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Polarization fractions in Glauber theory for electron impact excitation
of the n = 3 levels of atomic hydrogen
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With the use of recently proposed analytic methods, Glauber scattering amplitudes for the excitation of the 3 d
substates of atomic hydrogen by electron impact are obtained in closed form. The individual n = 3 cross
sections and the Balmer-a cross section predicted by the Glauber theory in the range 18 & E, & 500 eV are
compared with experiments and with other calculations. The polarization fractions of 3p-2s, 3d-2p, and of
the Balmer-a line are also calculated in the Glauber approximation, and comparison is made with the existing
experimental data and with the Born predictions. The parameters (X,y) predicted by the Glauber
approximation are also given.

I. INTRODUCTION

Although the scattering of a charged particle by
a hydrogen atom has long been of interest to astro-
physicists and atomic and molecular physicists,
the data on the 3l excitation of atomic hydrogen by
electron impact are rather scarce. To date, only
two experimental measurements on the total cross
section" and the total polarization fraction' have
been reported for n =3 excitation. By modulating
the exciting electron beam and separating the in-
dividual excitations on the basis of the different
fluorescence decay rates of the three substates
(3s, 3P, and 3d), Mahan, Gallagher, and Smith'
recently measured the cross-section ratios
o3 03p +3' as well as the cross section of the Bal-
mer line o~. Furthermore, Eminyan et aL.4 have
recently developed a delayed-coincidence tech-
nique to measure the angular correlations between
the emitted photon and scattered electron in in-
elastic electron-atom collisions, and have re-
ported results on e -He collisions for 2'P and
3'P excitations. From the angular correlations
they are able to deduce the ratio (&) of the differ-
ential cross sections for exciting the degenerate
magnetic sublevels of the substates and the relative
phase (y) of the corresponding excitation ampli-
tudes. These collision parameters ~ and g, mea-
sured without the need of any normalization, have
generally been hidden in most refined theoretical
calculations of the collision and lost in experi-
ments designed to measure cross sections and
polarization fractions alone. Their measurement,
therefore, is expected to provide a new and more
conclusive test of electron-atom scattering theo-
ries. Such a detailed experimental study, ' using
the electron-photon coincidence technique, of the
polarization and the excitation of the Balmer-n
line is now under way at the University of Stirling.
The present study is partly motivated by these

exper imental inte rests.
Previous Glauber calculations' for electron

impact excitation of the 3~ states of hydrogen
atoms, using the direction perpendicular to q as
the quantization z axis, have concentrated on the
predicted differential and total cross sections. "
However, for calculating the polarization fraction
and the parameters (&, l(') it is necessary to have
the Glauber amplitudes calculated in the coordi-
nate system, "quantized along the direction of the
incident electron. To simplify the previous calcu-
lations" involving numerical evaluation of a rela-
tively simple one-dimensional integral, we have
used the recently proposed analytic methods""
to obtain the closed-form Glauber amplitudes
[F„„(q,m, )j, which require no numerical integra-
tion. In Sec. II, we express the closed-form Glau-
ber scattering amplitudes in terms of four gen-
erating functions. Two of these (for 1s-3s and
1s-3P excitation) are given by Thomas and Ger-
juoy"; the detailed derivation of the other two
(for 1s-3d excitation) is deferred to an appendix.
In this appendix we also show that the two analytic
methods"" yield the same results. The expres-
sions for polarization fraction and the parameters
(X, y) are also given in this section. In Sec. III,
we present and discuss the results of numerical
calculations of the expressions obtained in Sec. II.

II. GLAUBER THEORY

The Glauber scattering amplitudes E3(, '„(q, m&)
describing the excitation of the hydrogen atom
from the ground state «I'„(r) to the final state
+»„(r) by an incident charged particle S,.e with
velocity v; is given by

x e"' d2b dr,
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where

(2)

quantized along the direction K; of the incident
electron [which we denote by C(K;)]. The connec-
tion between these two sets of Glauber amplitudes
is found by the following transformation'":

q—= -g,./v, (in atomic units).

