body potentials contribute to the
third virial coefficient, and pair through N-body
potentials contribute to the Nth virial coefficient.
(iii) The contribution to the second virial coeffi-
cient coming from a second-order perturbation
between equivalent classical particles will produce
a relative lowering of the coefficient at low tem-
peratures, irrespective of the nature of the par-
ticle pair potential. '
(iv) The temperature dependence of the virial coef-
ficients will introduce an implicit temperature de-
pendence into the extensive parameter.
(v) The chemical potential of a system is not the
sum of the chemical potentials of its components
because of the nonadditivity of potentials. It is the
sum of the first virial expansion terms, plus half
the sum of the second virial expansion terms,
plus one-third the sum of the third virial expan-
sion terms, and so on.

A framework which makes evident the properties
of the free energy such as this one does would be
very useful for understanding the equilibrium prop-
erties of a system of a molecule associating re-
versibly with several particles. More precisely,
the physical systems which are of interest will

include a large number of identical, mutually non-
interacting molecules. Each one of these mole-
cules associates reversibly with several particles.
The observed average properties of this large
number of molecules will be the same as an en-
semble average over the available association
states of a single molecule. Hence we can com-
pare, without confusion, the statistical properties
of the association of a single molecule with several
particles and the observed mean state of associa-
tion of many molecules. This is stated quantita-
tively by saying that, since the configuration inte-
gral of X noninteracting molecules is the Xth power
of the configuration integral of one molecule di-
vided by X t, then the free energy of X noninter-
acting molecules is X times that of a single mole-
cule, plus an additive constant depending only on
X and T. Since X will be constant in any reaction,
X is a redundant coordinate. Hence we limit our
discussion to the standard free-energy change in
the association process, that is, the change in free
energy of a single molecule when it associates re-
versibly with N particles. If this "virial expansion"
framework has been developed it is in an idiom
unfamiliar to experimentalists dealing with such
situations. "" There are several such systems of
central physical and biological concern which are
studied but for which such a framework of the viri-
al expansion has not been used to simplify the
analysis of the experimental observations. Some
biological examples are:

(a) The ion-specific conductance systems in the
nerve axon membrane. The properties of these
systems of variable potassium- and sodium-ion
conductance create the form of the electrical
action potential transmitted along nerves. This
system associates hydrogen, magnesium, and
calcium ions. It also has a dependence of its free
energy on the transmembrane potential.

(b) The system controlling the chemical trans-
mitters in the synaptic cleft, the electrically in-
sulating gap between the nerve ending and the
muscle fiber membrane. 'This system has
a dependence of its free energy on the transmem-
brane potential, and it also associates reversibly
with hydrogen, magnesium, and calcium ions, and
the chemical transmitter, acetylcholine.

(c) The heme protein molecule, and in particular,
in hemog'obin form, reversibly associates oxygen
molecules, hydrogen, and other ions. The experi-
mental data for this system are available in abun-
dance, so we have chosen it as a system with which
to illustrate the possible advantages of using the
virial expansion framework to define the particle-
dependent and temper ature- dependent proper ties
of the free energy. The experimental data are
then used only to derive the magnitudes of a small
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number, N(M+1)/2, of second virial coefficient
magnitudes which are needed to define the free
energy of a molecule with N associating particles.

It is not a simple matter to translate with great
rigor the arguments used to derive the virial coef-
ficients for a fluid to arrive at the form of the free
energy of a single particle which can have several
particles associating reversibly with it." Instead,
we make a heuristic derivation of the form that the
change in free energy of a single molecule, the
so-called "standard free. energy, " must have when

any one of N particles is associated with it. The
result which we find is that the standard free-
energy change will be expressible in a virial ex-
pansion framework identical with the one expressed
above but with the volume V set equal to 1. %e
find that it has the linear Gibbs term, a term bi-
linear in the particle association numbers N„
which is equivalent to a pair interaction p.;,N, N, ,
a term trilinear in the particle association numbers
which is equivalent to a three-body interaction, and
so on.

These terms give the change of chemical poten-
tials of the individual particles associated with the
molecule the symmetry defined by Eg. (3), as if
it were a homogeneous function of zero degree.
This symmetry is useful to exploit to understand
how the change in the number of one particle asso-
ciating with the molecule can cause a change in the
number of a different particle that is associating
with the molecule.

As an example of the usefulness of explicitly
indicating the dependence of the particle chemical
potential on the density of the other particles in
association with the molecule, and the usefulness
of the symmetry of the interactions, we use this
form to describe the association of oxygen with
heme protein, and particularly hemoglobin. The
other associating particles in this case are pro-
tons, chlorine ions, and phosphoglyserates.

In the following sections we give a brief intro-
duction to the oxygen-heme protein system. In an
effort to be as explicit as possible the basic equa-
tions of association equilibrium are then presented
with reference to this particular system. The
form of the perturbed standard free energy is then
explored through conventional thermodynamic
perturbation theory. " The parameters that enter
into the chemical potential are then evaluated using
existing experimental data determined with the
oxygen-hemoglobin system.

OXYGEN-HEM E PROTEIN

The oxygen molecule binds reversibly with a
class of molecules which have the generic name of
heme pr ote in. These are ir on-porphyrin com-
pounds in which the iron is always in reduced form,

-2-
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FIG. 1. Typical berne protein oxygenation curve: Y
is the fractional saturation of the oxygenation of the
heme protein, po& is the pressure of the oxygen gas with
which the heme protein has been equi1ibrated.

