
P H YSICAI RE VIE% A VO I UME 15, N UMBER 3

Vacancy theory of melting and condensation~
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A cell model in which the cell size is constant at fixed temperature and pressure is utilized to calculate
melting data and gas-liquid critical constants. Interactions between vacancies are taken into account and the
variation of vibrational free energy with vacancy concentration is incorporated into the model. The calculated
results agree well with experiment for the hard-sphere transition and melting and condensation of argon. The
pair correlation function for argon computed from the model is in good agreement with experiment with
reasonable values of the parameters in the calculation. The calculations indicate that vacancy defects exist in
liquids and play an essential role in determining melting conditions.

I. INTRODUCTION

The existence of molecular vacancy defects in
the solid state is well established, and there is
considerable evidence at the present time to indi-
cate that vacancies exist in liquids but with a much
higher concentration than in solids. The most di-
rect information concerning vacancies in fluids
may be found in machine calculations on Lennard-
Jones atoms confined to a two-dimensional plane. '
In the "snapshots" of the instantaneous configura-
tion of the model fluid, holes of atomic dimension
are clearly seen. These holes persist in time and
migrate as the particles move. From the trajec-
tories of the particles in the model fluid it is ap-
parent that the atoms "rattle". about an equilibrium
position and migrate towards the holes if a hole is
adjacent to a "rattling" site

In the results reported in Ref. 1, the vacancies
do not appear to be randomly distributed, but
rather tend to form clusters which become espec-
ially pronounced at the higher temperatures and
lower densities given in Ref. 1. The position of
the first maximum in the pair correlation function
for computer argon' occurs at x/g =1.09+ 0.01 and
the minimum in the Lennard-Jones pair potential
energy [V(x) = 4e ~z ((six)" —(o/r)'), which was em-
ployed in the computer calculations] occurs at
r/g = 2'~' = 1.122. The nearest-neighbor distance
in solid argon at the melting point is equal' to
3.857 A, and the maximum in the atomic density
distribution function determined by x-ray and neu-
tron diffraction' for the liquid at the melting point
is 3.84+ 0.07 A. However, argon expands by 13%%uz

upon melting, and hence these facts imply that
there are vacancies in the liquid.

The above results suggest that a cell-model ap-
proach to an understanding of the melting pheno-
menon might be useful. In the following we will
adopt a cell model and choose the volume n, of the
unit cell to be equal to the atomic volume as cal-

culated from the density of the solid. Hence the
center of essentially only one molecule can be
contained in a given cell at a given time and a cell
is either singly occupied or empty. Hence com-
munal entropy effects are small except for hard
spheres (Sec. V).

Recent evidence' for an ordered distribution of
point defects in alkali halide crystals has been ob-
tained. Some of the defects form a lattice and
others are arranged in a partially ordered fash-
ion. ' These facts clearly indicate that one must
consider interactions between defects, and in the
following we do this for vacancies.

II. THEORY

A. Gibbs free energy function

As indicated in the Introduction, in the formula-
tion of a theory of solids and fluids the interac-
tions between vacancies must be taken into ac-
count. As will be shown later (Sec. II B) one may
do this by an expansion of the internal energy U in
powers of p —p„where p is the number density
of the material and pp is the number density of the
perfect solid at some reference (standard state)
temperature (T,) and pressure (I',). That is

~(p, &„I',) = &(P„~., I'.) + — (P -P.)0& 0& 0
gp

. 0

9 U+ —
~ ( p —p.)'+ ~ ~ . (1)r„I,

Let us now define a variable x which is the prob-
ability that a cell is empty; let the total number of
molecules under consideration be N, and let N, be
constant. The number of cells is N, the number
of empty cells is Ã„and N=N, /(1-x). Clearly p
=p, (1 —x) and hence Eq. (1) is an expansion of the
internal energy in powers of x. To evaluate (slj/
s/p) r ~ let us consider the perfect solid at the
standard-state pressure P, and temperature T,.
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Now remove a molecule (molecule A) from a cell
in the interior of the system and increase the num-

ber of cells by one where the new cell is on the
surface of the sample. As shown in Appendix A
the change in U for this process is n; U=a/2 (neg-
lecting vibrational and relaxation effects) where

N,~ /2 is the lattice energy of the perfect solid.
b, p =A(N, /V) = —(N,/v, )r x and hence

ture 7, and pressure P„where m is the work re-
quired to create a vacancy.

Let us consider the solid at temperature Po an'd

Tp and minimiz e the free energy with respect to x
to obtain the equilibrium value of x. One obtains+,+, (1 —2ox +2Px')

1 8E"' lnx

QU & vo

gp» 2N, Zx 2

since N,dx =aN„. The first term in Eq. (1) is
equal to No~/-2 and hence Eq. (1) is as follows

Povo
kr, (I -x)'

For small values of P„T„andx one obtains

-kT, lnx -=e/2+P, v, +N, '(sF"' /sx), .

