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A unified Landau theory is introduced for the nematic, smectic 4, and smectic C phases using the director it
for the nematic order parameter, the complex order parameter § for the smectic planes, and the vector 8 for
the smectic C dipolar order. The phase diagram is studied and a possible second-order triple point is
predicted. The liquid structure factor near the nematic-smectic C phase transition is calculated and found to
be in semiquantitative agreement with the x-ray experiments. All three Frank elastic constants are predicted to
diverge near a second-order nematic-smectic C transition. The compressive instability near the smectic A—smectic

C phase transition is explained in the present model.

I. INTRODUCTION

Landau theories for the nematic—smectic A
phase transition'’? and for the smectic A -smectic
C phase transition®* have been studied recently.
In this paper we introduce a unified Landau theory
applicable to all three phases. This theory per-
mits a study of the nematic-smectic C phase
transition and of the triple point.

The original theory of liquid crystals was the
Oseen-Frank®® elastic theory of the nematic
phase. It consisted of an expression for the free
energy as a functional of the (unit vector) direc-
tor A(F) [our Eq. (1)]. This theory was extended
to a smectic A phase by deGennes! and by McMil-
lan® who introduced a complex order parameter
¥(T) to describe the smectic planes. The second-
order smectic A-nematic phase transition is
presently being studied intensively,”™° both theo-
retically and experimentally. deGennes?® intro-
duced a Landau theory for the smectic A-smectic
C phase transition using a tilt angle between the
director and the normal to the smectic planes as
an order parameter. McMillan* proposed a micro-
scopic theory of the smectic C phase based on the
electric dipole-dipole interaction and derived a
Landau theory for the smectic A-smectic C phase
transition using the dipole orientational order
parameter. This physical picture of the smectic
C phase has been controversial and is not yet uni-
versally accepted. Meyer'” has pointed out that
one should use a linear combination of tilt and
orientation as the order parameter in the smectic
C phase and that deGennes’s and McMillan’s theo-
ries are limiting cases. Doane et al.'® have ob-
served the orientational freezeout in TBBA with
an NMR technique. In addition there is increasing
chemical evidence!® that electric dipoles on the
molecular end groups induce the smectic C phase. ~
In the present paper we will adopt McMillan’s
physical picture of the smectic C phase and use

the orientational order parameter §(¥) to describe
that phase.

deGennes? has already proposed a Landau theory
to describe the nematic—-smectic C transition using
only the ¥ and i order parameters; the tilt angle
is already specified once ¥ and 7 are known and no
new order parameter for the smectic C phase is
necessary. The preferred tilt direction is intro-
duced (somewhat artificially) as an additional
parameter (not an order parameter) and is then
integrated over. The predictions of deGennes’s
theory are different from our theory and one can
decide experimentally which is correct.

Our principle results are the following. The
nematic—-smectic C phase transition may be second
order and one may have a triple point of second-
order phase transitions. The computed liquid
structure factor in the nematic phase near the
nematic-smectic C transition is in semiquantita-
tive agreement with the x-ray data®; the remaining
deviations appear to be due to the neglect of direc-
tor fluctuations. deGennes’s nematic—smectic C
theory is in conflict with the x-ray data. All three
elastic constants are renormalized near the ne-
matic-smectic C transition with the renormaliza-

. tion proportional to £, the correlation length.

deGennes’s theory predicts a renormalization
proportional to £3%2, The layer compression ex-
periments?? near the smectic A-smectic C transi-
tion can be explained with the present theory.

II. THE LANDAU THEORY
We now introduce the various terms in the free
energy. We begin with the Oseen-Frank elastic
theory of the nematic phase
F,= f AWK, (V R)2+ 3K [T (VX B)]2
+EK [T X (VX )]? - 3x, @ H)?, (1)

where 7 () is the unit vector director, H is the
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magnetic field, x, is the anisotropic part of the
susceptibility, and K;; are the three elastic con-
stants.

