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The detailed spatial dependence of the director field n(r) for the metastable cholesteric storage mode is

calculated as a function of plate spacing and surface energy coeAicipnt. These calculations are first performed

subject to the constraint that n is confined to a plane perpendicular to the plates. Upon waiving the planarity

constraint and solving the complete Euler-Lagrange equations, we find that the departure of n from the plane

is less than 7, with the largest values occurring in the immediate vicinity of the plates. Employing our

results for n(r), we calculate the dependence of the electrical capacitance on plate spacing. %'e also propose a

mechanism for the decay of the storage mode as well as a simple semiphenomenological expression for its

lifetime. For a suitable choice of parameters our theoretical expressions are in reasonably good agreement with

the capacitance and lifetime. measurements of Hulin for variable plate spacing.

I. INTRODUCTION

The experimental observation of a long-lived
metastable mode in cholesteric liquid crystals
has attracted considerable interest in the past few
years. ' ' This mode" is thought to be a configura-
tion where the axis of the helical ordering lies
parallel to the plates-cholesteric sandwich, in
contrast to the more familiar, stable (Grandjean)
mode where the axis is perpendicular to the plates.

Recently, a theoretical model of the metastable
mode was presented, "according to which the
cholesteric helix unwinds continuously, starting
from the pitch 2X, of the bulk cholesteric, to the
nematic configuration, as the plate spacing 2I
is decreased to a critical value 2L, . This model
is based on the following picture. The surface in-
teraction between the cholesteric and the treated
confining plates, characterized by a surface-en-
ergy coefficient C, is such as to constrain the
director at the plates to lie exclusively in a plane
(xy) and to favor alignment in the y direction (see
Fig. I). It is then assumed that throughout the
cholesteric sandwich the director lies in the xy
plane and that it can be written as n(r) =x sin@(X, z)
+y cos4 (x, z). The equilibrium director angle
4(x, z; L, C) was found by minimizing the total free
functional for given values of L and C. Specifically,
the total free energy is chosen as the sum of the
usual Frank free-energy expression for a (left-
handed) cholesteric'4 and a. surface free energy
(per unit volume) of the form

)t/2
dz[ Cf (4)] [5(—x —L) + 5(x+ L)],(2L~)-'

2L

FIG. 1. Schematic diagram of the geometry of the
two parallel infinite plates separated by a distance
2I.. The orientation of the director n can be specified
by the angles o. and 4.

)t/2

wher ef (4) = I ', --,'m & 4 & zm, and f (4 +m) =f (4),
and 2X is the assumed pitch of the cholesteric.
The resulting Euler-Lagrange equation is solved
subject to the symmetry properties" 4(x, -z)
= —&'(x, z), 4(-x, z) = C(x, z), and the boundary con-

ditionss

4 (x, z + X) = x + 4 (x, z), 8 4 (eL, z )/ez
= +(C/K)4(+L, z). The equilibrium pitch, denoted
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II. PLANAR DIRECTOR FIELD

As stated in Sec. I, the theoretical model of the
storage mode of Ref. 12 is based on the simplified
description, whereby the director field is planar-
like, of the form n(r) =x sink(x, z)+y cos4(x, z).
In this section we determine the detailed spatial
dependence of the director angle 4 (x, z) for a
variety of cases.

It was shown in Ref. 12 that the total free-en-
ergy functional has a loca/ minimum if 4 is given
by14

4 (x, z; 8) =qz+ ( 1)n

n
n=1

x [n8 sinh(2nqL) + cosh(2nqL)]

x cosh(2nqx) sin(2nqz), (2.1)

by 27(L, C), and director angle 4, are those
values of 2X and 4 which correspond to the abso-
lute minimum of the total free energy for a planar
director. The dependence of X on L and 'C was
given in Ref. 12, whereas the result for 4 (x, z)
was left as a complicated infinite series in the
variables x and z. In Sec. II we establish the de-
tailed spatial dependence of the director angle C.
For several special cases our results are given in
closed analytic form, whereas more generally
these are given in numerical form.

In Sec. III we waive the assumption of a planar
director and solve the exact Euler-Lagrange equa-
tions which minimize the total free energy with
respect to all spatial variations of n. Specifically,
we consider the case where the surface interac-
tion gives rise to strong anchoring (n parallel to
the y axis) on the plate faces. We find that the
director is very nearly confined to the xy plane.
The maximum departure of n from the xy plane
occurs in the immediate vicinity of the plates and
it is approximately 7'. These results would war-
rant adopting the mathematically simplifying as-
sumption of a planar director field, as suggested
in Ref. 12.

In Sec. IV, the results obtained in Sec. II are
used to calculate the dependence of the electrical
capacitance on plate spacing, and we compare our
theoretical results with existing experimental data.
In Sec. V we propose a mechanism for the decay
of the metastable mode as well as a simple, semi-
phenomenologieal expression for the lifetime of
the mode as a function of plate spacing. The free
parameters in the lifetime expressions are de-
termined by a best fit to lifetime data. We con-
clude with a discussion and summary in Sec. VI.

where 2I. is the plate spacing, 8 = C(2') ', q =m/X,
and the pitch 2X is arbitrary. As stated in Sec. I,
the equilibrium pitch, 2X(L, C), and director
angle 4, are those values of 2X and C which cor-
respond to the absolute minimum of the free en-
ergy for a planar director. The dependence of X
on L and C has been studied in detail in Ref. 12.
For our present purposes it suffices to remark,
first, that X(L- ~, 8) = X„where 2X, denotes the
equilibrium pitch of the bulk cholesteric, and,
second, X increases continuously with decreasing
L and diverges when L =L„where the critical
spacing L, is a function of the parameter X,C/K, ."
The expressions for 4 given below apply for arbi-
trary pitch 2A. , but it shall be understood that X

is to be identified with X. We will investigate the
behavior of C as one considers plate spacings de-
creasing from infinity (X= A.,) towards the critical
spacing 2L, (A. —~). There are two important,
distinct regimes: L/X ~1 and L/A. ~1. We begin
by considering the regime L ~ X.