(6)

Not Noix NOE (y'
U P~~o~ p)

——

where

NoeP'x
3

&ND 8p' ~ ~
'

2ND& 9p' ~

Now the change in Gibbs free energy AF for the
above process (bN„=1) is as follows

aI' =sU —T,aS+I', aV . (3)

f E'x Q 2 pF=N ——+———ex'+ —ex'—
2 2 2:3

Hence for the material under consideration E is as
follows

It is a general principle of statistical mechanics'
thatx =exp(-u/kT) where w is the reversible work
required to change x by nx =$(1 x)'/N -JaN„
=(1-x)'/No. Hence w is the work required to
create a vacancy in the thermal equilibrium state
of the system. Equation (7) applies to the solid at
low temperatures and at larger values of T, (and
x) the magnitudes of a, p, and sF"'"/ax will be es-
sential in determining the value of m.

Equation (6) predicts the existence of three dis-
tinct phases since F(x) versus x gives rise to
three minima and two intervening maxima in F.
We shall interpret these three systems as solid
(small x), liquid (intermediate values of x), and
gas (x~ 1). The three distinct phases and the
corresponding values of x are graphically illus-
trated by plotting

Pv +To
1-x (4)

lnx Pov0
{1-x

This approximation is an overestimate of S due
to the interactions between vacancies. For most
cases the excess entropy S'-S is small compared
to U/T and So. Hence F is a function of x (or the
number N„) and is as follows

F(x) F (x) 1 e cx ea, cP+ —' —+—— x + x
N kT N kT kv.

' 2 2 2 3

x lm . Pv. o+ +ln(1-x) + (1' ) (5)

In the following we will assess the entropy S by
setting it to be equal to the entropy of mixing mo-
lecules and vacancies and is equal to S'=kin(N!/
N„!No!) where k is the Boltzmann constant and
hence

TS NIT — +-ln(1=-x))
x lnx
1-x

f,(x) =-
2k' (I-2ax+2px')—

0 kT~oax

versus x. The points of intersection of these two
functions correspond to the minima and maxima
in F(x)/NokT This is illu. strated in Fig. 1 where
f, (x) and f,(x) are plotted versus x with values of
u, p, sF""(x)/Bx, and e that have been determined
for a,rgon at the solid-liquid-gas triple point (Sec.
IIIA). The dependence of F"'"(x) on x is very near-
ly that determined for the hard-sphere system
(Sec. V).

The gas-liquid critical constants are determined
from Eq. (6) by requiring that BP/BV =0 and O'P/
BV =0, and one obtains the following critical con-
stants in the limit that n =P =0 and we neglect
higher derivatives of F '

(x) other than the first
where in Eq. {5) we have separated out the vibra-
tional free energy F""which in a later part of this
paper we expand in powers of x (Sec. V). As will
be shown below tv =N, '(sF" /sx), +e/2+p, v, for
the perfect solid in the standard state at te~pera-

1 q 1 gF'
+

4k 2k 8x

P,vo/kT, =ln2-2 =0.1932
(6)
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P—(r) and the pair potential between neutralizing
charges in different cells is Q(r) .In this way we
create, effectively, xN empty cells and the free
energy of the system may be readily evaluated.

The internal energy U of this system may be de-
composed as follows

U=U +U'„+U„„,
where U is the potential energy between the N
molecules a,nd is equal to -&e&. U'„ is the poten-
tial energy between molecules and neutralizing
charges (excluding any interactions between a mo-
lecule and neutralizing charges in the same cell)
and is equal to N~. U„„ is the potential energy of
interaction between neutralizing charges in differ-
ent cells and is as follows:

Oj— f2(x)~
GAS

~

MAX
Lr„„=-;N„p„g„(x)P„(r)dr, (10)

-IOO I—

GAS REGI

where p~ is equal to the number density of cells
containing neutralizing charges (p,„=x/v, ), g„(r)
is the vacancy radial distribution function and
Q~(x) is the pair potential between neutralizing
charges in different cells [Q„(r) =Q(x)j. We need
the free energy f per molecule that has not been
neutralized. This is as follows:

U TS' PV
No No

-l50

0.600 0.700 0.800 0.900- I.OOO

where, as before, w e have estimated the entropy
by S', the entropy of mixing of molecules and
neutraliz ed molecules.

Flo ' ] (a) ff (x) and f p (x ) ve rsus x in the solid-liquid
region at the triple point of argon. "Max" indicates the
value of x for which maximum in the free energy occurs.
(b) f&(x) and f 2(x) versus x in the gas region at the triple
point of argon. Dashed portion of f2(x) corresponds to
the region where the effective values of m and P depend
on x. For the dilute gas e = P =0.

As will be seen below, o and P decrease rapidly
with increase in temperature and Eqs. (8) may be
considered as a fair first approximation to the
gas-liquid critical constants. If z and P are not
equal to zero, one must solve a cubic equation in
x to obtain the critical constants.