We next consider the complex smectic order
parameter ¥(T). The free energy is

F,= fd%’[alzp[z-b%b[z/);4+c,,|(ﬁ"5—iqo)zlllz

+e,|AX (V —ig,8 9|2 (2)

With g = 0 this is the expression used previously® 2
in the smectic A Landau theory. The term pro-
portional to E is the linear coupling between tilt
angle and dipolar order parameter derived previ-
ously.*

The third part of the free energy involves the
vector orientational order parameter g(r). Ac-
cording to Ref. 4 this order parameter is the
average electric dipole moment per molecule,
perpendicular to the long molecular axis, of the
dipole on one end of the molecule. The dipole mo-
ment on the opposite end of the molecule points
in the opposite direction so that the smectic C
phase is not ferroelectric. With the molecules
sitting on planes, the dipole moments on the same
end of neighboring molecules are parallel (see
Fig. 1). In the absence of smectic order the posi-
tions of the molecules are random and the dipole-
dipole interaction averages to zero. When the
molecules are organized into planes, the parallel
dipole moments are closer than the antiparallel
dipoles and there is a net interaction. This means
that one cannot include terms proportional only
to E 2 in the free energy; terms involving E must
be proportional to some power of ]z/) 2, Keeping
the lowest-order terms in a series expansion,
we write

F,= fdsy{elélhéflél‘*

+3d,, (Vo) +5dy,[h (V xF)]?

+3d JBx (VX 9[2 . (3)
From its definition E must be perpendicular to n:
g-H=0. (4)

The total free energy is the sum of these three
terms:

F=F +F,+F,. (5)
We assume the following temperature depend&fices
a=aT -T,), (6)
e=e(T -T,), (7)

with the other parameters temperature indepen-
dent.

/
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FIG. 1. Molecular order in the smectic C phase ac-
cording to the microscopic theory? with molecular long

axes aligned, the molecules sitting on planes, and the
electric dipole moments (arrows) aligned.

III. PHASE DIAGRAM

We first study the phase diagram 5> 0 so that
the nematic-smectic A transition is second order.
We work within the mean field approximation,
neglecting fluctuations of the order parameters,
and choose the order parameters to minimize the
free energy. We choose

Y= goeitins, (®)

=8, ©)

=z, (10)
The free energy is minimal with

4:=40> 4x=90Bo> (11)
and is given by

F=ayg+zb%5+ eBo+2 fB 303, (12)

after integrating over a unit volume. Minimizing
F with respect to ¥, and g,, we find

(a+bY3+eB5+3fB)N=0, (13)
(e+fB2)BWE=0. (14)

We first take the case T,>T,. Thenfor T>T, we
find the nematic phase

$o=B,=0, T>T,. (15)
For T,<T<T, we find the smectic A phase
1/’3-'- ao(T1 - T)/b )

(16)
Bo=0, T,<T<T,;
and for T'<T, we find the smectic C phase
Ye=ay(T, - T)/b+eXT, - T)?/2bf, (17

6g=eo(Tz —T)/f, T<T,.

Both phase transitions are second order with the



relevant order parameter vanishing continuously
at the phase transition. For the other case T,
>T, we find the nematic phase at high tempera-
ture.

l[)o’-"- 0, > Tch Tl + ecz)(Tl - Tz)z/zaof' (18)

The free energy is independent of B, in this ap-
proximation; we will show below that the orienta-
tional order parameter 3, is defined in the smec-
tic droplets and has the value (- e/f)!2. For T
<Tcy we have the smectic C phase with

YE=ay(T, - T)/b+ei(T - T,)?/2bf,
Bs=eoT,-T)/f, T<Tey,

and the nematic-smectic C phase transition is
second order; the smectic C phase has a finite
tilt at the phase transition. The phase diagram
is shown in Fig. 2 with the triple point at 7', =T,.