Consider first the case 8 = ~, corresponding to
the molecules at the plate faces being anchored
parallel to the y axis. As long as L» X it is an
excellent approximation, for all n, to replace
cosh(2mnL/X) by —,'e~~ ~', and then, as shown in
Appendix B, the series in Eq. (2.1) can be summed
to give

4 (x, z; ~) = —qz+ tan '[tan(qz) tanhq(L -x)]

+ tan-'[tan(qz) tanhq(L+x)] . (2.2)

ln fact, if L~ 2A. , the first and third (second)
terms of Eq. (2.2) essentially cancel each other if
x &0 (&0) and thus 4 is well approximated by the
simpler expression"

4(,z; -) =t n-'[tan(qz) tanhq(L —~x~)]. (2.3)

In Fig. 2 we have plotted 4, as given by Eq. (2.3),
as a function of z in the range 0 —z ~ ~A. and for
several values of x in the close proximity of the
upper plate at x=L. A striking feature of these
curves is that at distances greater than approxi-
mately 0.2X from the plate face, the director angle
is already well approximated by the expression
4 =vz/&, which applies for bulk cholesteric. For
a fixed value of x, in the immediate vicinity of the
plate face, as z increases from zero, the director
angle remains extremely small due to the strong
anchoring boundary condition which applies for the
present case of 8 =~. However, as z is increased
towards ~X, the director angle rises steeply,
passes through the value ~m at z = ~~ and reaches
a value slightly less than w for z just beyond ~X.
In this fashion one meets the requirement that, for
all x, 4 must increase by m as. z increases by X.

We now consider the behavior of 4 for finite
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FIG. 3. Director ang].e 4 (I.,g;8 in radians as given
by Eq. (2.5 as aa function of s inthe range 0(g&~X,
for 8=0, 0.3, 1,3, ].0, 50.

values of 6. In Appendix B we showow that if L~2A. ,
Eq. (2.1) may be rewritten as

e s.8) = tan-'[tan(qs) tanhq(f, —
~

x ~)]t

+8 '""sin(2qz)

t'
~ -4q(I.- lel ) ~

1 2g 2q(L lxl) cos2~& +t &0 1+ 8

(2.4)

We examine irs ef t the behavior of 4 along the
I th' case Eq. (2.4) reduces toplate -face x =L. n is

6

"'l.2t-s2,"f
(0(z(-,'X) (2.5)

We have used standard nume
'rical methods to

evaluate the integral in q.E . (2.5) as a function of
s of 8 and our results for 4z for assorted values o

It will be noted that 8 =are shown in Fig. 3. It wi
mallmi ht be taken as the dividing line between sma

d then for'tiall rises slowly with z and
roachi 2X, rises steeply to the value g~.

In the limiting case 6 —~, C, z is
t =1k n agreement with what we have seen

. 2. B contrast, for 6 (3 the weakalready in .Fig. . y c
modl-interaction o e pf th late with the molecules mo i-
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by Eq. (2.4}, for 8=3 and (L —~x ~}jX== 0 0.06, 0.15,0.3,

fies C only s ig y
l' htl from its form 4 =ng/Xfor

bulk cholesteric.
(I the results forFor ihe general case x (

8) obtained by numerical integration o
4 5 and 6 for 62.4) are shown in Figs. 4,

t' el . The most interesting=3, 10, Q 50, p
'

y.
re of these families of curves, as well as a

of Fig. 2 which applies for
rom the late faces exceeding about

el a roximatesthe director angle already close y appro
i . t ' the effects of the surfaceits bulk value. Tha is,
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I.O
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FIG. 5. Same as in Fig. 4, but for 6=10, and
(L —lxl)/X=O, O.O25, O.1, O.25, ~.

interaction extend over a characteristic distance
of order 0.3X from the plate faces, and this char-
acteristic distance is essentially independent of
the value of 8. It is interesting that the analytic
expressionsfor4&of Eqs. (2.1) and (2.4) are both
particularly opaque as regards the existence of
this characteristic length.

We now derive a useful approximate expression
for C which applies when 8» 1 and ~x ~&L. For
such values of 8 the integrand in Eq. (2.4) is ex-
tremely small except in the immediate vicinity of
t= 1. As such it is a good approximation to re-
place the denominator by its value at the upper
limit. (The exception is for x = +L, since if z = zX,
the denominator vanishes at the upper limit. ) The
resulting integral is then readily evaluated and we
obtain

( —,
'

X & z & -,')&,) . (2.8)

Here the quantities y„,n = 1,2, . . . , are the positive
real roots of

y„tany„= p, (2.9)

and p, =CL/K. For the regime )&. &L, highly accu-
rate" values of C can be obtained by ignoring all
but the first few terms of the series in Eq. (2.8).