B. Expressions for parameters n and P

I,et us reconsider the cell model of Sec. IIA
from a slightly different point of view. Consider
N molecules occupying N cells each of volume vo.
These molecules, we will assume, interact pair-
wise with the potential Q(r) Now in N. „=Nx of the
cells, add neutralizing charges in such a way tha. t
the pair potential between a molecule in one cell
and the neutra]. iz''ng charges in another cell is

&(x)"'" e x e x'
N

—2+ 1 2+ 2„(1 „) g(&)A(&)dr
0 0

(12)

1-o.e =e+ — e ~i" ry(r)dr,
vo

(13)

""""0()g."( ) d.
3 3

2vo

3 1
+ —— e @~' p(r) dr2 vo

In deriving Eqs. (13) and (14) we have used the
virial expansion' of the vacancy radial distribution
function where gtO(r)e ~~" is the coefficient of

where we have replaced g„(r) by g„(r), the vacancy
radial distribution function. By comparison of
Eq. (12) with Eq. (5) one may readily obtain the
following expressions for o, and P:
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the vacancy density to the first power in the virial
expansion.

oe as given by Eq. (13) may be evaluated for the
LJ potential by a series expansion in ascending
powers of cL,/kT by expansion of the exponential
factor in the integrand of Eq. (13), integrating,
and placing a lower limit on r = g, . The result is
as follows:

-ee =c —4wc —+0.4064 +0.1478—6 LJ

av ui

+kln[v, (2wmkT)' '/k']. Thus

f= —M'1n( '
)

—
1 ll —n)

+M'(1 +In(1-n)) +

But Pu, /(I-x) =kT and one obtains asx-1
(v(nnm11 }n' n n1,n.

Noh' 2 t/

For the very dilute gas the usual result is

(21)

(22)

&LJ+0.04041 ' - + ~ ~

kT (15) V(2w mkT) 'i'
Nok' (23)

Hence ~ is determined as a function of e and tem-
perature T from Eq. (15).

The parameter P may be evaluated approximate-
ly by the following procedure. A rather accurate
way of correcting the zeroth approximation to
g(x) is given in Ref. 8 and gi'&(r) = voW-(r)/kT,
where W(~) is defined as the negative of the differ-
ence between the potential Q„, and the potential of
average force. P is as follows for argon

2

Pe = —c —4wc „0.8143 +0.3566 ' +0.1367
AT

+0.0386 "' + ~ ~ ~ (16)

U the vacancies are completely randomly dis-
tributed, n and P are exactly equal to zero. This
may be seen by noting that U„„of Eq. (10) in this
case is given by

and

1
Unn

= =~&W& (17)

U c E 6X' 6 6X

N 2 2(1 -x) 2(1 -x) 2 2
(18)

F"' c (1 -x) kTx lnx
1 Pv,

+
No 2

(19)

We must evaluate E"'/N, in the cell model approx-
imation for the gas in which an occupied cell has
the center of a molecule somewhere inside the
cell. The translational partition function Z" for a
particle in a box' then applies and

Z" = (2w mkT)'~'v, /k'.

Hence U"'"/N, = ,' kT and S"'"/N, =—,
' k—

(2o)

and hence, for a completely random distribution
of vacancies n =P =0.

Let us now examine the free energy for the di-
lute monatomic gas (x= 1). In this ca.se it is clear
that o =P =0 and the free energy per molecule

For dilute gases the term kT ln-rV(2wmkT)'~'/

N, k'] is much larger in magnitude than -(e/
2)Novo/V, and hence the present cell model is very
nearly equal to the usual result for the dilute gas.

III. MELTING AND CONDENSATION OF ARGON

A. Melting

In order to apply the above model to a real sys-
tem, one must assess the vibrational free energy
E"'"(x). We will use an independent harmonic os-
cillator approximation in evaluating E"' for solid
and liquid argon. In this case U"'" and S" are as
follows:

3AT (k v/k T)
exp (k v/kT) —1

(24)

S"'b = —3R In{1—exp( —hv/kT)] .3A (k v/kT)
exp kv kT —1

(25)

The effective harmonic frequency for the solid v,
was determined from the experimental entropy'

S, of the solid. The vibrational contribution to
S, was calculated by subtracting from S, the en-
tropy &S„due to the volume expansion of the
solid"

~S„=(V. —V,)~,/P. (26)

where V and V, are the molar volume at the melt-
ing point and at O'K, respectively, x, is the vol-
ume coefficient of expansion of the solid at T and

P, is the isothermal compressibility at T . kv, /k
=75 K is obtained in this rrianner. The calculated
constant volume specific heat C'„at T' is 5.58
kcal K 'mole ' in the harmonic approximation and
the observed value' of C„'is 5.74 cal'K ' mole '.

Next we must estimate v, for the liquid. This
was obtained, in first approximation, from mo-
lecular-dynamics calculations on liquid argon in
which the Fourier transform of the "rattling"' con-
tribution&b to the velocity autocorrelation function
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a =6189/e -1 (2'I)

was used. The rattling motion of an argon atom in
liquid argon may be represented to a very good de-
gree of approximation as a damped harmonic os-
cillator as shown in Appendix B. In this way we
obtain kv, jk = 51'K. The calculated specific heat
at constant volume C„' = 5.78 cal K ' mole '; the
observed value" is 5.74 cal K 'mole '.