Fe", This binding has proven to be interesting
not only because it is a process of fundamental
importance for animal life, but also because the
details of the process are fascinating. The binding
of oxygen to these heme proteins proves to vary
rapidly in a particular range of pressure of the
oxygen gas of the heme protein environment; see
Fig. 1, This property is important, for example,
in the use of hemoglobin, a particular heme pro-
tein, to transport oxygen in mammalian blood. It
allows the hemoglobin to become saturated with
oxygen in the lungs, and it allows the burden of
oxygen to be almost totally discharged in body
matter with low oxygen content. This signoidal
property of the oxygenation curve of heme proteins
has been studied widely, so that it is well docu-
mented as to the way the oxygenation curve changes
shape and translates along the oxygen gas pressure
axis as elements in the heme protein environment,
the acidity, the NaCl concentration and t":. concen-
tration of organic phosphates, in particular, 2, 3
diphosphoglycerate, are varied.

The chemistry of the heme proteins is well in
hand. The amino acid sequences in their structure
are known. The stereo chemistry is understood.
The structure of myoglobin and hemoglobin have



VIRIAL EXPANSION OF THE FREE ENERGY OF A MOI, ECUI, E. . .

been determined. The eonformational changes with
oxygenation have been determined. The thermo-
dynamics of the oxygen association process has
been presented. Finally, many models and theories
of oxygen binding have been produced. "

In the past these models have been explored in
terms of the ideal chemical equilibrium constants,
the first virial terms, for the successive addition
of oxygens to the heme protein. Pairing models
do modify these equilibrium constants to include
ad Ace pair interactions between oxygens. How-

ever, the effects of other particles which asso-
ciate with the heme protein on these equilibrium
constants, so that they depart from ideal behavior,
are then included by observing the manner in which
these equilibrium constants vary with the ambient
density of the other associating particles.

The method used here is therefore quite differ-
ent, since we predict the form of the variation of
the chemical potentials with all the probabilities
of association of all the particles, and merely use
the data to establish the constants of proportion-
ality. The form of the free energy shows why the
experiments must be analyzed in this way. With
such a dependence of the free energy on the parti-
cle association probabilities it is impossible to
make an investigation of the oxygen association
while varying a single other associating particle
number. Increasing the ambient oxygen gas pres-
sure does increase the probability of oxygen asso-
ciation with the heme protein, but it also varies the
numbers of the other'particles already associating
with the molecule. The chlorine ions, phospho-
glyserates, and residue ionization all vary at the
same time. The conclusion is that the experi-
mental data for oxygenation of hemoglobin appears
to be more complicated than necessary because
the experiments do not view a normal coordinate
of the system, but a combination of a number of
variations of a number sufficient to alias the more
simple behavior one might paively expect to see.

STRATEGY

The measurement of the fractional saturation of
the oxygenation of heme proteins as a function of
the ambient oxygen gas parti. al pressure is a com-
mon procedure. The typical form of the data is
shown in Fig. 1. In essence, this is a measure-
ment of the chemical potential of the partially
oxygenated heme protein as a furiction of the frac-
tional saturation of the ability of the heme protein
to bind oxygen. The measurement of the heme
protein chemical potential is made in terms of the
precisely calculable chemical potential of molecu-
lar oxygen gas. The analysis that follows burdens
itself with the study of the empirically determined

chemical potential when the type and concentration
of particles other than oxygen in the environment
of the heme protein are varied.

FUNDAMENTALS OF EQUILIBRIUM

~Hb"c~i ~ Hb~

The free energies of the particle systems are
written in terms of the respective particle parti-
tion =ums as

F„= pT tx Q exp[ [x-) /pT])-, . .
$

(7)

where E~, =G —PV is the Helmholtz free energy,
& is Boltzmann's constant, and 7." is the solution
temperature; (E,.), is the energy of the sth state
of the molecule M, , and N, is the number of in-
distinguishable molecules M; in the solution.
Stirling's formula for Nt and partial differentiation
give the chemical potential as

&T ln g exp[--(E, ),/kT] N,
$

The partition sum is proportional to the volume of
the solution, so p. is a homogeneous function of
degree zero. This result, inserted into Eq. (6),
leads to the law of mass action which relates the

Heme proteins can associate reversibly with
many particles, oxygen molecules 0„ ionized
hydrogen H', the chloride ion of NaCl, Cl, di-
phosphoglycerates, DPG, and other organic phos-
phates. Thus the equations of interest describe
the heme protein Hb associated with the molecule
a, HbM„which combines with molecule i, M;, to
give HbM, M, ,

M,. +HbM, - HbM, M,

Since heme protein associates more than two
particles this equati. on must be repeated & times
for each of the possible & states of the berne pro-
tein association for which an additional particle
can be accepted. For this reason the notation M,
representing a molecule in Eq. (5) will be gen-
eralized so that M, represents the ath possible
arrangement of associating particles. For N dis-
tinct particles there will be (N —1)!g„",[(N - n)!j
arrangements'. This varies from 2.5(N —1)! at
N=4 to 2.72(N-1)! for large N. In hemoglobin,
for example, if one considers the 4 oxygens and
the 24 protons equivalent, then with chlorine and

DPG ¹ 4, and there are 15 arrangements, which
we will henceforth call N states. Considering the
associated oxygens distinguishable gives 1956 N
states.

Equilibrium requires equality of the chemical
potentials g, of the separate systems:
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numbers of the particles by

e- (E( e)e3/kT
ia S

(Q e- (8 ()3/kT)(p e-(see)k/kT) (9)

These substitutions allow Eq. (10) to be written
in the form

=exp(p„/kT) exp[ . (F„,—-F„)/kT]
ia

= exp(p. „./kT)Z, .(T) .
K,, is the reaction equilibrium constant, a func-

tion of the temperatures. F,„—I',0 is the standard
free energy of the reaction.