The results of this section can be summarized
as follows. For large plate spacings (I, &)&.), within
a distance of approximately 0.3A. of the plate faces,
the surface interaction causes the director angle
to increase very slowly with z, from C =0 at
z =0, until the vicinity of z =2X, where C increases
sharply, passes through the value ~2 for z = &X,

which is the familiar form of a line disclination"
situated at x=*L and s =2X. For finite but large
values of 8 the extremely rapid variation of 4 with
z along the plate faces is suggestive of a periodic
array of surface disclinations whose cores are
smeared symmetrically over a short distance
hz («zA) about the lines z„= (n+ 2)X. The analogous
behavior in nematics, with finite surface interac-
tion, has been studied in detail by Meyer" and
Vitek and Kleman. '

Thus far we have assumed that the plate spacing
is larger than the pitch; in particular, Eqs. (2.2)-
(2.6) are applicable only if this condition is met.
Starting from Eq. (2.1), and employing the Poisson
summation formula, one can derive the following
exact expression ' for 4,

1 cos (y„x/L) sinh(y~/L)
~ ~ y„'+&U, '+ p, cosy„sinh(y„X/2L)

C(, z;8) =C(,z;-)
1 e "'~ "' sin2qz
8 1+2e '~' "' cos(2&Iz)+e

(2.8)

At this point we remark that for 6 = ~ the direc-
tor field can be described in terms of a periodic
array of line disclinations which are situated on
the plate faces at z„=(n+ z)X, n=O, +1, . . . . The
appropriateness of this description is most simply
confirmed by noting that for z = —,)&. and I. —

~

x
~

«)&.,
the director angle, a.s given by Eq. (2.8), reduces
to

0.0
0.0 0.5

2z/X

I.O

C(, ; )=t -'[(L —
~

~)/(l) - )], (2 'I)
FIG. 6. Same as in Fig. 4, but for 6 = 50 and

(L- lxl)/1= 0, 0.012, 0.06, 0.2.
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and reaches m shortly thereafter. Beyond 0.3X

from the plate faces, 4 increases essentially linear-
ly with z, as in bulk cholesteric with pitch 2A..
For the case A. &L, even in the center of the choles-
teric, the dependence of 4 on z resembles, al-
though in less extreme form, that along the plate
faces.

The above-mentioned properties of the director
angle could be investigated employing optical in-
terference techniques. ' So far only the gross fea-
tures have been explored experimentally for sever-
al fixed plate spacings as the storage mode under-
goes a transition to the nematic state induced by
an external field. "

A. Director field equations

The Frank free-energy density of a left-handed
cholesteric liquid crystal in the one-constant ap-
proximation (K, =K, =K, =K) is'~

E = & K[(v' n)'+ (n' V x n)'+ (n x V x n)2 —2q,n ~ V x n j,
(3.1)

where qo =m/A. , and 2A., is the pitch of the bulk
cholesteric. The equilibrium director field is ob-
tained by minimizing the total free energy with re-
spect to all variations of n, while maintaining the
constraint ~n(r)

~

=1 for all r. The resulting Euler
equation is given by

'7'n+2q, V x n=L(r)n(r), (3.2)

where L Qr is a Lagrange multiplier function origi-
nating from the local constraint ~n~= i. It proves
simpler to eliminate the unknown function L (r) by
writing the following equation, which is equivalent
to (3.2),

(3.3)n x (v n+2qoV x n) = 0.
In order to satisfy the constraint

~
n ~= 1, we ex-

press the components of n in terms of the two
angles 4 (x,g) and o.'(x, z) (see Fig. 1), according
to the relations

n„= sine(x, z) cosa(x, z),
n, = cos4(x, z) coso.'(x, z),
n, = sinu(x, z) .

(s.4)

III. EXACT EULER EQUATIONS

In Sec. II it was assumed that the director lies
in the xy plane, perpendicular to the plates-cho-
lesteric sandwich. We show below, in Sec. III C,
by numerical solution of the exact Euler equations,
that in the strong anchoring case this assumption
is essentially valid except in the immediate vicini-
ty of the plates. The maximum departure of n
from the xy plane is approximately 7'.

V4 —2q —sino. cosa'Bz (S.5a)

-(coen)V'C + 2 sinn(Vn' VC)

BQ BQ
qo sino' —+cos& sinC-

Bz Bx
(3.5b)

As discussed in Sec. II, in Ref. 12 the Frank
free energy was minimized while constraining the
angle to be identically zero. The resulting
Euler equation was found to be V'4=0. However,
as is seen from Eqs. (3.5a) and (3.5b), the assump-
tion n =-0 is tenable only if both V24 =0 and &C/&x
= 0.'o In fact, for the solution Eq. (2.1) of V'4 =0,
the quantity &C/&x is not identically zero. Thus
the equation V'C =0 defines a set of functions which
minimize the Frank free energy when one restricts
variations of n to within the subspace with a =0.
However, these solutions do not minimize the free
energy for the full space of variations of ri which
encompasses arbitrary C and a.

As stated in Sec. I, we have chosen the interac-
tion between the plate faces and the cholesteric so
that the following boundary conditions apply:

(s.6)

B@ C
, -(~L, z) =+—C(~L, s). (3.7)

1

In addition, for a left-handed cholesteric with
pitch 2A. , the director must satisfy the require-
ments

C(x, z+~) =~+4(x, z),

o'(x, z+ &) = —o, (x, z) .