Next, &z and P were evaluated from Eqs. (15) and

(16) at T„=83.8 K. One obta, ins

6U ~b/kT

~U, /kT'
0.396
1.521

gSvib/k
pe:Oaf 1g/k

g SGOIIMIl/k

1.406
0.424"
0.087

Total ~U /kT 1.917 Total ES /k 1.91'7

AU, /kT= (c/2kT)(x& —xs —ax&+ ~px&).
S ~~ g/k = xs&nxs/(1 —xs}+ln(1 —xs) —xt lnxr/(1 —x

—ln(1 —x,).

TABLE II. Contributions to 4U /kT and AS /k at the
triple point for argon.

p =—', (-3583 +e)/e (28)

TABLE I. Melting data for argon.

where e is expressed in calmole '. At the triple
point we shall set ~ =e, =e, in the following.

F"' (x)/kT is expanded in a power series in x in
Sec. V [Eq. (47)], and we shall use the ratio of
free volume v~/v~0 determined for hard spheres to
evaluate gF"'"(x) except for v~2/v~ and v~/v~
whi. ch we will adjust (a,s done in Sec. V) and these
are the only adjustable parameters in the present
calculations.

We have determined the melting parameters by
requiring that f, =f, and in addition that sf, /sx
= sf, /sx =0. Calculated melting data are given in
Table I and compared with the observed values.
The values of the adjusted parameters are v, /v,
= 2.312 and v~3/v~2 =2.104 which are very close to
those determined for hard spheres [Sec. V, Eqs.
(48)]. In Table II we give an account of the various
contributions to the change in internal energy
(U, —U, )/AT and change in entropy (S, - S,)/A upon

melting. The value of kv, /k corresponding to
b, F"'/RT is 46'K in close proximity to the value
obtained above (51'K) from the molecular-dynam-
ics calculations on argon. We have assigned the
difference

zU"' +~U, -TaS -TzS"'" '+PzV

to communal entropy which turns out to be some-
what smaller than the corresponding value' for
hard spheres (nS" '"/k =0.168). b S""""is defined
in Table II. The change in vibrational entropy is
'I3% of the total change in entropy upon melting in
the present model.

In the following we will explain how the melting
data in Table I were computed from the model.
was computed from the experimental heat of sub-
limation ~,„„asfollows

(29)

at T~, e/2=1900 calmole '. The heat of vapori-
zation ~,„. , was computed from the parameters
as follows:

1 1 2 2~„~p —26 —pc (xg —oxg + 3px))

Quantity Model Experiment -Ug' +2RT (30)

T ('K)
AU (cal mole ')
hV (cmsmole )
4II~ (calmole ~)

C&- C„' (calmole 'K )

C& —C' (calmole ~ 'K ~)

P (atm)
xs
x)
(Bx/BT)p ('K ~)

P) (10 atm )
(dP/dT) (atr;. 'K )

81.7
311

3.69
1521

2.704
5.87
0.443

3.70x10 3

0.130
2.537 x10 3

305
33.9

83.8
281'

3.79
1550

2.589 b

5.10
0.679

3.74&&10 3'
0.133 '

2.54 x10 3 d

200
39 a

Equation (30) follows by setting ~„„=U,—U„,„.
Next C& —C'„was computed from the thermodyna-
mic relation

Cp -C„= (31)

The pressure is negligible at the triple point in
Eq. (31) and (sU/s V)r was computed from lattice
sums" for c,/2 and (sV/sT)z was taken from Ref.
3. C~ —C„' was computed by differentiating U' with
respect to g at constant pressure and at constant
volume and subtracting the results

~A.&gon, Helium and The Raze G'-ases, edited by G. A.
Cook (Interscience, New York, 1961).

bSee Ref. 3.
'G. F. Nardelli and A. R. Chiarotti, Nuovo Cim. 18,

1053 {1960).
dx), (Bx/BT)& were calculated from the equation

p, =I,(1—x,).

+ —& -~~i+

+ —— (xg- o'x, +-,px,), (32

where we have set (se/sT)„=0. The first term on
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the right-hand side of Eq. (32) was placed equal to
(BP'/BV)r(BV/BT)z for the solid.

The pressure at the triple point, P, was com-
puted by equating the free energy of the solid to
the free energy of the gas fEq. (22)]. Neglecting
terms in x, this is as follows:

e V(2mmkT)'i'
-7"AS +E"'"——=-AT lnv 8 2 NR

(33)

but to an excellent degree of approximation P
=RT/P with the result that the pressure P may
be obtained from Eq. (33).

The value of x, was calculated from the following
equation which is obtained by setting Bf/Bx =0:

BE"' lnx~

(34)

(Bx,/BT)~ was obtained from Eq. (6) by differentia-
tion with respect to T at constant pressure:

(35)

(" =
~k (1 )

+
2

—(1 —2c(x, +2px', )x, (1 -x, )

2x, lnx) 1 B'E'
Bx

Finally, the slope of the melting curve at zero
pressure, (dP/dT) was obtained by equating f,
and f, and differentiating with respect to T. The
result is as follows

where

BE
+

2kT (x) xs Qxf + 3Px j)

lnx, Bx& lnx,
(1 -xg)' BT ~ (1 -x,)' BT

where

(BE"'/Bx), 1 Be

uT2 2AT BT

and

1 2 lnx
x, (1 -xg)' (1-x,)' kT Bx'

g

Bxg
P) = s —

(1 x),P
and (P=0)

(38)

(37)

where E"' is the sum of the vibrational free ener-
gy and Lr, (Table II).