For the associating particle systems of particu-
lar interest, the chemical potentials ean be taken
to be in their simple ideal form. The particle
concentrations are conventionally corrected to
represent an activity parameter. We dispense
with this nicety since these corrections are not
the central issue in our discussion. For oxygen
gas the partition sum can be carried out explicitly
in terms of the molecular mass, m, Planck's
constant h, Boltzmann's constant k, the absolute
temperature T, and the gas partial pressure to
give

e 2 P2 /k1 (kT ) 3 /2 (2 )(T)2 /k2 ) 3 /2P

= e-».&6&P at Z' =293 ~K
021 y

(18)

(14)

with P02 in Torr. Analogously, the other particles
have chemical potentials which are the natural
logarithms of the particle concentrations, plus a
constant varying only with the temperature:

I),„+= kT lnl0[pH —pH, (T)—],
)) e) =kT(lnce) —lnce, ), (15)

p ups kT (lncnpo inc Dp& ) .
0

N; is the number of the molecule M, , N, is the
number of heme proteins with the ath N state of
associating particles, and N„ is the number of
heme proteins associating with the ath N state of
associating particles plus the molecule M, . F.„
E„and E,, are the eigenenergies of these sys-
tems.

We are interested in the fractional saturation
parameter, 8;„of the molecule M, for its associa-
tion with the heme protein when it is associating
with the ath N state of particles,

N, ,/(N, , +N, ) = S;, . (10

&n Eq. (9) thefactorN;/p, e (s()&/" is, by Eq.
(8), exp(pk(, /kT).. The other two sums can be de-
fined in terms of E;„and I',0, the standard free
energy, the free energy, Eq. (7), with one parti-
cle

+i aoi~ — 8 (+i a& s i~ ~
~

PERTURBED STANDARD FREE ENERGY

We can use conventional perturbation theory to
derive an expression for the variation of the free
energy of a stripped heme protein with the addition
of associating particles. " The combined Hamil-
tonian of the heme protein plus particles is written
as

3' =&3 +g V, + p V;, + QV„k +
i ij ijk

(16)

Since, by definition, the standard free energy is

«'(N) = ).'T)e g e '—e ),r

by expanding the logarithm one finds,

F(N) F(0) Q V
1 g g iE(V()rsl ()c3p —)()m)

i r s

Z();)„-g): ). (19)

The u „are the canonical Gibbs probabilities for
the states s. If the states in the second-order sum
have energy differences small compared to &T,
the double sum reduces by closure, Q, V„,V,„=V'„„,
to be equal to the last term. In general one has a
lowering of the standard free energy in second
order for any interaction. Part of this second-
order contribution will be temperature dependent,
and part will be temperature independent.

The terms in Eq. (19) that depend upon a single
particle, such as V; and i(V, )„,i', will be weighted
by that particles occupation probability N;. The
terms in ig, (V, )„i2 depending upon two particles
will be weighted by the product of their respective

where &, is the Hamiltonian of the bare heme
protein and Q( V; is the change in &p with the addi-
tion of particles to the heme protein. This includes
the particle kinetic energy plus the two-body poten-
tial interaction with the heme protein. The terms
t/",

&
are corrections to the two-body heme protein-

partiele interaction due to the presence of a third
body, plus the two-body interactions between the
particles themselves. The V, ,, are the next-order
correction terms. We neglect the terms beyond
&0 and V,. since the relatively great distances be-
tween particles makes them probably small. Fur-
thermore, these two terms allow one to establish
the form of the virial expansion corrections, which
is all that is the intention here.

One has, from perturbation theory, the energy
of the heme protein with N associated particles,
in terms of the representation for the stripped
molecule states,

E(N)„=E„"'+Q(V()„„+Q (p')
' "(,) + . (17)IZ, (V. ),.i'

i s r s
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expectation, ¹Nj. For example, if the ith par-
ticle has matrix elements between the & and s
states of the heme protein so that (V, )„,wO, but the
jth particle does not so that (V,)„,=0, then the free
energy will increase linearly with ¹,and the
chemical potential of the ith particle is a constant.
If, on the other hand, two particles perturb, more
or less, the same states of the heme protein so
that (V, }„,000 (V~)„„ the free energy will increase
linearly with N,-Nj. In other words, if the parti-
cles perturb only the local states of the molecule,
such as the local vibration states at each heme
site, the free energy will vary as ¹ and the chem-
ical potential will be constant. If they perturb
states which must be described in terms of the
molecule as a whole, the free energy will vary
bilinearly as N, Nj and the chemical potential of
the ith particle will have a component varying with

This bilinearity in the second-order perturbation
has the effect of making the particles appear to
have pair interactions between them. The pair
interaction is not direct, since we omitted that
term in Eq. (16), but it is the result of the type
of interaction each particle has with the total heme
protein molecule. The third-order terms will
give an apparent triplet interaction, and so on.
The bilinear variation of the free energy with the
pairlike terms in N,¹,can be the result of the
second-order perturbation of the energy, but it
can also arise from the linear first-order terms,
V„„, and the nonlinearity of the distribution func-
tion, the last term in Eq. (19}.

The virial expansion of the free energy of a mole-
cule which associates with several particles will
thus be of the form described in the Introduction.
The first virial coefficient will be composed of the
terms linear in the probability of the particle to
associate. The second virial coefficient will be
represented in the particle bilinear probabilities.
The third virial coefficient in the trilinear triplet
probabilities, and so on.