In Eqs. (1) and (2), b and s are the respective pro-
jections of the position vectors of the incident par-
ticle and the bound electron onto the plane perpen-
dicular to the direction of the Glauber path. The
superscript (f) represents the q-dependent coordi-
nate system C~(f), whose z axis lies along P and is
perpendicular to q, in which the Glauber ampli-
tudes F3()~ '„(q, m, ) are readily computable.

For radiation lines emitted by the hydrogen
atom following electron excitation to the 3l states,
the polarization fraction

P, (E;) =(I —I )/(I +I ),
according to the theory of Percival and Seaton, "
is related to Q, „(E,.). In Eq. (3), I(( and I~ are the
intensities, observed at 90' to the incident-elec-
tron-beam direction, of the respective lines having
electric vectors parallel and perpendicular to the
incident-electron-beam direction. The quantity
E; is the incident-electron energy; Q, „(E;)is the
total cross section for exciting the hydrogen atom
from the ground state to the 3lm sublevels. It was
pointed out by Gerjuoy, Thomas, and Sheorey'
(GTS) that the total cross sections Q, , which ap-
pear in the expressions for P„are computed from
the Glauber scattering amplitudes F,",'„(q, m, ),

F,",'„(q, m, }=Q D ") (n, P, y)F,',"„(q,m,') . (4)

In Eq. (4), D„"', is the usual representation of
Rg [=Ag(—o(, tl, y)] on the space spanned by eigen-
vectors of L' with angular momentum number l.
The representation D„"' (n, P, y) is related to the
matrix d'" by'

D(l) (~ P y) eitllyd(l) (P)eim (x (5)

where the Euler angles' o. =(t)„P=(8, —,'n), —and

y =-P, [8, and P, are the angular coordinates of
q in C(K,.)]. Using Eq. (4.1.15) of Ref. 14 one can
easily find the matrix d"'. (P}, and hence the

F,"i'.(q, ,m, ).

A. 1s-3s excitation

The Is-3s Glauber amplitude, evaluated in C~(g),
is given by TG equations (19a) and (19b) with n =3,

2 IB(p&)q() 2 8 I (Xp& (I)
3s ~Is q ( +27 s)( 3 s)(2

2 s'I, ()(, q)
27 BX3

In Eq. (8), Ip(&, q) is defined and given in TG equa-
tions (9) and (19c),

1
oo

W p 0 0

=-4 iraqi'(I + iq)I'(1 —i)1)X ' ""q '"'",F, (1 —iq, 1 —i q;1; -A.'/q'), (7)

where I' and, F, are the usual gamma and hyper-
geometric functions, respectively. Since the ini-
tial and final states are s states, at any given q
the absolute square of the scattering amplitude
will be independent of the choice of quantization
axis. Dropping the superscript (g) in the ampli-
tude, the differential and total cross sections for
the is-3s excitation are obtained from the scatter-
ing amplitude in the usual way; namely,

(8)

and

The polarization fraction of the resulting radiation
from 3s to 2P state is

(10)

since the upper level is a S state. "
B. 1s-3p excitation

The 1s-3P Glauber amplitudes, evaluated in

C~(j), have also been obtained in closed form by
TG and a,re given by TG equation (23a) with n =3,

~li', .(&;)= ((' f I&,. ..(e)l'd&. (9)

F((:) (q m, =*1)=+e "("iK — ' ' + — ' . ' =~e "~.h (q).
al (A. q) 1 O'I, (A, q)

3P Nls 27 gg 6 Qg2 (12)



F. T. CHAN AND C. H. CHANG

In Eq. (12), 1,(A., q) is defined and given in TG equations (23b) and (27c),

1 oo oo - )& ($2+g2) 1/2 2'
I (~ q)= b db s'ds dz ef (gb coS&I&2bT+b)