The isothermal compressibility for the liquid
was obtained by differentiating the equation p,
= p, (l -x,) with respect to P at constant tempera-
ture. One obtains

kT Bx, BP ~ AT 1-x,

vo lnx, Bx, lnx, Bx,
kT(1 -x,) (1 -x,)' BP, (1 -x,)' BP,

2 2 3(x/ g Qx) + 3pxg)2' BP ~

The melting curve of argon was computed from
the model and is shown in Fig. 2. The agreement
is good in view of the fact that no additional ad-
justable parameters were used in the calculation.
The vapor pressure of the solid and liquid versus
temperature was computed and is given in Fig. 3
where log„P is plotted versus 1/T and compared
with experiment.

Vo 2

k (1 — )2 2k ' P (1-2axr 2pxi)

(38)

where

2 lnx, ~ B2E

x, (1 —x, )* (1-x,)' kT xx* ),
with the result that (P =0)

C
p(=p. +

D

B. Condensation

In the following we shall calculate the critical
temperature, pressure, and density from Eq. (9)
using the value of z determined by extrapolating
lattice parameter data' versus temperature to
150 K to obtain vo and then calculation of E at
150 K (reference solid) using lattice sums. "
(BE/Bx), will be placed equal to the value used at
the triple point and found for hard spheres (Sec.
V). In this way we obtain v, =31.9 cm'mole ' (at
the triple point v, =25.7 cm' mole ') and e = 3205
kcal mole '. Values of &„P„and p, calculated
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IO

TABLE III. Observed and calculated gas-liquid crit-
ical constants.

Model (&=P =0) Expt.

r, (K)
P~ (atm)

p, (gem 3)

148.7
74.0
0.626

150.9
48.3
0.536

IO
2

50 I50 250 350

very accurate and the temperature dependence of
the lattice parameter was closely given by the cell
model up to the melting point. The coexistence
curve between liquid and vapor is shown in Fig. 4
and compared with the results of the present mod-
el. The agreement is good over the entire range
of densities.

FIG. 2. Melting pressure P versus temperature for
solid argon as given by the present model (---0-—) and

from experiment ( ).

in this fashion are given in Table III along with
the experimental values. The expression for 7,
in Eq. (8) demonstrates why a system of hard
spheres has no liquid phase or critical point since
in this case e =0 and (e E"'%s), is negative [Eq.
(47), Sec. V].

The extrapolation of lattice parameter' data
versus temperature was done by using the cell
model for the solid. The experimental data are

IOO

IV. PAIR CORRELATION FUNCTION

In this section we will compute the pair correla-
tion function g(r) for liquid argon in the quasilat-
tice model approximation and compare the results
with the g(r) computed by machine. 'i' For a Gaus-
sian distribution of atomic coordinates in three
dimensions, a component of g(r), g„(r) due to the
atoms located at distance xo from the origin, will
be given by (Appendix C)

-n(g - g

(4o)
4m&mp, rr,

where o. '~'=2 '~'((r r,)') '~', N —is the number
of atoms located at x„p, is the liquid number
density, y~ is a normalizing factor near unity and

I4

IO-

E
O

I- 1.0

0.8

O. I

I.50 I.IO 0.70
100/T, K

0.30

FIG. 3. Vapor pressure of solid and liquid argon
versus 100/T' for the model (--—0—) and experiment
(

0.6
0.80

I

0.60 0.00.40 0.20
~r

FIG. 4. Coexistence curve of liquid and vapor as
computed from the cell model (-—0—) and experiment
( ).
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TABLE IV. Quantities used in the calculation of the radial distribution function for argon.

Coordinates

——01 1
2 2

100
1 11——
2 2

110
——03 1
22

-1-3 1
2 2

200
——03 3
2 2

2-2

210
——13 3
2 2

2a

~6a

&7a

2v2a

3a

V1Oa

v11a

——05 1
22

3 1
2 ——22

W13a

211 2&3a

r, (A)

3.816

5.396

6.610

7.633

8.534

9.350

10.098

10.792

11.451

11.451

12.067

12.658

13.220

13.759

13.759

1.123

1.587

1.944

2.245

2 ~ 510.

2.750

2.970

3.174

3.368

3.368

3.549

3.723

3.888

4.047

4.047

12

24

48

12

24

Total 322

1.0
' 0.92

0.85

1.2
1.0

1.0
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

g~(~0)

2.782

0.267

0.776

0.314

0.356

0.119

0.611

0.074

0.100

0.199

0.178

0.162

0.148

0.138

0.275

2 mVz ~+ -2KZm (4l)

where K is the force constant and z is the maxi-
mum value of z at the energy AT/2. But for the
potential of average force for nearest neighbors

x as before is the probability of a vacancy at a
lattice site. The vacancies are assumed to be
distributed in a random fashion [y„-0.99, obtained
by numerical integration of Eq. (40)]. The co-
ordinates, distances (r,), N, ((r r,)')'~',-and
g„(r,) are given in Table IV for a face-centered-
cubic lattice with a =2'~'~j.

q =3.816 A out to the
first 322 nearest neighbors.