In the following sections we briefly sketch the
method in which this virial expansion framework is
useful in analyzing a number of experimental ob-
servations on a particular heme protein, hemo-
globin.

protein would have the form,

F(N, . . . , N, ), —F(0, . . . , 0),

=g p, , N, +g gp, ,, N;N, , (20)

where N, is 0 or 1, depending upon whether the
ith particle is associated with the heme protein.

The change of the standard free energy, Eg 0
—E,0, in Eq. (12}is the change in the standard free
energy when the ith particle is certainly added to
a heme protein which is certainly associated with
the ath N state of associating particles. This ath
N state would be represented by the set of num-
bers, (N„,N„, . . . ,N, , =O, . . . , N„), with each N~,
taking on the values 1 or 0 for a given N state, and
with ¹ being certainly 0 for the N state with which
the ith particle can be associated. Hence

~a0 ap =&Hbi+ ~ij ja ~

jWf

For N distinguishable associating particles,
because of symmetry, there will be only N(N+1)/2
parameters of the free energy to be determined to
represent it to second order in perturbation.

In an experimental situation, with many heme
proteins in solution, the statistical probability of
association is observed. This is the saturation
parameter S„, defined in Eq. (10). In case the
saturation parameters of the different N states are
not distinguishable, the average of S„over all the
N states will be determined. From Eq. (12) one
finds that the variation of S;, with the free-energy
parameters p. ,j and the N state numbers Nj, is

dS), = S(,(1 —S,,)d[ p )/&T +K(~j

=$„(1—S„)d (inc, —inc, ,)

~Hbi + +jjNja ~~ ~

j&i

(22)

The basic drama of the whole system is now
revealed. To average S;, over the N states, write
it in terms of S;0, its value with all N; =0, plus
the correction given by Eq. (22), when the N~, are
not zero.

SECOND-ORDER STANDARD CHEMICAL POTENTIALS

The heme protein can associate with several sys-
tems of particles, oxygen, protons, chlorine ions,
and diphosphoglyserate, in particular. If we limit
the particles to these particles which reversibly
associate with the heme protein, then to second
order in perturbation and to first order in particle
number, the standard free energy of a single heme

j n

=S(0 ——Q $„(1-$„)gp,.~N~, /kz'. (23)
n a=i

The factor $,,(1 —S„}has a maximum of —,
' at

S;,=2. Near this point, for a change in chemical
potential of 3kT, S„will vary from 0.18 to 0.82,
and the factor S,,(1 —S„)will vary by +20%%u0. Out-
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side this range, the effect of the coefficient
S;,(1 —S;,) is to reduce the difference in S;, for
different N states. The first-order value for S&

then will be given by Eq. (23) with S;,(1 —S,,) taken
equal to the constant S,. (1 —S,.). The average is then
over +g~~ which ls by deflnltlon S~ Iteration of this
solution in Eq. (23) by substituting for S,,(1 —S;,')
will develop small corrections in S;S, Since we
neglected these terms at the outset, we are logi-
cally correct to neglect them now.

This means that to first order in the particle
associated N-state numbers, N~„ the N states can
be averaged in Eqs. (12), (21), and (22) by replac-
ing S;, by S;„and¹,by S,.

All the standard free-energy differences, Eq.
(21) for the particles depend more or less on the
association probabilities of all the other particles.
Hence, if the association probability for an oxygen
at a particular heme site, So„, is changed, then the
standard free-energy differences of all the other
particles change. But this leads to a change in the
association probabilities of these other systems
by Eq. (22), for all particles which are not satu-
rated, S,. =1, or stripped, S~ =0. Hence the stan-
dard free-energy difference with respect to the
subject oxygen must change, and it can never be
constant except under the special condition that
all the other particles are stripped or saturated.
A change in temperature induces a similarly in-
volved set of variations. This is so although the
chemical potentials of the free particles, the
first term on the right in Eq. (22), with which the
berne proteins are in equilibrium are held con-
stant. Holding the pH of the electrolyte constant,
or the concentration of NRC1 constant does not in-
sure that the number of protons associated with the
heme protein residues, or the chlorine ions asso-
ciated with it are constant. It is, in fact, these
second-order adjustments of association proba-
bilities that account for the rather bizarre be-
havior of the oxygenation curve as the properties
of the surrounding electrolyte are changed. In the
following sections we discuss the determination
of the free-energy parameters of a particular heme
protein, hemoglobin, from experimental data. The

basic tactic used in understanding the experimental
data is one suggested by Eq. (22). The change in
the chemical potential of particle i, say the sur-
rounding oxygen gas, when the association proba-
bility of that particle is held constant, dS; =0,
and the association probability of a second particle
is changed from stripped to saturated, dS& =0-1,
is just p. , ~ except for a correction for the second-
order changes in the S~ of the remaining particles.
The second observation is that the major effect of
the change in the association probability of a par-
ticle on the behavior of the other associating sys-
tems occurs when that particle's association pro-
bability is &.

OXYGEN-OXYGEN TERMS

A heme protein can have several sites for binding
oxygen molecules. Call the saturation parameters
for these sites Sp2' where the index i distinguishes
the different heme binding sites. According to Eq.
(22) we have, for the oxygens,

dS„, =S„;(1—S„;) d(lnp~) —Q po„jdS, kT
-J ~o2$

w'ith similar equations for the non-oxygen parti-
cles.

The experimental data do not distinguish the
separate oxygen particles, so we must average
S»,. over the i sites. The averaged saturation pa-
rameter is quite universally called F.