(2 v)' (s 2 +z 2)1/2 b

J +s — cos(p$
Q2

0

= j41'(I pic)I'(2 —i1i)(iq)A. ' ""q '"'"[-,F, (2 —iq, 1 —ill; 1; -&2/q')

+ (1 + i1i),F, (2 —iq, 1 —i@ 2 —&2/q2)] (13)

By using d&1'(P)," and Eqs. (4), (5), (11), and (12),
we obtain

By Eqs. (14) and (15), we obtain

&,(3P) =cos'8, . (20)

and

F&~"„(q,m, =0)=&2 cos8, h, (q) (14)

=2 'lh, (q)l',
$

Fsb"„(q, m, =+I) =we "@2sin8, h, (q), (15)

where h, (q) is defined in Eq. (12). Equations (12),
(14), and (15) differ slightly from the expressions
given by TG, since we have used the spherical
harmonics defined by Edmonds. " From Eqs. (11)-
(15), one immediately gets

d(r "'
2lF&~"„(q, m, =1)l'

1$-3P

Indeed as pointed out in Ref. 4, that the first Born
approximation, or any theory which results in a
4M~ =0 selection rule along the momentum trans-
fer direction in the excitation, implies that ~,
=cos'e„and g =0.

The polarization fraction of the resulting radia-
tion from 3P to 2s, according to the theory of
Percival and Seaton, " is given by

(21)

In Eq. (21), Qb„, (m, =0 and 1) are the total cross
sections for exciting the hydrogen atom from
ground state to 3Pm, sublevels and are found via
Eqs. (14) and (15),

q,.(E,. ) = ' lF&'I„(q, m, )l2da.
S

(22)

and

+2lF,, „(q,m, =i)l ]

=s «' Ib, (s)l' = („„) (17)

os&2"„(E&)=&rs&b~'„=2~ lh, (q)l'dQ.
K

Thus, the Glauber cross sections are independent
of whether the quantization axis is chosen along K;
or along an axis perpendicular to q.' However,
Eqs. (14) and (15) are necessary in calculating the
polarization fraction and the parameters (A., l&) in

connection with experimental investigations of in-
elastic electron-photon angular correlations. "
The parameter A.,(3P) is defined via

lF,'~"„(q,m& =0)l'+2lF,"'„(q,m, =1)l'

C. 1s-3d excitation

Substituting the ground-state wave function

4'„(r) = (v m ) 'e ",
and the possible final-state wave functions""

@,d, (r) =R„(r)Y, (8, p)

= (4/81/30 )r e 2"I«Y2„,(8, p)

into Eq. (1), we find that

2K,F«' (q m =0) =i —-'-
sd 1s s 1 81~/

(23)

(24)

=h, (q}. (25}

In Eq. (25), I,(&, q) is given in Eq. (7), whereas
I,(&, q) is defined by

1 oo - X($2+42)I/2eI,(A, q)= (,. bdb sds z —,—
2 2),q2 dz

277p (S +8
eSdIb CO39 b

5'+ s' —2bs coscp$$1—

(25)
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The detailed reduction of Eq. (26) is given in Appendix Al, where I,(&, q) is given by Eq. (A10},

I, (A. , q)= 8-iqk 4 ""q """1(1+i1i)1(l—iq)

x[(1+i3i},F1(1 —i@,1 —iq; 1; -&2/q2)+ (Z2/q')(1 —ill)2, F1(2 —iq, 2 —i q; 2; -A.'/q2)].

For excitation to m, =+ 1 states, one sees that by introducing the cylindrical coordinates for r,
F3i2~i„(q, m, =+ 1) vanishes from Eq. (1) since the integrand under the integral is an odd function of z.

Similarly for 1s-3d» excitation we may write

F' '
(q m =+2) =-i 1 e"2~4 ' ' =e'" 4h (q).