(19)

IV. FLUCTUATION MODES

We now find the energy of the director fluctua-
tion modes in the smectic C phase. We assume a
monodomain of smectic C and look for fluctua-
tions about the minimum in free energy. We as-
sume uniform flat smectic planes and write

Y= Yoetiomintor, | (20)
B=p,x+ zéﬁ‘qe‘a"", (21)
q
CR=F+ Y ohefTE, (22)
q

with g, and ¥, given by Eq. (19). There are four

nematic

7T

smectic A

smectic C

O Il
0] |
To/T,
FIG. 2. Phase diagram for the nematic, smectic A,
and smectic C phases; all three phase transitions are
permitted to be second order. . :
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modes, two each for 63, and dn, polarized in-the

x and y directions. Only one mode is hydrodynam-
ic (small energy at long wavelength); it is the
linear combination (6n, — 58,)/V2 polarized in the

y direction and has the energy

i (K, +dy,)g5+ 1 (Koo +dyo)gi+ i (Kgg+dag)gs  (23)

Recall that in the nematic phase there are two
modes, one with energy

1K, (q3+qd) +3K 02, (24)
and a second with energy
1Kp(ai+ 4+ 3Kl (25)

The elastic constants in the nematic phase are
renormalized by smectic order parameters fluc-
tuations whereas the bare elastic constants K;
appear in Eq. (23). Durand and co-workers? have
observed this mode in the smectic C phase and
find elastic constants comparable to those in ne-
matics.

V. X-RAY SCATTERING

deVries?! and Chistyakov® have observed diffuse
scattering of x rays in the nematic phase of mate-
rials with a smectic C phase a lower temperature.
deVries has correctly interpreted the scattering
as Bragg scattering from tilted cybotactic groups
or tilted smectic droplets in the nematic phase.
This is a pretransition phenomenon characteristic
of the nematic-smectic C phase transition; the
droplets grow in size as one approaches the phase
transition. McMillan?* then made quantitative
measurements of the liquid structure using x rays
for p-n-heptyloxyazoxy-benzene (HAB). In this
section we calculate the liquid structure factor
using the Landau theory and compare with McMil-
lan’s measurements.

In the nematic phase the average value of the
smectic order parameter is zero; however there
are thermal fluctuations of ¥ as small regions of
the nematic fluctuate into the smectic C phase.
We take these thermal fluctuations into account by
writing '

YE)= ) he T, (26)

The x-ray scattering intensity is proportional to
the thermal average of |#,|%.? We assume that
the orientational order parameter is constant over
one smectic droplet, but we take a thermal aver-
age over its magnitude and direction.

B(T)=%B,cosd+5B,sind . (27)

Finally, we neglect thermal fluctuations of :the
director
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nF)=2. (28)
Keeping quadratic terms in ¢, the free energy is
F= 3 e |4, (20)
q
where

€,=a+¢,(q, —q0)°+c.@, -q.8)?
+(e+51B2)B2 (30)

and §,=4 -n(A*§). Averaging over thermal fluctua-
tions of ¥, we have

Guireon [t I /o I
(31)

Taking a cutoff wave number of the order of ¢,,
we find

1
II - -_-exp(—; lnsq,>

Pl

=exp(const —q,AVa’/8r%),), (32)
where
a'=a+egi+ifpi. (33)

In (32), the sample volume V is included explicitly
and A is a number of order unity which depends
on the ratio of the transverse and longitudinal cut-
off wave numbers. Equation (32) is correct for
small a’/c,q?; this function is the probability of
finding an orientational order parameter g,; this
probability is maximum for

Ba=—e/f (34)

and we use this value in Eq. (20). Integrating
over ¢, we find

( I ¥, | D= kT[a' +c,(g, - ‘Io)z"' c, (g, - 510.30)2]-1/2
X [al + Cn(qz - qo)2+ culg.+ q08 0)2]-1/2-
(35)

At the second-order phase transition (¢’ =0) the
liquid structure factor has an inverse square-root
singularity at ¢,=¢q,, ¢,=B4,- This singularity
is rounded by three factors: (i) if one is not at
the phase transition a’# 0; (ii) thermal fluctuations
of B, smear out the liquid structure factor even at
the phase transition; (iii) thermal fluctuations
of the director with a wavelength of the order of
a correlation length will rotate the smectic drop-
lets in real space and further smear the structure
factor. We have not yet been able to include either
type of thermal fluctuations in the liquid structure
factor calculation.