(25)

where N, is the number of heme sites that can bind
oxygen. If one observes the average oxygen satura-
tion parameter ~, it is impossible to determine
more than the mean of p, »;,», since to first order
in the particle saturation parameters only its mean
is observed. Represent the mean as p, ,2». The
set of equations, Eq. (24), averaged as in Eq. (25),
then have the solution with all solute concentra-
tions constant Rnd only lnppg vRrylng,

Y'(1 —Y) d lnP„
1+ Y(1 —Y)[(N, —1)p.,»,/kT-N, g; „,(p02;/kT)' S;(1 —S;)]

One of the earliestattempts to describe this system
was made by A. V. Hill in 1910. He wrote a rela-
tionship between the oxygen saturation parameter

. & Rnd the oxygen gas pressure po, in the form that
it would have for an nth order association:

To represent the observed sigmoidal oxygenation
curve, the Hill index n must vary w'ith ~. For
hemoglobin, for example, near Y =-,', n-3; while
for Y-O, or 1, n-l. According to Eq. (27) one
has

Y =Kpo~/(1 +Kp~) . (27) dY =nY(1 —Y) d lnPO, . (28)
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Vfe conclude therefore that n is defined by Eq.
(26) to be the reciprocal of the denominator on the
right-hand side. This proves to be a remarkably
accurate prediction of the ~ dependence of n in
terms of a constant chemical potential parameter,
p»p2 Tyuma PId a ~. give a plot of n as a function
of logP„ in their Fig. 7." These data were taken
for hemoglobin stripped of DPG in low NaCl con-
centration and at fixed pH. As we can show from
the magnitudes of the parameters determined
later, the terms in the sum in the denominator of
Eq. (26) contribute 5%%uo to this term, so they can
be ignored. The DPG concentration is zero, so
SDPG is zero. Apparently the NaCl concentration is
low enough so that $« is nearly zero. The proton
density S„ is near 2, so it is the major correction.
In this case p.»» is determined by the peak value
of n, 2.5, to be -0.8&T,. The width of the n curve
at F=4, ~, is slightly greater than predicted. This
extra width can be explained by allowing the indi-
vidual oxygen-oxygen terms- to vary from -0.BENT,

by +0.101;. Thus these experimental data appear
to be in excellent agreement with Eq. (26). Here
and in the remaining text these energies will be
given in units of &To, the thermal energy at room
temperature.

Tyuma et at. also graph & for hemoglobin in
2D~@ DPG. Using the values for the oxygen-DPG
chemical potential derived below, the correction
of the DPG-dependent term is 0.09. For this case
the peak value of ri is 3 and p, o2» is determined to
be -0.80k'To, in good agreement with the stripped
case. The width of the n-dependent curve suggests
a slower variation of n with ~ than would be pre-
dicted by a constant coefficient of the Y(1- Y) factor
in the denominator of Eq. (26). This is to be ex-
pected since the associated DPQ density also
varies with ~. For these data SDpG is near one and
it decreases with &. Hence the correction in-
creases as F approaches 1. The net effect is to
reduce the variation by a factor of about 2 as ~
goes to 1. As F goes to zero the correction dis-
appears, so the variation of n on deoxygenation is
predicted to vary as it does in stripped hemoglobin.
This is the behavior reported by Tyuma et aL.

Integration of Eq. (26) yields the true chemical
potential, that is, the particle-dependent chemical
potential as

—4 Q J
"' S,. (l —S,.)dF

f +02 1/2 (20)

The valence number N, has been taken that of
hemoglobin, 4. The last two terms in this equation
r epre sent the off -set between the ~ = 0 and F = 1

~ lnpo2 5y ~Ho2 1 ~&Hn~

d(1/T) ' +
k kT d(1/T) ' (30)

Benesch et a&. find the derivative to be -5500 'K
for stripped hemoglobin with NaCl 0.1 M at pH
7.3, and Y =-,'." The first two terms of Eq. (30)
yield a factor of -7000'K, part of the difference
must come from the last term. The rest of the
difference must come from the variation of the
chemical potential of the heme protein with ther-
mal contraction.

The effect of hydrostatic pressure on the chemi-
cal potential is determined by the molecular vol-
ume,

(31)

According to Eq. (22), observation of the shift of
the hemoglobin oxygenation curve will determine
the change of the difference of the standard chemi-
cal potentials of hemoglobin and hemoglobin with
one additional oxygen molecule. This experiment
has been done. " The result is that kTB lnP„/SP
=-300 A' at F = 2, pH = 7.1, DPQ solute concentra-
tion 4.8 mM and the CI ion solute concentration
unspecified. This result says that, under these
conditions, the volume of the hemoglobin molecule
with oxygen is smaller than the hemoglobin mole-
cule without oxygen by 300 A'. By analogy we ar-
gue, therefore, that thermal contraction, which
increases with 1/T, should also lower p, „o2 and
thus increase the magnitude of the -7000'K term.
At this point we wish only to make the point that
this standard free energy difference must have a
temperature dependence large enough to make the
last term in Eq. (30) equal, at least, to 5T'K.
For positive terms in pH» this would confirm the
yrediction of the 1/T dependence of the terms in

Eq. (19), and in fact we find all the terms except
p, »» to be positive. The temperature dependence

asymptotes of the oxygenation curve in lnl Y/(I- Y)].
For hemoglobin the oxygen-oxygen term contrib-
utes about 2.4 to this off-set, the protonation,
0.12 at pH 7.4, and the NaCl and DPG have con-
tributions that could account for amounts equal
to that of the oxygen-oxygen term. The data of
Tyuma et al. give this factor for stripped hemo-
globin as 3.6 at pH 7.4 and 3.2 at pH 9.1. The
unknown NaC1 concentration could account for the
differ ence.