. K BI (A. q)
3d ~ $s 9 l 9A. ~=43

2

In Eq. (28), I, (&, q) is defined via

1 00 y ~ s2 4 42 11/2 2 1i

W 0 0 s+z) 0

d &12(4t 4t ) +s —2bs cos(q 4
—q 2)8 b

Q2
0

where I,(&, q) is given by Eq. (A16) in Appendix A2,

I, (A. , q) =8i1i(l —iq)(2 —iq)X ' ""q ' ""I'(1+i1l)1'(1—i1i)

x[2,F(3- iq, 1 —i31; 1;—A2/q2) —4(1+ iq),F1(3—i q, 1 —i@;2; -A.'/q2)

+(1+ill)(2+i1i)2F1(3 —i', 1 —iq 3 -A2/q2)]

(27)

(28)

(29)

(30)

F~11'„(q,m, = 0) =-, (3 sin'8, —1)h2(q)

+v-,' cos'8, h, (q),

F,'~"„(q, m, = + 1}= e"24 sin 8, c os 8,

(32)

The differential cross section for 1s-3d excita-
tion is constructed from Eqs. (25) and (28) in the
usual way; that is

do
= K' [IF,",',.(q, =0)I'

1&-3d i

+2IF«&,.(q, m, =2}l ]. (31}

Substituting d"„' (P),14 Eqs. (5), (25), and (28)
into Eq. (4), we find that the ls-3dm, Glauber
amplitudes, quantized along K;, are

(m, =0, +1, +2), one notes that all the 3d magnetic
sublevels are excited coherently and (being de-
generate) radiate coherently. '

The Glauber cross sections again are indepen-
dent of whether using C2(f) or C(K, ), namely,

do
= ~' [IF.'l', .(q, , =0)I'

1s-sd i

+2IF,',"„(q,m, =1)l'

+ 2IF~',.(q, m1= 2)l']

gg (()
= ~' [Ih.(q)l'+2lh, (q)l']= d„ IS-3d

(35)

x [-v-' h (q) +h (q)],

m, = t2) =e'"~4[-'v —,
' cos'8, h, (q)

+—,'(1+sin'8, )h, (q)],

and

ol.".,(E,) = ~' I: lh, (q)l"2lh, (q)l ]«
1S-3d (+1) t (36)

(34)

where h2(q) and h, (q) are defined in Eqs. (25) and
(28). Since ho(q) and h2(q) appear in all F3'2"„(q,m, )

respectively.
The parameters &,(3d} and &1(3d) are evaluated

via Eqs. (32)—(34):

IF3'21',.(q, m1 =0)I'+2IF'2",.(q, m =1) 2+2IF~11',.(q, m1=2)I'

IF~11'„(q, m, =0)l'+2IF,"'„(q,m, =1)l'+2IF~&"„(q,m, =2)l' (38)
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analytic results of the individual n =3 cross sec-
tions are in good agreement with those obtained
previously from a one-dimensional representation
for energies from 18 to 140 eV for 3s, ' 3P, ' and
to 400 eV for' 3d excitations. At higher energies,
the experimental data are right on the Glauber
curves. We do not present the GA calculations,
experimental measurements, ' ' and other theo-
retical results" "since they have already been
presented by Mahan et al. in Fig. 8 of Ref. 3. We

Qg, +Qg, —2Qg,
2.07Q~ +3.8Q~ +2.8Q„

Pn Eq. (39), Q~, (m, =0, 1, and 2), total excita-
tion cross sections to the 3dm, sublevels, are
evaluated via Eqs. (32)-(34); thus

(39)

' I (r"'„(r,m, &~I'dn. (40) I I I I I I r

(o)

l.2—

D. Excitation and polarization of Balmer-n radiation
i.O—

Kleinpoppen and Kraiss' define the cross sec-
tion of the Balmer-e line, excited from the ground
state, as follows:

~o0.8—0

bo.e-
UJ

rr„(Et) = rr„~~(Et) +0.12o'r, ~t (Er) +rr„~~(Et ) . 04-

(41) 02-

This is the sum of the cross sections for the exci-
tation of the 3s state, of the 3P state multiplied by
the branching ratio of the 3P-2s transition, and of
the 3d state.