(s.8)

(3.9)

The solutions of the differential equations (3.5a)
and (3.5b), supplemented with the boundary con-
ditions Eqs. (3.6)-(3.9), possess the following sym-
metry properties"

e(-x,z) = C(,x) =- e(X, -x), (3.10)

-a(-x, z) = tx (x, z) = o, (x, -z) . (s.11)

In view of Eqs. (3.8)-(3.11), it is sufficient to
solve Eqs. (3.5a) and (3.5b) for the restricted
region 0 &x &L, 0 &z & ~X. For this restricted re-
gion, the full set of boundary conditions to be sat-
isfied are given by

It is then straightforward to show that Eq. (3.3) is
equivalent to the following pair of coupled nonlinear
partial diff erential equations:

V a =2q cos a sin4—2 8@
0 Bx
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BQ
=0, C =0 (O&x&I., z=O),

~8

n=0, —=- —C (x=I-, O&z&2&),
8@

n=O, C =-'.m (0&x&L, z=-2~),

(3.12)

(3.13)

(3.14)

and we stress that we are interested in values of
r small compared to A. , and angles 8 in the inter-
val (0, zm). Equation (3.5a) then reduces to the
following simplified form:

g'n = —q—'(1+cos2n) sin2& —,sin2n . (3.19)
2r 2r'

n=o, —=o ( =0, 0&z&-.'~).
~x (3.15) Furthermore, the boundary conditions for & are

n(r, 0) = n(r, —,'m) =0. (s.ao)
8. Approximate analytical solution

In this and the following subsection we shall re-
strict our attention to the limiting case of 6 = ~,
corresponding to the strong anchoring of the
molecules, along the y axis (see Fig. 1), at the
plate faces. As remarked above, the choice n =—0
is not a solution of Eq. (3.5a) if BC/&x is nonzero.
Further, we expect that &C/ex will increase mono-
tonically with increasing values of 6. Thus the
choice t-'= ~ should correspond to an upper bound
for the angle n(x', z). For this case, Eq. (3.13)
can be replaced by the simpler form

n =C =0 (x=I., O&z&&X) (3.16)

I. Region L-0.1)SIx I ~&L, 0(-,—z~0. 1),

We shall first confine our attention to the restrict-
ed region L —0.1k~

I

x
I
—L and 0& —X -z &0.1X. It

is in this region that the driving term BC/ex of
Eq. (3.5a), and therefore V'n as well, assumes
its largest value. Because of the fact that n(x, z)
is an odd function of x [see Eq. (3.11)] it is suffi-
cient to consider positive values of x. The rele-
vant solution for C in this region is given by Eq.
(2.3), or its simplified form

whereas the other boundary conditions, given by
Eqs. (3.12), (3.14), and (3.15) remain unchanged.

Some of the essential qualitative features of the
function n can be established by an approximate
analytic treatment which we now describe. Of

course, to obtain quantitatively accurate solutions
of the complex nonlinear equations of Eq. (3.5) we

have no alternative but to employ numerical meth-
ods, as discussed in subsection C. The approxima-
tion procedure we adopt here consists of (i) solving
Eq. (3.5b) for C when n is set equal to zero, (ii)
substituting the result for C in the right-hand side
of Eq. (3.5a), and then solving the resulting equa-
tion for & after linearizing terms dependent on &.

Now it will be noted that Eq. (3.19) is invariant
under the change of variables r- -r, &

Thus we can write

n (r, &) = P (q,r)'""f,„.,(e),
n=o

(3.21)

f,"+2f,= —sin20,

and its solution satisfying Eq. (3.22) is

f, (0) = —, sin28 .

(3.23)

(s.a4)

Thus we arrive at the following approximate re-
sult for n, written in terms of the original spatial
coordinates,

n(x, z) =q, (L-x)(-.~-z)[(L -x)'+(-.~-z)'] '".
(s.a5)

The most important feature of this result is that
the family of 0'. curves versus z, corresponding to
differing values of x, have a common tangent, the
straight line qo(2A. -z), as z - 2A.. As shown in
subsection C, this property of n is in fact exhibited
by the numerical solution for n. We emphasize that
Eq. (3.25) can be used only for small values of
both (L -x)/X and (zA.. -z)/L, for otherwise the
simplified form Eq. (3.17) for C is invalid.

where, because of Eq. (3.20), the functions f,„„
satisfy the requirements

(s.22)

Substitution of Eq. (3.21) for n in Eq. (3.19) leads
to an infinite set of ordinary differential equations
for the angular functions. We shall not bother to
write down these equations since for small r,
which is the region we are considering, it is suffi-
cient to retain only the first term q,rf, (8); the
second term is of order (qor)' and thus may safely
be ignored. It is then straightforward to show
that f, satisfies the equation

C = tan-'[(I, x)(-.'~-z)-']. (3.17) Z. Region 0~&Ix I&L-X, 0&~z~&2K
1

I -x=rsino, &X-z=rcos8, (3.18)

It is convenient to introduce polar coordinates de-
fined by the equation

An approximate solution of Eq. (3.5a) can also
be derived without, difficulty for the region
0 —

I
x

I

& I —A. . Once again we remind the reader
of the fact that n(x, z) is an odd function of x and
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thus it suffices to consider the region 0» x ~ L —X.
For this region we have tanhq(L —x) =1 —2e "'
and thus Eq. (2.3) may be rewritten as

O. I 2

C = tan '[(1 —e "' "') tanqz] . (3.26) 0.0 8

Thus the derivatives ~4/~x and (VC)' —2q, ~4/~z
which appear in Eq. (3.5a) are well approximated
as ~4/~x=-4q sitiqz cosqze "~ "' and (Ve)'
—2q, ~@/Sz =q' —2qq, . Now in view of the small-
ness of the term ~4/~x, because of the factor
e "' ", we can expect that & will be very small
in this region of the cholesteric, and thus cos'&
= 1 and sino cosa = n. We thus arrive at the fol-
lowing approximate, linear equation for &

N

x

0.04

0.0 0
0.5

zz/Xo
l.0

V'& -q(2q, —q)& = —8qqc sin'qz cosqzs "'~ "'.
(3.27)

Although this equation is an accurate approxima-
tion to Eq. (3.5a) only for the region I —x&~, we
shall, nevertheless, arbitrarily employ it for the
wider region 0~x~ L, so as to utilize the boundary
conditions Eqs. (3.12) and (3.14)-(3.16). Co&i»ng
our attention to the special case q =q„ it is then
straightforward to verify that Eq. (3.27) and the
stated boundary conditions are satisfied by

~(x, z) = [exp[-q, v2(L -x)]

- exp[- 2q, (I. -x)]]cosqp

+ ~(exp[- q,&10(I —x)]

exp[-2q, (I. -x)P cos3q~ .