The temperature dependence of the translation
of the lnP» axis of the oxygenation curve is given
by Eq. (22). If the oxygen saturation parameter
F is held constant, then the temperature variation
of the oxygen-heme protein standard chemical
potential must be compensated for by a change in
the chemical potential of the oxygen gas. Hence,
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obviously will vary with oxygen saturation and the
concentration of the other saturating particles in
the solute. We will return to a consideration of
this aspect of Eq. (30) later. The pressure varia-
tion of the standard chemical potential will also
be discussed at length below.

OXYGEN-D IPHOSPHOGLYCERATE TERM S

It is observed experimentally that one of the
systems with the strongest interaction with the
oxygen-hemoglobin system is 2, 3 diphosphogly-
serate, DPG. There are several published experi-
mental investigations of this system. The mea-
sured shift of lnP», and in particular, the change
in oxygen gas pressure at ~ = &, with change in the
DPG solute concentration, allows one to use Eqs.
(12}and (21) to derive both the equilibrium asso-
ciation constant for DPG at & =2, and the linear
contribution of DPG to the oxygen-hemoglobin
standard chemical potential. Explicitly,

I r,~ lnP„I,=,(,

DPG
I"DPG

'

P'»npo ~ s ( Ss )P»s ~ dSnpo
0 0

(32)

The shift in lnP» at F =&, chlorine ion concen-
tration 0.1 M, pH 7.3, as the DPG solute concen-
tration is varied from zero to an. amount sufficient

to saturate the DP G association, is observed to be
1.4kT, ."'0 The terms in the sum in Eq. (32) are
calculated from the parameters of the other asso-
ciating particles, as determined later, to be
0.5kT„. hence p, 02DPG is 1.9kT, .

Since the chemical potential of the DPG solute
is proportional to the natural logarithm of the DPG
solute concentration, Eq. (12) may be written in
terms of the solute concentration c and the equilib-
rium association constant c0 as

s C C

1+c/c 0

The variation of the oxygen-hemoglobin standard
chemical potential, measured by lnp» at ~ =-,',
with variation of the solute concentration c then
determines the equilibrium association concentra-
tion c0 to be 0.1 mM at ~ = &, pH 7.3, and chloride
~concentration 0.1 M.

Equation (21) says that, symmetrically, the DrsQ
standard chemical potential must vary with the
oxygen association saturation parameter ~ as

dS]
I HDPG ~02DPG 0 I DPGi dy

where N0 is the oxygen valence of the berne pro-
tein,

The effect of this ~-dependent term would ap-
pear, for example, in Eq. (12). The association
constant will appear to vary with Y in this manner:

K„(Y,S, ) K„npo(O, S,)exp — g»n~ — g S, (1 —S,)popo, p, »n~ N, dY/kTDPG g g t f DPGt 02DPG 0 (36)

This equation allows one to determine the associa-
tion constant of DPG in deoxygenated hemoglobin.
As Y drops from &, the associated chlorine in-
creases. Using values of parameters determined
later, this equation predicts the association con-
stant for deoxygenated hemoglobin to be 3&10 ' M
in terms of concentration, for chlorine ion con-
centration of 0.1 M. The experimental result is
1.5X10 ' M." The difference is not significant.

Equations (34) and (22) also show that Snpo, the
association saturation of DPG will also vary with

Hence the oxygen-heme protein standard
chemical potential will vary with ~ and the asso-
ciation saturation of DPG. The contribution of
this term to the magnitude of the Hill index n has
been given above in Eq. (26}.

The temperature dependence of lnp02 will depend
on DPG concentration through the same standard
chemical potential parameters. The p, ,, will vary
to some extent as 1/T. Take t to be the fraction
that varies in this manner. Hence SDPG and the
other saturation parameters will vary with tem-

perature also. And the S,- will vary with SD~. In-
cluding the explicit 1/T dependence one finds the
DPG dependence of lnp02 to be

1s„,~ —
ss, M s„;s ~;s,.(l —s, ))

1 d lnSDpG

2T d(1/T) (36)

This factor has been observed experimentally to
be 1700'K for DPG solute concentrations of 0.25
and 1 mM, pH 7.3 and chloride ion concentration
0.1 M.' If one takes t equal to 1, the first factors
multiplying the last one equal 2400SDpG K, The
variation of inSnpo with 1/T will be negative, both
because of thermal contraction and because of its
standard chemical potential. At this state of our
knowledge of these terms the agreement is satis-
factory.
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OXYGEN, pH, AND DPG

If one includes only associating protons, H',
whose change in probability of association is noted
by a change in the ionization of a heme residue,
dH =de;, and DPG, one finds from Eq. (22), for
P=—1

d lnp02 1 dSo~ dz»

d(PH) „g kT " ' dz "" d(PH)
'

(37)

One should include a sum over i, where i in-
dexes the different residues which can be pro-
tonated. For a given pH range, only one residue
with a PK in that range will be changing its pro-
tonation number z». Hence we dispense with the
explicit summation. Equation (37) may be related
to a result due to Wyman which has been used in
the past to discuss the Bohr effect." This rela-
tionship is derived in the accompanying Appendix.

The factor dz;/d(PH), the differential titration
of hemoglobin, is a well known function. The fac-
tor d Sore/dz, is given by Eq. (22), and it is pro-
portional to Sn~o(1 —Sn~). Thus the left-hand side
of Eq. (37), which is called the Bohr effect should
be the same at vanishing DPG concentration, S&~
=0, and at large DPG concentration c greater than
2 mM. The experimental data display such a
variation. " This data allows one to determine
p. 02z; near pH 7.5 to be 0.07&Tp and ptppgz» to be
0.3kr..