The quantities ((r -r,)') '~' were adjusted to give
the best fit to g(r), but the selected values are
readily shown, in the quasilattice cell model ap-
proximation, to the quite reasonable. In a classi-
cal machine calculation, the most probable value
of v,', the square of a component of velocity, is
given by AT/m. For the nearest neighbors, the
value of ((r r,)') '~' is d-etermined essentially by
the second derivative of the potential of average
force Q*(r) at the maximum in g(r) This is.
strictly true in a classical harmonic approxima-
tion where the distribution of g (r) is Gaussian.
This may be seen as follows. At the turning points
of the harmonic oscillator

=—2o.K', (42)

where the fast result follows for nearest neighbors
where g(r) is determined primarily by the Gaus-
sian centered at x =r, for nearest neighbors.
Hence from Eqs. (41) and (43), z„=(a.) '~'

=2'~'((r —r,)')'~' which is exactly true for a har-
monic potential and hence ((r -r,)')' ' is deter-
mined by the curvature of g(r) at r =ro The sh. ape
of g(r) for the first nearest neighbors will be es-
sentially the same as P*(r), i.e., a lopsided dis-
tribution which tails off relatively slowly with in-
crease inr -r, .

For other than first nearest neighbor molecules,
((r r,)')'~'-is determined classically by the po-
tential of average force in the vicinity of a lattice
site with perfectly reflecting walls at the cell
boundary and hence for distant neighbors for which
g*(r)/AT= 0 the values of ((r r,)')'~' are-com-
parable to the cell dimensions.

In Fig. 5 is given the results of the machine cal-
culation"'& at 94 K for argon and the computed
g(r) for the present quasilattice approximation.
The agreement is excellent and this lends support
to the validity of the present quasilattice approxi-
mation for liquid argon.

V. MELTING OF A SYSTEM OF HARD SPHERES

kg dg
g(r) dr', „

(42) The present cell model may be used to study
melting of a hard-sphere system. Hard spheres
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g(r)

3.0—

2.0—

where vf is the free volume of a hard sphere in
the presence of n nearest-neighbor cells that are
vacant. %e may easily compute the first three de-
rivatives of Eq. (46), evaluate at x =0 and obtain
AE""(x)/kT as follows [b.F""(x)=E""(x)—E"'b(0)]:

(v', )'v~
+220x' ln ', 'T +. ~ .

V)J V~
(47)

2.0
r/o

FIG. 5. Pair correlation function g(~) of argon at
94'K as computed in Ref. 2(a) ( }. Circled points
are calculated from the cell model as described in Sec.
IU. Vertical bars are the values of g~(xo}. Statistical
error in machine computations is indicated.

Pv0+in(1-x) +

The vibrational free energy will be determined by
the free volume vf available to a hard sphere and
classically is as follows:

(44)

E mI"('RwmkT)'~')

kT h
(45)

The free volume will be a function of x and will be
larger in the fluid phase than in the solid.

The empty cells in a hard-sphere fluid will be
distributed, in first approximation, at random and
hence let us compute the vibrational free energy
in the fluid as follows using the binomial expansion
of (1-x+x)" and weighting the vibrational free en-
ergy of a sphere in the presence of n vacancies by
the nth binomial coefficient. This procedure is
valid in an independent-particle approximation:

exhibit a first-order melting transition' with v,
=1.359m'„v, =1.499v'„and Pv', /kT =8.27 where u',

is the atomic volume for the cubic close-packed
structure at 0 K. Due to the lack of interaction of
hard spheres except at contact, the communal en-
tropy' S" is important in determining the transi-
tion. In the present model the free energy of a
system of hard spheres is as follows

E"'"(x) S" (x) x lnx
k 1-x

v', vf, vf
f- =1.649, f' =2.066, ~ =2.407 .

vo (48)

The parameters v~/v~, (n = 1-3) and the melting
data of Tables V and VI were determined by re-
quiring that E,"' = E ",

' and 8E,"' /Sx = 8E", '/Sx = 0
and adjusting the three pararr~eters to obtain the
best fit to the machine data. S" was taken from
the data given in Ref. 7 but is only a small part
(13/p) of the total change in PV on melting (Table
~). This procedure is only approximate for two
reasons: (1) in the present model the cell size is
constant and for the perfect solid and ideal gasS" =0. In Ref. 7 the cell size is determined by
the volume per molecule but this cell volume is
only 10%%u~ bigger than in our model and hence S"' "'

of Ref. 7 is a good approximation to our S" "'; (2)
it is expected that a small part of the S" of Ref.
7 is contained in our I'"', but this contri. bution is
essentially equal to zero for the solid at the melt-
ing point and because of our definition of LE"
[Eq. (46)] is also very small for the fluid. An ap-
proximate derivation of S" is given in Appendix
D. In Table VI we list the various contributions
to PAV /kT. The vibrational free energy con-
stitutes the major part (58/o) of the total change inIP.