In Fig. 3 we show a fit of the theoretical struc-
ture factor to the x-ray data® as a function of

HAB
\ nematic
\ q,=.2094"!

Liquid Structure Factor

FIG. 3. Liquid structure of HAB at four temperatures
versus ¢, for g,=¢,=0.209 A"!, The points are from a
smooth curve fitted to McMillan’s x-ray data; the solid
curves are the fit of our theory to the data points with
parameters given in Table I; the dashed curve is the fit
of deGennes’s nematic—smectic C theory to the data
points at 96°C.

q, for g,=q,. Only the parameter a’ is varied as

a function of temperature; the fitting parameters
are given in Table I. One can obtain a somewhat
better fit by decreasing g, with increasing tem-
perature. The temperature dependence of a’ is
decidedly nonlinear; however, one should be cau-
tious in taking the results of the fit seriously be-
cause the theory is not quantitative. The fit is at
least semiquantitative and is the strongest evi-
dence that the Landau theory is correct. The most
probable tilt angle (6=tan™g,) at 96 °C (nematic
phase) is 30° whereas at 94 °C (smectic C phase)
the tilt angle is 38°.2' Thus the tilt angle is quasi-

TABLE I. Values of the parameters from Eq. (34)
used to fit the x-ray data in Fig. 3.

T (°C) Bo a'/c.q}
96 0.585 0.017
101 0.585 0.0405

106 1 0.585 0.09

111 0.585 0.185
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continuous through this (first-order) phase tran-
sition.

The ratio of correlation lengths found by fitting
the g, dependence near the peak is

£||/£L= (C,,/CL)1/2:4,5_ (36)

From the value of a’ in Table I the transverse cor-
relation length at 96 °C is

£,=(c,/a')/ 2~ 37 A, (37)

The fitting procedure which neglects smearing
effects tends to overestimate a’ and underestimate
the correlation lengths. The correlation length
of 67 A quoted in the experimental paper? is a
misinterpretation.

One feature of the experimental data is not fit
by the theoretical model. According to the theory
for large qu -qol the liquid structure should be
independent of ¢,. Experimentally the liquid struc-
ture factor is not constant in this region but is
smaller for small ¢,. Thermal fluctuations of the
director smear the structure factor by rotating it
around the origin. This will not smear the region
with small g, but will smear out the large ¢, re-
gion. This effect will qualitatively explain the re-
maining discrepancy between theory and experi-
ment,

We can also compare deGennes’s nematic-smec-
tic C Landau theory?® with the x-ray measure-
ments., With

PE)= Y ettt (38)
)=z, , (39)

the expression for the x-ray structure factor is

" do kT
Il >—f°‘+(qlz“1u)z 2My+ @+ d, - q,)?/2My

(40)

where 1 is a unit vector perpendicular to n
U=% cos® + ¥ sin¢ (41)

and the cross term with mass M, is unimportant
and has been neglected. Although the physical
basis of the two theories is different, the expres-
sions (34) and (40) for the liquid structure factor
are similar, the only difference being the deGen-
nes’s theory has infinite mass in the third direc-
tion (perpendicular to il and U) whereas our theory
has a finite mass. This difference is responsible
for the different predictions for the liquid struc-
ture factor and for the elastic constants. In Fig. 3
we show the fit of deGennes’s nematic-smectic C
theory to the x-ray data on HAB at 96 °C. The fit
is poor with the predicted structure factor falling
off as 1/g, for large ¢, whereas the experimental
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structure factor (and our theory) falls off as 1/42.
We conclude that the free-energy expression writ-
ten down by deGennes is incorrect.