These parameters now determine the variation
of the DPG association constant with pH: .

d lnK~~ p. gpgz.

d(PH) kT d(PH)
' (38)

The data of Benesch et al. give this factor as
2.41 for pH from 7.0 to 7.3, and 3.31 for pH from
7.3 to 7.8.' %'ith po~z» equal to 0,3kTO, the re-

OXYGEN, CHLORIDE ION, AND DPG

In the manner described above one can evaluate
the oxygen-chloride ion perturbation. For DPG at
zero concentration, stripped hemoglobin, available
data indicate that p02C, is 2.5kT„and that the
equilibrium concentration of Cl at ~ =2, SO~=0,
and pH 7.3, is approximately 0.06 M.' For a DPG
concentration of 0.25 mM, one must include the
variation of So~ with associated chloride and the
variation of associated chloride with DPQ.

A set of self-consistent parameters is obtained
by taking p nrcc& =0 7k&0. This drops the associated
chloride by about a factor of 3, and it also drops
the associated DPQ by a third so that the variation
of lnP02 is equivalent to an oxygen-chloride inter-
action of 0.28kro, as it is observed to be.20

spective dz,. /d(PH)'s are 8.1 and 11.1, values which
are in agreement with the differential titration
values &8

OXYGEN AND HYPERBARIC EFFECTS

The variation of the standard chemical potential
with pressure is formally written in terms of the

, true oxygen gas pressure at a given value of F by
means of Eq. (22):

k&
d lnp„dp. „dp„„&

dP dP dp

$»+~ d S» +P'02»

The available data give the variation of lnPo2 with
~ and DPH at pH '7.1 and unspecified chloride ion
concentration. " With DPQ saturated, it is -300 A'

at 7 =0.5, -450 A' at Y=0.2, and -240 A' at
& =0.8. W'ith DPQ at a' concentration less than
0.5 mV in the solute, . these numbers are, respec-
tively, -140, -290, and -80 A'. These data were
taken with nitrogen as the pressurizing gas. With
helium as the pressurizing gas, but with unspe-
cified environment, these numbers are, respec-
tively, -115, -205, and -15 A'. For the first two
sets of data the term in the sum which depends on
the DPQ saturation parameter yields the result
that,

ds,. ——S ) (1 —S g )t 02( . (41)

The factor S,(1 —S,) will as usual vary with &, At
this point it is sufficient to replace it by its Taylor
series expansion about its value at ~ = 2, where it
has a value represented by $0. This yields the
result

160 A3 (1 S } 1 + 02DM S 02DPG (4IQ)DPg kg DPG dp

This means that dp. o»~/dP has a magnitude much
greater than 160 A'; that is, the DPG, on asso-
ciating, contributes to the decrease in the hemo-
globin molecule's volume.

The derivative of Eq. (39) with respect to 1' will
have a constant term plus a term varying with ~.
A variation of ~, as we have repeatedly stated
before, brings about a complicated variation of the
saturation parameters of the other associating
particles. One must, in order to do a proper anal-
ysis, carry out an eigenvalue calculation to obtain
the relative shifts. However, the approximate
solution which we have used above is quite accurate
and we continue to use it here. This means that
in the derivative of Eq. (39) with respect to Y', the
factor dS, /d1' is taken from Eq. (22) as
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P02 "O2» g &»i
d Ydp dP +, dP

x i —S. ~ —S.
g z kT

(42)

The first term in Eq. (42) is evaluated from the
data as 350 A', independent of DPG or pressuriz-
ing gas.

The coefficient of the second term is determined
to be zero for the data taken using helium gas as

0
the pressurizing gas, and it is -150 A' for the
data taken using nitrogen as the compressing gas,
and variable DPG.

The conclusion to be reached is that DPG alone
does not determine these coefficients in Eq. (42),
but another particle, say the chloride ion, is also
of importance. The difference in the data taken
with nitrogen and helium gas thus could be ex-
plained by different chloride ion concentrations,
the sign of the terms in the Y-dependent term being
determined by whether the association saturation
S'; is greater or less than ~.

The data also indicate that dp, 2»/dP could be
positive. In this case the oxygen-oxygen coupling
term p, 02pp would decrease in magnitude with pres-
sure. This term would indicate that the oxygen-
oxygen coupling increases the volume of the oxy-
genated hemoglobin with respect to deoxygenated
hemoglobin. This would decrease the volume de-
crease contributed by the single-particle term
which was discussed in a preceding section.

We leave the discussion of the relationship of
these parameters, as well as the standard chemi-
cal potentials, to the structure of hemoglobin as it
is presently understood to a second paper. "

SUMMARY

For a mass of data we have shown that one can
determine the oxygen-heme protein chemical po-
tentials to second order in perturbation, which is a
linear approximation in the associating particle den-
sities, so that they form an internally consistent set
of parameter s. The magnitude of the parameters ap-
pears to depend little upon time or source. The
parameter p.o„„upon which the Bohr effect de-
pends, is invariant over the years of data at
0.07krpo The effect of DPG on oxygenation as re-
ported by different laboratories is approximately
1.9kT,.

The preliminary set of parameters which we
suggest as useful is the following one: p, 0202

= 0-.8kTO, p»»o —1.9kTO, p, »,, 0-.07kTO (for PK's
near 7.5), p,2c, , =2,5kT(), gnpos, . —0-.3kT(), p. »oc)
=0.7kro. The zero-order standard chemical po-
tentials for each particle system, p, 02, p,D~, pc&,
p,... are determined by the equilibrium association
constants, P~ at Y=-„KD~, Kc, , and PK;. Miss-
ing is the element p,~~,;, which could be deter-
mined from the variation of the Bohr effect with
chloride ion concentration. All of these standard
chemical potential parameters should be expected
to vary with temperature, in part, as 1/T.