The change in volume between T and 0 K is

TABLE V. Melting data for hard spheres.

and hence we have the vibrational free energy as a
function of x in terms of the quantities vf. Equa-
tion (44) now yields a first-order melting transition
with the melting data given in Table P along with
the available experimental (machine) data. The
quantities vf are as follows:

= 12(l —x)"x lnX X f

vf+66(1-x)' x'ln ~Vo

vf
+220(1-x)'x'ln ~ +

(46)

Quantity

Pv p/k T
vo~s

VOPl

+S
X$

See Ref. 7.

Model

11.24
1.000
0.900

5.1x10 ~

0 ~ 100

Experiment

11.24+0.18
1.000 +0.004
0.906+0.004

-10-'
0.0938+0.008
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TABLE VI. Contributions to P&V /kT.

Theory Expt.

Configurational ~

Communal
Vibrational

g~cef ig/y
g+Omm/p

aI "'"/ur

0.361
0.168
0.733

Total (PhVJk T) 1.2.62 1.16+0.12

'~S'~"&/a = ~,lm, /(1 —~,)+ ln(1 —x,).

known and hence Pv, jnkT is determined since
P(v, -v,') =3kT since, from the simple cell model
for the equation of state of the solid C~ -C„=38.
The change in nonvibrational internal energy on
heating the perfect hard-sphere solid at P at 0 K
to T at P is zero and hence PA V = 3kT. In this
way we obtain Pvoo/NkT =8.356.

ln Fig 6w.e present a plot of log(v, -v&)/v, ver-
sus 1/T for the fluid, which according to the cell
model for the fluid, should yield a straight line
with slope equal tow/k where w is the reversible
work required to form a vacancy in the fluid. A
straight line results down to Pv', /NkT =1.000 and
the slope yields w/kT =1.952. A simple calcula-
tion" of the isothermal compressibility P& of a
fluid containing vacancies yields the following re-
lationship between P& and xz,

x~V
3.25(1 -x,)II T

(49)

and Eq. (49) predicts that a plot of log(NPIkT/
v,')(1 -xz) versus 1/T should yield a straight line
of slope w/k. A plot for the hard-sphere fluid is
shown in Fig. 7 and the slope yields w/kT„=2. 075
in good agreement with the value of w/kT deter
mined from the density plot. Equation (35), when

applied to hard spheres, yields a good representa-
tion of ti& also. The above facts strongly indicate

that hard-sphere vacancies occur in the hard-
sphere fluid at high densities.

Finally in Fig. 8 we show the equation of state
for the hard-sphere system as determined by ma-
chine and compared with the results of the present
model. The agreement is good over the entire
range of density and pressure, particularly in the
fcc solid phase.

VI. DISCUSSION

Most theories of melting that are of current in-
terest are based on the order-disorder lattice
model of Lennard-Jones and Devonshire'4 or on
the hard-sphere transition modified to take into
account the attractive forces. " In the present cell
model, the presence of vacancies and the change
in vibrational free energy between solid and liquid
are of paramount importance. The agreement be-
tween the calculated and observed melting data
(Table 1) and the agreement between the observed
and calculated g(x) (Fig. 5) indicate that this ap-
proach is correct. The present theory describes
all three states of matter: liquid, solid and gas
and will yield accurate results on melting and con-
densation. Attractive forces play a vital role in
the present theory since they determine the vacan-
cy interaction parameters o. and P and energy e.
The present model represents the first-order

0.2
t.00

)-I &'
O.l—

O.OI
8.000

I I I

6.000 4.000
PY /NkT

2.000
O.OIO

8.00 6.00
Pvo/NkT

4.00 2.00

FIG. 6. log(1 —v ~/v~) versus Pv 0/NkT for the hard-
sphere Quid.

FIG. 7. logNPfkT(1 —x&)/v, versus Pv /NOT for the
hard-sphere fluid.
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20.0

16.0-

i 12.0-

0 ~
Q

8.0-

U;;„.„=U",-,'b„.
, +e —e/2 N—oe /2

AU=6, U
' +e/2

APPENDIX 8: RATTLING MOTION OF ATOMS IN

LIQUID ARGON

%e will represent the rattling motion'(' of atoms
in computer liquid argon by the following normal-
iz ed velocity autocorrelation function:

Og
0 0.40, 0.60,0.80

V !Vf
1.00

FIG. 8. Equation of state for the hard-sphere system
from the vacancy-cell model (---0---) and machine ex-
periments ( ).

APPENDIX A: EVALUATION OF AU UPON VACANCY

FORMATION IN THE PERFECT SOLID

In the perfect solid [Q(r; —r, ) is the pair poten-
tial between molecules i and j]

U,.„,.„.,„=U,". '",.„. , + —g g &j& (r; —r;)
$~j

Now we consider the solid with one vacancy in the
interior and the removed molecule k on the sur-
face

,
=U",,"„„+2gpss(r, —r~

%here r~ is the initial radius vector of molecule k
and r„' is the final radius vector of molecule k on
the surface. Let Noe/2=& 5~K;~& ))))-(r& —r;) then
on the average Z; ~ P(r; —r„') = -e/2 and hence
(neglecting relaxational effects)

melting transition as an "avalanche of vacancies"
since x increases by a factor of about 50 for hard
spheres and a, factor of 35 for argon upon melting.