We also define the polarization fraction of the
Balmer-n line emitted by hydrogen atoms follow-
ing excitation to n =3 states as follows:

I I

50 IOO

Electron Impact Energy (eV)

a
b

IQO-

III. RESULTS AND DISCUSSION
5.0—

The theoretical results as obtained using Glauber
approximation (GA) are divided into the three follow-
ing categories.

(i) The individual n =3 cross sections and the
Balmer-a cross section of hydrogen atoms by
electron impact with incident energies from 18 to
500 eV are calculated in GA. We find that our

I I I I I I I I I I I I I I I I I
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FIG. 2. Cross section times energy for the direct (a)
3s, (b) 3P, and (c) 3d excitations. The theoretical re-
sults are GA and Born approximation, Mahan et al. , Ref.
3. The experimental measurements of Mahan et al. are
given as X and Cl using the in-phase and in-phase-
plus-out-of-phase fits.

I.O-

I I I I I I I I I I I I I I I I

50 IOO 500 1000
Electron Impact Energy (eV)

IO

FIG. 1. Total H~ excitation cross section.

The phase differences )( between F,'~"„(q,m, )
vanish again in Glauber theory.

Mahan' has shown that the polarization fraction
of the resulting radiation from 3d to 2P, using the
general theory of Percival and Seaton, "is given by
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note that the present n =3 experimental data would
agree fairly well with the Glauber prediction, ex-
cept for the 1s-3d excitation cross section. Simi-
lar patterns also appear in the n =3 excitation of
helium by electron impact; for instance Glauber
results" for the 1 'S-3'I' excitation agree well
with experimental measurements whereas the
Glauber values" lie below experimental data as
well as the Born values for the 1'S-O'D excita-
tion. The Balmer-o, cross section of hydrogen
atoms by electron impact is represented in Fig. 1.
We have also calculated E, o„„(E,) and shown

the Glauber results together with the experimental

FIG. 3. Polarization fraction of (a) 3p, (b) 3d, and (c)
H~ as functions of the electron energy. The theoretical
curves are GA and Born approximation, Mahan et aE;,
Ref. 3. The experimental data of Kleinpoppen and Kraiss
are given as X.

data and the Born calculations of Mahan et al. ' in

Fig. 2. We again note the Glauber predictions are
in reasonable agreement with the experimental
findings for 1s-Ss and 1s-SP excitation, whereas
the Born approximation seems to be better than

GA in comparison with 1s-Sd excitation data.
(ii) The polarization fractions of the resulting

radiation from 3P to 2s, 3d to 2P, and of the Bal-
mer-n line emitted by hydrogen atoms following
excitation to n =3 states are evaluated in GA by
means of Eqs. (21), (39), and (42). We note from
Fig. 3(a) that the Glauber curve closely resembles
those obtained from the Born calculations' for the
polarization fraction of radiation from SP to 2s,
the pattern follows that of the 2P-1s case.' The
reason for the close agreement of the predicted
polarization fractions —although the computed total
and differential cross sections are not so close-
is explained by Gerjuoy, Thomas, and Sheorey in
Ref. 9. However, we see from Fig. 3(b) that for
the polarization fraction of the 3d-2P line, the
Glauber values show a large deviation from the
Born calculations at low incident impact energies
although they both predict almost the same value
at 500 eV. A more quantitative picture is provided
by Table I. Since the Glauber predicted Q~, are
always larger than the average values of Qpp and

Qq„P~(E, ) is negative via Eq. (39). We also pre-
sent the Glauber predictions, the Born calcula-
tions, and the experimental results for the polar-
ization fraction for the Balmer-o. line in Fig. 3(c).
Since the main contributions to the polarization
fraction for the Balmer-n line come from the P-s
transition, it is understandable that results ob-
tained using Glauber and Born approximations are
close to each other. However, at energies &30 eV,
the difference for the Balmer- o. polarization frac-
tion predicted by these two models is no longer
small. Further experimental and theoretical
(using other models) investigations are desirable.