(3.28)
The most important feature of this result is the

FIG. 8. Angle Q'(x, z) in radians, as obtained by
numerical solution of Eqs. (3.5a), and (3.5b) for the
strong anchorin~ limit. The curves shown are for
W —x)/~0= to, ", 5, 5, ~. 1'f (L —x)/Xo 0.2, the family
of curves is predicted Isee Eq. (3.25)3 to have the com-
mon tangent n = 27( —m/&0, as s 2 X0, shown as the
dashed line.

exponential decrease of n(x, z) as one proceeds
from the plate at x=L towards the interior of the
cholesteric. In Fig. 7 are shown curves of &(x,z),
as given by Eq. (3.28), as a function of z for sever-
al values of x within a distance X, of the plate at
x =L. It is interesting to note that the curves
shown embody the same qualitative features as
those exhibited by the exact numerical solution of
Eq. (3.5) (see Fig. 8) even though, as explained
above, Eq. (3.27) is expected to be a good approxi-
mation to Eq. (3.5a) only for x & L —~,

C. Numerical results

O. I 2

0.08

N

0.04

0.00
0.0 0.5

2z/) o

I. O

FIG. 7. Angle o'(x, z} in radians, as given by the
approximate analytical formula of Fq. (3.28) for the
strong anchoring limit. The curves shown are for

2+)/~0=20s i0s»» 4

We here describe the numerical solution of Eq.
(3.5) in the case where the boundary conditions
are given by Eqs. (3.12) and (3.14)-(3.16), that is,
where the molecules at the plate faces are anchored
in the y direction. In the following we have taken
the pitch of the cholesteric to be 2%0 ~ The first
step consists of replacing the region 0 & x & L, 0
& z & ~XO by a uniform 30 ~ 30 grid of points within
the smaller region L —~~, &x &L, 0&x &2 X,. In
light of the results of Secs. II and III B2 we believe
that it is justified to regard the plane x =L —~Xo
as sufficiently deep within the cholesteric so that
we can require that n = 0 and 4 = (m/Xo)z on this
plane. The pair of differential equations of Eq.
(3.5) are then replaced by their usual finite-dif-
ference expressions. To solve these equations we
have utilized the method of alternating directions"
in conjunction with the following iterative scheme.
The (n+ l)th-order estimate n„„(x,z) is obtained
by solving Eq. (3.5a) with C and & on the right-
hand side replaced by C„and ~„, respectively.
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Similarly, the (n+ 1)th-order estimate C„„(x,z)
is obtained by solving Eq. (3.5b) where o.„„and
4 y are substituted for & and 4, with the exception
of the nonlinear factor sin4 on the right-hand side
which is replaced by sin4„. The lowest-order es-
timates are chosen as follows: n, =0, and 4, is
the solution of V'4, =0 satisfying the boundary
conditions (3.12) and (3.14)-(3.16). The iterative
procedure is repeated successively until conver-
gence is achieved. All calculations were per-
formed using the Bar-Ilan University IBM 370-16S
computer. In practice, less than ten iterations
proved to be sufficient to insure convergence.

Our numerical results for & are shown in Fig. 8.
Note that the largest values of o.'(=0.11 rad, i.e.
= 7') occur in the immediate vicinity of the plate
faces, and n rapidly decreases to zero as one
proceeds towards the center of the cholesteric
sandwich. Note further that in the vicinity of z
= 2A., the family of curves tend to zero, and for
(L —x)/X~ 5 possess the common tangent q, (2Xo
—z), shown as a solid straight line in Fig. 8.
This property is in accord with our theoretical
result, given above by Eq. (3.25), derived by
linearizing Eq. (3.5a) in the vicinity of z = 2X, and
x =I . The smallness of & everywhere except in
the immediate vicinity of z = &X, and x =I- can be
attributed to three specific causes. First, the
choice of boundary conditions requires o'. to vanish
along three edges (x =L,x =I —2Xo, z = ~Xo) of the
four comprising the boundary. Second, outside
this restricted region, the driving term &C/&x
in Eq. (3.5a) is very small. Third, even where
BC/&x is large, the nonlinear terms in Eq. (3.5a)
tend to suppress all attempts by a to grow.

Concerning the angle C (x, z), we have found that
its value is only very slightly different fromC', (x, z),
the value of 4 when n is constrained to be identi-
cally zero throughout the cholesteric sandwich.
As such we refer the reader back to Fig. 2.