The special point which is made in this approach
is that experiments with heme proteins, and with
hemoglobin in particular, explore planes through
an N-dimensional function space in which the
oxygen-heme protein association function is
mapped. The N dimensions are the saturation
parameter axes of the N systems of particles which
can possibly associate with the heme protein.
Although the solute chemical potentials can be held
constant, the experiments explore planes on which
most of the individual saturation parameters vary.
This means that what is being varied in a particu-
lar experiment is not only the oxygen saturation
parameter and the ambient oxygen gas partial
pressure, for example, but also being varied is
the number of residue protons, of associated DPG,
and chloride ions as dependent variables. The net
effect is to warp the oxygenation curve from an
analytically simple behavior to a much more com-
plex one.

This more complex projection is usually dis-
cussed as if it were simply a cut in the Y —P»
plane with the saturation parameters of the other
associating systems held constant. Hence the
common conclusion that oxyhemoglobin is not 100%
character iz able.

This is an essential difficulty of these oxygena-
tion studies. The resolution seems to be to eval-
uate, by successive steps, the elements of the
standard chemical potential matrix, the g;, , and
to gain insight from these more simple constants.
The associating systems are sufficiently orthogonal
in this representation so that the elements can be
evaluated from data without noteworthy accuracy.
They also describe something sufficiently physical
and sufficiently definite so that there is hope that
they will be of use to supplement the fund of struc-
tural knowledge already available.

One interesting result of this approach is its
contradictions, at times, of the tenets in this field
which have been established in the past using the
conventional view. For example, the fact that the
Hill index & is not 1 is usually taken to indicate an
attractive, or cooperative, potential between oxy-
gen molecules. Prom our results, Eq. (26), it is
evident that n will also be greater than 1 because
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of any interaction, of any sign, of the oxygen with

any other particle.

APPENDIX

The Bohr effect calculation can also be made
more abstractly by using the formal properties of
differentials. Since the free energy of a single
heme protein is a thermodynamic potential which
is determined by the state of the system and not by
the path by which it reached the state, dI' is an

exact differential. The Maxwell relations can
therefore be used to derive the relationships be-
tween several standard chemical potentials. This
type of calculation, which Wyman calls a linked
function analysis, proceeds as follows. " Differ-
entiate the standard free energy, Eq. (20), with
respect to two particular particle association num-

bers, z'; and F:
8 p Bp.O2

8 g Bg~;N
i

{A1)

with 9+/&I' = p, ,', and sE/sz, . = p, ,', To keep the nota-
tion simple, we will not note explicitly that all the
other N,. are constant. With the chain relation for
partial differentiation one can express the relation-
ship between the first and third terms in Eq. (Al)
in the form:

sz,.
)

N, (8 lnP„) (A3)

A sum has been made of the left side of the equa-
tion, since residues with different PK's will each
contribute to this term.

Wyman gives this equation in slightly different
notRtion. The factor W„ the number of hemes per
molecule, is sometimes erroneously omitted.
Equation (A3) is awkward to use to confront experi-
mental data. To use it Wyman was forced to make
some approximations which are drastic analytical-

(A2)

In equilibrium, by Eq. (6), p,'; is equal to the

chemical potential of the electrolyte, and p.,', is
equal to the chemical potential of the oxygen gas.
Hence Eq. (A2) can be written in the form:

].y, but not drastic practically. The left-hand side
of Eq. (A3) was replaced by a finite difference of
the number of charges per heKe on a fully oxy-
genated and a fully deoxygenated molecule. The
oxygen gas pressure P02 varies in this range from
infinity to zero. The right-hand side of Eq. (A3),
which depends upon the lnP „, has to be evaluated
from the mean value of lnP„which is the loga-
rithm of the geometric mean of these limit pres-
sures. Wyman calls this mean the median pres-
sure, Rnd he approximated it by p„ for ~ = —,'.

Equation (A3) may be transformed into the more
convenient form which we have obtained above,
Eq. (37), by setting the free-energy derivatives in

Eq. (Al) equal to the constant, p, o2, , N„whi hcthe
derivative represents. The chain rule for differ-
entiation then yields the relation

~ y
— I"o2~i o

zi

Equation (A4) allows one to express Eq. (A3) in the
form of Eq. (37) which is given in the main text.
This triviRl modificRtlon of Wyman s result Eq
(A3), increases its usefulness immensely. The
form we give is more useful for comparison with

experimental data since it directly relates two
conveniently available sets of data, the Bohr effect
and the differential titration curves. Our Eq. (37)
also clearly distinguishes the effect of the ioniza-
tion of different residues on the chemical potential
for oxygenation of the heme protein. The deriva-
tion given in the main text is certainly as simple
as that given in this Appendix, which paraphrases
Wyman. Furthermore, R formal derivation such
as his does not allow one to derive the explicit
temperature dependence of the coupling term, as
we have been able to do by using the perturbation
result, Eq. {19), to write down the phenomenologi-
cal form of the free energy in Eq. (20). We thus
add the information that the p. 02„will have a com-
ponent which varies as the reciprocal of the ab-
solute temperature, Rnd present the Bohr effect
equation in a form which allows one to use con-
veniently the results of differential titration mea-
surements. Finally, from our general result, Eq.
(37), the effect of DPG, or other associating par-
ticles, on the Bohr effect is explicit.
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