TABLE I. Sublevel excitation cross sections calculated using GA in units &ap for e -H
collis ions.

E; (eV) 3P p 3dp 3d f 3d2

20
30
40
50
70

100
150
200
250
300
500

0.889 —2

0,148 -1
0.158 -1
0.151—1
0.129-1
0.102 —1
0.729 —2
0.564 -2
0.459-2
0.386 -2
0.236 -2

0.702 -1
0.860 -1
0.817 -1
0.738 -1
0.594 -1
0.447 -1
0.312-1
0.2.38 -1
0.192 —1
0.161—1
0.970 -2

0.104 -1
0.242 -1
0.317-1
0.352 -1
0.369 -1
0.352 -1
0.307 -1
0.269 -1
0.239 -1
0.215 -1
0.156-1

0.520-2
0.412 -2
0.284 -2
0.202 -2
0.123 -2
0.818-3
0.609 -3
0.520 -3
0.463 -3
0.419-3
0.304 -3

0.730 -3
0.173 -2
0.215 —2

0.221 —2
0.195-2
0.147 —2

0.940 —3
0.648 -3
0.474 —3
0.362 -3
0.164 -3

0.318 -2
0.361 -2
0.337 —2
0.306 -2
0.255 -2
0.203 -2
0.153 —2
0.124 -2
0.104 -2
0.897 —3
0.583 -3
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I.Q O.B

0.8
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4

04 '0.2

0.2 0.8
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FIG. 4. Parameter A, o{3P) as a function of scattering
anglesfor 50-, 80-, 100-eV incidentelectronenergies.

0.2

(iii) The parameters &,(3P), A.,(3d), and X, (3d):
are calculated in GA via Eqs. (20), (37), and (38)
as functions of scattering angles for 50-, 80-,
and 100-eV incident electron energies. The re-
sults are shown in Figs. 4 and 5. However, both
Glauber and Born approximations predict the zero-
phase differences between the excitation ampli-
tudes for different magnetic sublevels of the sub-
states. Experimental measurements of (&, y) using
the coincidence techniques would provide an im-
portant check for the Glauber approximation.

I

IO 50
8 (deg)

FIG. 5. Parameters Xo{3d) and X&{3d) as functions of
scattering angles for 50-, 80-, and 100-eV incident
electron energies.

for supplying their experimental information prior
to public ation.

APPENDIX

Al. Reduction of the generating function I, ('A, q) using

Thomas and Chan method (Ref. 1'0)
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The generating function I,(&, q) is defined by
E(l. (26),

—X (s2+z2) ~2 27f82' dg di~ ef Qll Gospel
(S2 +22)li2

b2+s2 —2bs cosy, '"
1

1f, (A. , q) =
(

bdb s ds

(Al)

By employing the standard formulas24 for K, and J~,
(s2+ 82 )1/28 2s

2)~, dz = —K, (As),
(S +8 (A2)

dq) e"' "'~=2ll J,(qb),

and then changing variable s to sb, we find that I,(X, q) can be written as

We now utilize the result" that where

M, (x)—= — s'ds K, (xs)
-1

0

s2K, (d(.bs)ds =2(A.b) '.
0

We obtain
] 27K

&& Ap (1 +s' —2s cosq))'2 . (A7)2'l.(l, q) qj b'dbd. lqb)(=b, — ( I)), hb
0

(A6)

1 1 2 1I

l,(l, q) =q h'do d (qb) — s'K(hbs)ds —— s'dsqq(hbs} — d q(l ss' —qsososo)'") . (Aq)1 Xb 0
' 2m
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Equation (AV) for M, (x) was derived by Chan and Chang" [Eq. (A1V} of Ref. 13] and was given in

terms of the modified Lommel functions'

M, (x) =2x '[1 —(2iq)' [(1+i@)(ix)""i'„„,(ix)+(1 —iq)(ix) """2„„,, (ix)]).