Cladis and Kleman'o have argued that the usage
of the constrained solution no(r), with the angle o.

identically zero, is unwarranted. Their argument
may be summarized as follows. Defining the dif-
ferential operator H = V'+2qog'x, Eq. (3.2) may
be written as

n(r) =Hn(r)/~Hn(r) ~, (s.29)

having used the fact that
~
n{r)

~

= 1. They then
argue that n will be a good approximation to the
exact solution n of Eq. (3.29) if Hn, (r)/ ~Hno(r)

~

-=n, (r)
is nearly equal to no. In fact, they have found that
there exist regions in the cholesteric where
n'„(r) &n,'„(r)+ n»(r), in contrast to the approximant
n, (r), for which n„—= 0. As we discuss below, this
behavior of n, does not detract from the usefulness
of the planar solution n, . The form of Eq. (3.29)

suggests that we define a sequence of approxi-
mants n, (r) according to the relation

n„,(r) = Hn, (r)/i Hn, (r) i
(l = 0, 1, 2, . . .), (3.30)

where no(r) =x sinCO(x, z)+y cosCo(x, z) and Co is
given by Eq. (2.3). We have found that the sequence
of approximants fails to converge to any unique
function of r for increasing values of l, and thus
fails to converge to the exact numerical solution
of Eq. (3.2). As we have seen above, the exact
solution of Eq. (3.2) in the strong anchoring case
is indeed very similar to no(r) and in particula, r
the z component of n is very small compared to
unity.

The main result of this section is that the direc-
tor is very nearly confined to the xy plane, i.e.,
the plane perpendicular to the plates at x=+ L.
The departure of the director from this plane is
largest in the immediate vicinity, within a distance
of order Xo, of the plates, and its maximum value
is about 7 . We therefore suggest that a sufficient-
ly accurate theoretical description of the choles-
teric storage mode is provided by the model dis-
cussed in Ref. 12 and Sec. 0 of the present arti-
cle, based on the simplified description of the
director being confined to the xy plane. The dis-
cussions of the electric capacitance and lifetime
of the storage mode', given in the following sec-
tions, is based on this simplified description.

R (A.o/L;6) =-
2LX

K/2
dz sin' C (x, z ) . (4.2)

For the case L/X, » 1, except in the immediate

IV. ELECTRICAL CAPACITANCE

A macroscopic probe of the director field is
provided by electrical capacitance measure-
ments. ' ' I et C~, C», and C„denote the electri-
cal capacitance of the system when a weak elec-
tric field is applied perpendicular to the choles-
teric-plates sandwich (i.e., in the x direction) for
the three specific configurations: stable choles-
teric (Grandjean mode), storage mode, and homeo-
tropic ordering. The latter two configurations
are created successively from the stable choles-
teric mode by applying an external magnetic field
of sufficient strength in the x direction, i.e., also
perpendicular to the sandwich (see Hefs. 8 and 9
for details). Following Hulin's notation, we define
a quantity R by the relation

R =(C —C )/(C -C„) .

This quantity is related to the equilibrium director
angle C (x, z) of the storage mode by the approxi-
mate equality"
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~ 2X(L, 8), when 8» 1, is obtained by substituting
Eq. (2.8) for the director angle in Eq. (4.2). We
then have that

1 1+cos(2qz) cosh2q (I. —I x I)sin 4= — 1—
2 cos(2qz) + cosh2q (L —I x I )

(4.8)

0.5

X/2
dz sin'4 = —,'&(1 —8"'~ "'),

/2

and finally,

2R = 1 —A(L)/2mL. (I.~ 2X) .

(4.4)

(4.5)

0
0

Xo
L

FIG. 9. Theoretical capacitance ratio 2R, defined by
Eqs. {4.1) and (4.23, versus I p/L. Experimental points
are due to Hulin (Ref. 9).

vicinity of the plate faces, C is given by C = (~/&, )z
and thus 8 = 2. On the other hand, as I is de-
creased towards the critical spacing, 4 = 0 and
then 8 0.

In Fig. 9 we have reproduced Hulin's experimen-
tal results' for 28 as a function of X~/L for meso-
morphic mixtures of small concentrations of
cholesteryl nonanoate (CN) in MBBA. The depen-
dence of 28 on Ao/L according to the present
theory is shown by the solid curve. This was ob-
tained by employing standard numerical integra-
tion methods in conjunction with Eqs. (2.1) or
(2.8). The values of X, appropriate to given plate
spacing were taken from Ref. 12. The following
choices were made for the relevant parameters:
2X0=16.5 p, m (see Ref. 27); C =0.10 erg/cm' (see
Sec. V); K, =2.2 &&10 ' dyn (Ref. 8); K, =K3=6.0
&& 10 ' dyn (this is roughly the average of the values
+y —5 3 + 10 dyn and K, = 7.5 && 10 dyn, estimated
in Ref. 8). Variations of C, ranging from 0.05 to
0.2 erg/cm', or of K, and K„within the experi-
mental uncertainty (=10%) quoted in Ref. 8, affect
the theoretical estimate of 2B only by several per-
cent.

A simple approximate analytic expression for
8, which is highly accurate for the regime L

For the choice of parameters given above 8 = 33
and thus Eq. (4.5) should be relevant for the range
L~2X. This result for 2R has beeri derived for
the choice K, =K2 =E,. Using the transcription
given in detail in Appendix A for a system where
K, =K, c K„Eq. (4.5) is replaced by

2B = 1 —(K,/K, )' 'X(L)/27IL (L —2X) . (4.5')

By contrast, Hulin' has suggested that his data,
which extends over the range L/A. ,~ 2, satisfy the
empirical formula 2A = 1 —Xo/L. The agreement
seems reasonable in view of the fact that the dis-
crepancy between our theoretical curve and Hulin's
empirical formula is of order of the scatter of the
experimental points.

V. LIFETIME OF THE STORAGE MODE

The lifetime ~ of the storage mode as a function
of L/&o has been measured by Hulin' for mesomor-
phic mixtures of CN in MBBA. Lifetimes ranging
from several days down to of order 1 min were ob-
tained by reducing the value of L/X, from 14 to 2.
%e have reproduced Hulin's data points in Fig. 10.
For times exceeding 7, the cholesteric sandwich
was found to be in the stable Grandjean configura-
tion, i.e., helix axis perpendicular to the plates.
Although there is considerable scatter in. the ex-
perimental data, Hulin noted that a reasonable fit
exists with the empirical formula v = 0.5e
where 7 is measured in minutes. However, Hulin
did not propose a model which accounts for this
behavior.