The empirical melting criterion of Hansen and
deerlet" which states that the first peak in the
Fourier transfo. "m of g(r) in the fluid has a con-
stant height along the freezing curve is reasonable
in the present model since (dx/dT) is of the order
of -1&10 "K ' along the freezing curve, and
hence g(x) will not change rapidly with freezing
temperatures. The Lindemann melting law which
states that a solid melts when the average ampli-
tude of vibration of the atoms reaches about 10%)

of the nearest-neighbor distance is a consequence
of the theory for hard spheres (Sec. V).

2
I'R (&) = — cos(dt )l)s (t) dt;

0

hence

&&(~) =— C —+- C

1+( +~,)'v.' ) ( —~,)'v,')

From the graphs of Ref. 2(a) we obtain fR =0.60,
&o = V.O&&10" sec ' and z, =3.1&&10 " sec (at
94'K). Equation (B2) provides an excellent repre-
sentation of the experimental Es(ur) given in Ref.
2(a).

APPENDIX C: GAUSSIAN COMPONENTS OF THE PAIR
CORRELATION FUNCTION

We wish to compute g„(v) for a three-dimension-
al Gaussian distribution of atomic coordinates
relative to a lattice site at x =~,. The normalized
three-dimensional Gaussian distribution is as fol-
lows:

3/2

G(r) = e "&' 'o'
7)V 7T

We must calculate G(x) by integrating G(r) over a
spherical shell of radius r. Let r'= r —r, then

='v +f'o —O'J'0 cosg

and we integrate over Q and 8. The result is as
follows:

G(y) = ((y)/2/~77 y/ )e
1

to an excellent degree of approximation for cases
of interest here. Let N be the number of atoms
located at r, . Then by definition

4wP, r'g„(r) dr =N„(l -x)G(~)-. 'd~

and one, obtains Eq. (4V).

(C4)

4(~) =fs cos&of

where fz is the fraction of the time spent in the
rattling state, &, is the harmonic angula, r fre-
quency and 7, is the mean time between hard col-
lisions. The Fourier transform of gs(t) is as fol-
lows:
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APPENDIX D: CALCULATION OF COMMUNAL ENTROPY

In this appendix we give an approximate deriva-
tion of S" for our cell model. We consider dou-
ble occupancy of a cell as well as empty and
singly occupied cells as done in Sec. IIA. Let N
be the number of cells and N, the number of. mo-
lecules as before. Let N„by the number of vacant
cells, ~, the number of singly occupied cells, and

N„ the number of doubly occupied cells. As before
N=N, /(1 —x) and N„= [(x +P„)/(1 x)]N-, and the
communal entropy is defined as the difference in

entropy between that of the present model and that
computed as in Sec. IIA. That is

(D1)

Let P„be the probability that a cell is doubly oc-
cupied; hence we obtain

where p is the number density of the material and
v, (a) is the volume available to molecule 2 with
molecule 1 located at radius vector a such that
molecule 2 is somewhere inside the volume v, of
the cell. Transform the integral over r to an in-
tegral over R where R is the radius vector be-
tween the two molecules both of which are some-
where inside the cell. Then the integral over R
reads as follows:

4a' g(R)R dR d cos8
2ar, (R' —a' sin'8)'~2

&& (a' cos28 +R'+2a cos8 (R' -a' sin'8) '~')

(»)
where the vector a is taken as the polar axis and
2o, is the value of R for which g(R) =0. However,
R'»a'sin'8 (cos8= -1) and hence the integral over
R now becomes

0 ~ —~ 2~ d

and hence
(D2)

Scorn n& x
l ( p )

P„x+P~ x 1n x
j'p 1+x " 1-x 1-x 1-x

g (R)(R —.)' —'0 -4g02+ (~, +a)'
200

2''o

(D6)
We must evaluate (D6) and then integrate over

da. This is conveniently done by assuming that in
the range of 2r, &R & 2cr„g(R) varies linearly with
8, that is

1 -x -2P„1-x —2P„-P„lnI'~ - — " ln1-x 1-x g(R) =g(R-2o.) . (D7)

+I'q ln2

da g(r) dr
&2(~)

(D4)

To calculate P~ easily, we assume spherical
cells of radius equal to half the nearest-neighbor
distance in the solid (r,) Let a. be the radial vec-
tor from the center of the cell to the first mole-
cule and then by the definition of P„and g(R) it
follows that

Equation (D7) is a good approximation for argon
and also for hard spheres Equa. tion (D7) may be
now substituted in (D6) and the integral over R
performed. The resulting integral over a may now
be evaluated but the result is too complex to pre-
sent here. For argon rp 1 12@'0 and P& 0 022
84'K. Hence S" '"/k =0.180. This result is some-
what larger than that found in Sec. IIIA for argon
by subtraction of two relatively large numbers but
is nearly equal to that determined by machine for
hard spheres (Sec. V).
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