VI. PRETRANSITION RENORMALIZATION OF ELASTIC
CONSTANTS

Using the smectic A-nematic Landau theory
deGennes! predicted a pretransition increase of
elastic constants in the nematic phase due to
smectic order parameter fluctuations. The phys-
ical argument is that bending or twisting the smec-
tic droplets changes the interplanar spacing and
costs energy; a splay distortion of the droplet
preserves interplanar spacing and costs no ener-
gy. The renormalized elastic constants near a
nematic -smectic A phase transition are

K, =K, (splay) (42)
- kTq? (clz >1/2 . .
K, =K,,+———2 (- twist 43
22 22 24.” aC” ( ) ( )
- 2 1/2
Rpy= Kyt -”;Z*’ (%”> (bend). (44)

For a smectic C monocrystal there is one dis-
tortion which costs no energy at long wavelength
as discussed in Sec, IV. However this mode is
polarized perpendicular to-the tilt direction and
for a distorted nematic there will be smectic C
droplets tilted in all directions some of which will
be distorted in an energetically unfavorable man-
ner. Thus all three elastic constants will be re-
normalized near a nematic—smectic C phase tran-
sition. In order to calculate the renormalized
elastic constants we will assume a uniform dis-
tortion of the director and calculate the free ener-
gy of the smectic order parameter fluctuations in
the presence of this distortion. This calculation
is similar to the calculation of susceptibility of a
superconductor by Schmid.?*® To compute &,, we
assume a uniform splay distortion

AF)=2+ex%, (45)
where € is small. Then
E(;)=5c‘30cosq>+§ﬁosin¢—é’ x€cosd. (46)
Writing
Y(F) = & (F) expliq,(e +x B, co80 + 8, sing + bex?)],
(47)

the smectic free energy can be written in the fol -
lowing form

) 2
F= f Prd* [a' - c,,(a —iqoBo€X cos¢>

8% 92
- cl(_ézi + 3375)} o+ fd37f 'lz*K11€2. (48)
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We find the diagonal form of the free energy by
finding the eigenfunctions and eigenvalues of the
free-energy operator [the differential operator in
square brackets in Eq. (48)]. The eigenvalue equa-
tion is

9 2
[a’ - c.(;z— —iqoB X cos¢>

92 82
- 01(556—5 * a_yzﬂ Py By, P kyerge (49)

This problem is equivalent to finding the eigen-
function of an electron in a uniform magnetic
field.?” The eigenvalues are

Epy = (€10 0B o€ cOSD(2n+ 1) +c 3. (50)

The eigenfunctions are localized in the z direc-
tion about

2=k,/qB o€ COSP. (51)

Writing the order parameter as a linear combina-
tion of normalized eigenfunctions

‘I)(f)"" z Cn,ky,kzq)ny

Ny ky okz

by, ). (52)
We find for the free energy per unit volume

F= Z n.ky,kz n,ky,k,'*'éKllez' (53)
The partmon function is found by integrating over

the amplitudes of the smectic order parameter
fluctuations.

= -F/eT
zZ= H fdzcn,ky.kze e
iRy Ry

=( H TRT >e'K1152/2kT. (54)
n,ky,k

NoRys Ry

The renormalized free energy (after integrating
out the smectic order-parameter fluctuations) is

F=_pTInZ

=3K,&*—kT Y, 1n<——"k—T’>. (55)
mkyik fakyrky
Since the energy is independent of %,, the sum
over k, is easy; we sum over those values of &,
for which the center of the eigenfunction is inside
the integration volume. Then

_ goB € coso
lk‘:z = LRt F. (56)

Some care is required in replacing Z),, by an inte-
gral; for any function f (n)

ngy ng=1 df df
fo ﬂmdw;“"”” 24\an | " dn )

(57)

Using (57) we find the free energy per unit volume

kTq2B2cos?¢(c, /a')"2
247

F=const + %(Ku“’
(58)

If we had simply replaced 27, by fdn in Eq. (55),
we would have obtained only the constant term in
F. The entire correction to the elastic constant

arises from the discrete nature of the eigenvalue
spectrum. The use of Eq. (57) is only valid pro-
vided

(c.en) lquB o€ COSP <a', (59)

which limits the amplitude of distortion which one
can use to measure the renormalized elastic con-
stant. From (58) we define a renormalized (ob-
servable) splay elastic constant (after averaging
over ¢)