A satisfactory theory of the dependence of 7 on
L/X, must take into account the passage of the
system from the metastable storage mode to the
stable cholesteric configuration, where the helix
axis points perpendicular to the confining plates.
%e propose the following sequence of events for
this process. Suppose that as a result of thermal
fluctuations a small element of volume V initially
in the storage mode configuration were to unwind
to the nematic configuration. This would entail an
increase in the free energy of the system by an
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amount VIF I, where F(&0) is the free energy per
unit volume in the storage mode as measured with
respect to the nematic configuration. If the volume
of this region is less than some critical volume
V, it is plausible that the neighboring environment
will act to restore the original metastable state.
However, if V exceeds V, we expect that the small
nematic region will rewind into the stable choles-
teric configuration, entailing a decrease of the
free energy, and trigger the same chain of events
in the immediate environment. In this fashion the
storage mode will swiftly pass over to the stable
cholesteric configuration, via the nematic configu-
ration, with the concomitant lowering in free en-
ergy. These considerations suggest the following
phenomenological formula for the lifetime of the
storage mode:

(5.1)

where &o ls a characterlstlc dlsslpatlve time. The
quantity exp [V, IF(L)/ksT) is inversely proportion-
al to the probability that a region of volume V,
will acquire the requisite free energy to pass to
the nematic phase. The dependence of 7 on the
plate spacing 2L enters via F(L). Finally, we
have subtracted unity from the exponential so that
the lifetime of the storage mode will equal zero if
the difference in free energy F between the storage
mode and the nematic phases is zero.

We have used the results of Ref. 12 for F(L),
adapted to the case K, =K, +K., and the numerical
values of K, and K, given at the end of Sec. IV of
the present article. The surface energy constant
C and the parameters vo and V, in Eq. (5.1) were
varied so as to obtain the best least-squares fit
to Hulin's experimental data. The results of our
analysis are C =(0.1+0.05)erg/cm', v, =40 sec,
and V, = (1 p, m)'. Essentially the same quality fit
is obtained if ~, is varied by about a, factor of 2
and V, is simultaneously readjusted by about 80/o.
In Fig. 10, we have reproduced Hulin's data points
for v as a function of L/A. , and have superimposed
our theoretical curve. The agreement is fairly
good and argues for the plausibility of our pro-
posed mechanism for the lifetime of the storage
mode. Finally, note that Hulin's data suggest
that the critical value of L/&, is about 1.7. That
is, for plate spacings 2L = 3.4X, the storage mode
is unstable. This is in good agreement with the
theoretical critical ratio (see Ref. 12) which lies
in the range 1.6& L,/X~ &2.0 for the relevant span
of. acceptable values of C and the chosen values of
K, and K3.

VI. SUMMARY

The major topic considered in this article is the
detailed spatial dependence of the director field

I

5 IO

I (min)

I

50 100

FIG. 10. Solid curve describes the best fit theoretical
lifetime of the storage mode versus I./Xp using Eq.
(5.1). Experimental points are due to Hulin (Ref. 9).

n(r) of the metastable cholesteric storage mode.
An analytic and numerical study of the exact
Euler equations shows that the director is very
nearly confined to the xy plane, i.e., perpendicular
to the plate-cholesteric sandwich. The maximum
departure of n from this plane is less than 7 and
this occurs within the immediate vicinity of the
plates. As one proceeds towards the interior of
the cholesteric, the component n, decreases to
zero exponentially, with a, characteristic length of
order the pitch 2&p This result enables one to
adopt the simplifying description, of a planar di-
rector n(r) =x sin4(x, z)+ycosC(x, z), of the theo-
retical model of Ref. 12. We have presented de-
tained analytic and numerical results for. the direc-
tor angle C for a large variety of cases. In parti-
cular, as long as the plate spacing is larger than
the equilibrium pitch of the cholesteric for that
spacing, one can employ Eq. (2.4). If, further, the
dimensionless surface energy coefficient 6 =CA.,/
(2m%) is large compared to unity, one can employ
the simpler expression Eq. (2.6). In the strong
anchoring limit (C- ~), C is given by the simple
expression of Eq. (2.8). For the regime where the
pitch of the storage mode exceeds that of the plate
spacing, the first few terms of Eq. (2.8) provide a
highly accurate approximation to the director
angle.

We have also calculated the dependence of the
electrical capacitance of the cholesteric on plate
spacing. Specifically, the calculation involves the
spatial average of n2. Thus a comparison between
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theory and experiment serves to provide a macro-
scopic cheek of the present theoretical description
of the director field. A more direct and detailed
spatial probe of the director field is called for,
and, as suggested above, this could be achieved
using optical techniques. We have also proposed
a mechanism for the decay of the metastable
stora. ge mode as well as a simple phenomenologi-
cal expression, Eq. (5.1), for the lifetime as a
function of plate spacing. Unfortunately, a first-
principles derivation of an expression for the
lifetime is notoriously difficult and we have limited
our theoretical treatment to choosing the free pa-
rameters so as to yield a best fit to Hulin's life-
time data. The mechanism we have proposed for
the decay of the storage mode is the creation, due
to thermal fluctuations, of a small nematic region
of critical size. This small nematic region re-
winds in the stable Grandjean configuration and

tirggers the same chain of events in the immediate
environment. The reasonably good agreement be-
tween the theoretical and measured lifetimes
argues for the plausibility of our proposed mecha-
nism for the decay of the storage mode. However,
a stronger theoretical foundation for this mecha-
nism would be of great value.
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(A2)

If all three Frank constants are unequal, then a
term E, cos'C +E3 sin'4 replaces the coefficient
K, multiplying (84/Sx)' in (A2). If the cholesteric
ordering is characterized by a pitch 2X, i.e.,
C (x, @+X)=m+ C(x, z), and if we include the sur-
face-energy term described in the Introduction
then the total free energy per unit volume is of
the form

C (x, g) =v(z/X)+ y(x, ~) (A4)

which is periodic in z with period A.. The Euler-
Lagrange equation corresponding to Eq. (A3) is

(A5)

where P satisfies the boundary condition

+K~—(+L, g) —C——Cp(+L, z) = 0 (—2X&z & 2A)

+ 2CC [5(x —L)+6(x+L)j

(A3)

It is convenient to introduce a function P (x, g), de-
fined by

APPENDIX A

Here we show that with a simple change of vari-
ables one can express all quantities of interest for
the cholesteric storage mode, with E,=E3E, in

terms of the corresponding quantities for the case
Ey E2 E3 This trans cription is well known for
familiar cholesteric systems, but we have re-
produced it here for the storage mode in view of
the more complicated circumstances, first, that
the director depends on two spatial coordinates
and, second, we are including a surface-free-en-
ergy term describing the interaction of the choles-
teric and the confining plates.

We start with the Frank free-energy density for
a left-handed eholesterie in the form

6:= 2X, (v ' n)' + ~K, (n' v x n —qo)

+ ~~K, (n x ~ x n)' —,'%~20 .

With n(r) = x s in4 (x, z) + y cos 4 (x, z) and the choice
K, =K, WÃ„Eq. (Al) reduces to the simplified
form

x'=x, z'= (K,/K, )' 'z X'= (K,/K, )' 'A. (Av)

We also define a function P'(x', z') by the relation

y (x, z) =y(x', (Z,/A, )'~'x') = y'(x', ~') . (AS)

Substituting Eqs. (AV) and (As) in each of Eqs.
(A3)-(A6), the resulting equations, expressed in
terms of the primed variables, are precisely the
basic equations of Bef. 12, for helical ordering
with pitch 2X', when E, becomes equal to E$ E3.
That is, the director and free energy for helical
ordering with pitch 2X in the case Ey E3~E2 are
expressible in terms of the director and free en-
ergy of a system where E, is made equal to E,

E3 but having helic al ordering with pitch 2 A,
'

= 2(I~,/Z, ) '~'~.

Of course, if K, were equal to Ã, then Eq. (A5)
would reduce to Laplace's equation and the pro- .

blem defined by Eqs. (A3)-(A6) becomes identical
to that considered in Bef. 12.

Now we define the quantities x', z', and A.
'

by the
equations
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APPENDIX B

This appendix is devoted to deriving Eqs. (2.2)
and (2.4) of the text. If the surface-energy coeffi-
cient C is infinitely large, the director angle, as
given by Eil. (2.1) reduces to"

(-1)" cosh(2nqx)4(x, z; ) =qz+ Q:— —sin(2nqz) .
n cosh(2nqL)

If, further, we restrict our attention to cases
where 1.» X, then for all n we can replace
cosh(2nqL) by 2e""'~', and Eq. (Bl) can be re-
written as

4 (x, z; ~) =qz+A[2q(L -x), z]+A[2q(L +x), z] .

The function&(p, , z) defined by

A(p, , z) =- P e "~ sin(2nqz) (p, ~ 0), (B3)( 1)n

can readily be written in closed form. We have,
succ ess ively,

C, (
. g) g (

-2nq(l -x) -2nq(I. +x))( I )n

, n(n+&)

xsln(2Bqz) . (B5)

Using Eils. (B2) and (B3) we can rewrite Eq. (B5) as

C(x ~. e)=O(x z -)

Now

Im [e 2nq(-L x iz-) ~-(x x)]( I)n

, n+~
(B6)

&E(I+a, 1;2+x;u),n+8 1+6
n=&

where

E(a, b; c;u) =1+—u+- u'+ ' ' ' (B8)
ab a(a+ 1)b(b+1),
I fc 2 IC(c+ I)

is the hypergeometric function. Using Eels. (B2)
and (BV) we can rewrite Eil. (B6) as

C(x, z;+) =@(x,zi

" (-1)"
A. (p, , z) = Im g - exp(-p, + 2iqz)n

= -Im ln(1+ e """')

= -qz + tan '[tan(qz)tanh(~ g)] .

For numerical purposes it is convenient to reex-
press Eq. (B9) in terms of an integral. This is
achieved using the integral representation"

Substituting Eq. (B4) for the two A functions in
Eil. (B2) yieMs Eil. (2.2) of the text.

If now C is finite but I.= A., referring to Eq.
(2.1) of the text, we can again replace both
cosh(2nqL) and sinh(2nqL) by —,e""'~', and thus

&1

x dt t'-'(1 t)'-'-'(1 —tu)-', (B10)

which applies for Hec&Beb &0. The final result
takes the form

j. ge
e(x, g;a)=c(x, z; )+(e""*'sinsqz, di „(,,) 2 i, „(,,) +(x- —x)).1+2te ' " cos2qz+t e

If I-:=2k one may drop the second term within the large parentheses in Eil. (BII) and Eq. (2.3) may
substituted for 4(x, z; ~). The final result for 4 (x, z; 6) is given by Eil. (2.4) of the text.
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