- kT 2 c 1/2 2
Ry 1y S (2) 78 (apaay). (60)

A similar calculation for twist and bend distor-
tions yields

5 kTq'g(E.ﬂ)l/z c,
Kap= Kot 247 \a' c,

- BT, 1/2
Ryg= Koyt 4‘jr° (J) (bend). (62)

+ 3—2‘2’> (twist), (61)

These results reduce to the smectic A results when
Bo=0. For HAB 382~0.17 and c,/c, = 0.05. The
renormalization of all three elastic constants is

proportional to £,=(c,/a’)!’? in our theory and to

3/2 in deGennes’s theory. The elastic constant
renormallzatlon has been observed by Gruler?®
for homologs of HAB.

VII. COMPRESSIVE INSTABILITY

Ribotta, Meyer, and Durand? have observed a
compression induced smectic A-smectic Cphase
change in a smectic A liquid crystal near the
thermodynamic smectic A-smectic C transition.
In the smectic C phase the molecules are tilted
with respect to the plane normal and the spacing of
the smectic planes is reduced. An externally ap-
plied stress compressing the layers can be re-
lieved by tilting the molecules thus driving the
liquid crystal into the smectic C phase. Ribotta
et al. observed a threshold strain for tilting which
is proportional to T —T,. This behavior was ex-
plained using deGennes’s Landau theory of the
smectic A-smectic C phase transition which uses
the tilt angle as the order parameter. In this
section we show that the tilt threshold can also be
explained using our unified Landau theory.

We begin with the liquid crystal in the smectic
A phase with interplanar spacing d=2r/g,. The



15 UNIFIED LANDAU THEORY FOR THE NEMATIC, SMECTIC 4... 1187

liquid crystal is compressed suddenly so that the
interplanar spacing is d — Ad. We now choose the
order parameters so that the liquid crystal may
be in either the smectic A or smectic C phase.

Y(E) = doeite i, (63)
nT)=2, (64)
B(r)=pR. (65)

We choose a coordinate system which tilts with
the director. The interplanar spacing is held
fixed

2 2w
d—Ad= = , 66
@+qI' " " qo+Oq (66)
where )
Aq/q0= Ad/d. (67)
We fix ¢, at its smectic A value
Yi=—a/b. (68)

The relevant terms in the free energy are
F/¢§= C,,[Aq -%(qf/qo)]2+ c,(g.—qoBo)?+ 6’63,
(69)

where the undetermined parameters are ¢, and g,.
We find these two parameters by minimizing the
free energy with respect to each of them and find

ql C, e
6x—==0, Ag<gq,———— 70
9o » B Cne"'clqg, (70)
2
Gz’z—q% =2 Aq _ 2 Q—J—z , otherwise (71)
90 9o C,e+c,q;

which predicts a threshold compression with tilt
angle squared proportional to compression above
threshold. For a material with a smectic A-
smectic C phase transition the threshold compres-
sion is proportional to T - T,; for a material with
no tendency to form a smectic C phase (¢= =) the
fractional compression at threshold is ¢,/c,~0.05.
Thus the predictions of our unified Landau theory
agree with the predictions of deGennes’s smectic
A—smectic C Landau theory and with experiment.

VIII. CONCLUSIONS

We have written down a unified Landau theory
for the nematic, smectic A, and smectic C phases
which is an extension and synthesis of several
previous theories. This theory reduces to the
very successful nematic—smectic A Landau theory
in the appropriate limit and describes the phase
transition and compressive instability at the
smectic A-smectic C transition. The theory pre-
dicts the possibility of a second-order nematic -
smectic C phase transition and a second-order
triple point. We have computed the elastic con-
stant for the director fluctuation mode in the
smectic C phase. We have also calculated the
liquid structure factor and the renormalized elas-
tic constants in the nematic phase near the ne-
matic-smectic C phase transition. The calculated
liquid structure factor is in semiquantitative
agreement with the x-ray measurements. We have
shown that deGennes’s Landau theory of the ne-
matic-smectic C phase transition is in conflict
with the x-ray measurements.
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