Substituting Eq. (AS) into Eq. (AS), we have explicitly removed the &(q) by noting the exact can-
cellation between the term [2(&b) '] and the same factor stemming from M, (&b). Thus we have

1 (1 q)= —,(222)'((1 Sip) J bdb d (qb)(Ssb) ' Sgs„, ,(ibb)
0

+ (1 —iq) f 2 db J,(qb)(1sb) sds„(s1sb)) .

(AS)

(A9)

With help from Eqs. (18) and (A7) of Ref. 10 and Eqs. (B3) and (B5) of Ref. 11, the integrals in Eq. (A9)
which involve only modified Lommel function Z„„may be evaluated in close form. Therefore, we obtain

I (X, q) = Sj g-A.'"q + ~"r(1 + jq)r(1 —i)l)

x[(1+i@),E, (1 —iq, 1 —iq 1 -A.'/q')+(A. '/q')(1 —iq)', E, (2 —iq, 2 —iq; 2;-A,'/q')]. (A10)

A2. Reduction of the generating function I,(~,q) using Thomas and Chan method (Ref. 10)

The generating function I,(&, q) is defined by Eq. (29),

oo CO (s2+z2) u'2

I (& q}= bdb S'dS dZ d@ &~f2(9»-@~)+lq. b

(2 m)' (s2 +z2)1/2

b +s' —2bs sss(rp, —rp, ))'"

(A11)

Following the procedure in Appendix A1 and employing24

and

y (g2+ 82)1/2

dz, 2 2)~~
——Ko(A.s)

(S +Z

27r

dy eq'2222+Cqb coq(P 2++ (qb)

(A12)

(A13)

we find that I,(&, q} can be written

(e (20 1 2'
I,(&, q) =2 b'db &,(qb) s'dsZ, (A sb) dy e"'~(1 s+' —2s cosy)'" =2

0 0 g 0

b' db 4, (qb)M, (Ab),

(A14)

where

M~(x) = s'ds Ko(xs)

we have

1,(sq)=2f 2'dbd (qb),
0

1
"2m dy e'"~(1 +s' —2s cosy)'" .

By applying the result of M, (x) derived by Chan and
Chang" [Eq. (B10) of Ref. 13]

M, (x) =(2a)7}'(ax) "" '22, „,,(sx)

—Sip(1+i@}(ix)"" 'i'„q, (ix)

+4iq(2+i@)(ix) "" 'Z2(q+2, (ix),

&& [(2iq)'(i&b) "" 'i', ,„,,(ikb)

—Sip(1+i')(i&b) "" 'gz, q 2(ihb)

+4i)1(2+ i')(iAb) ""did„q, ,(iAb)] .

(A15)

Carrying out the integrals by using Eq. (A7) of
Ref. 10 and Eqs. (83) and (B5) of Ref. 11, we final-
ly obtain
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I,(A, q}=sip(1 —iq)(2 —ig)A ' ""q
' ""I'(1+i')r(1—iq)

x[22E, (3 —ir1, 1 —iq; I;- A2/q2) —4(1+i@) F, (3 —iq, 1 —i@;2 -A. /q )

+(1+i@)(2+i'),E, (3 —iq, 1 —iq; 3;-A'/q')]. (A16)

Bl. Reduction of the generating function I, (X,q) using Thomas and Gerjuoy method (Ref. 11)

The generating function I,(A, , q} is defined by Eq. (26), again. By employing Eqs. (A2} and (A3) and

changing variable s to sb, we find that I,(A, q) can be written

"4 oo 21r

I,(A., q) = —— b4db &,(qb) s'dsK, (Abs) dq&[1 —(1+s' —2s c os)'"].
0 0 0

(B1)

We now utilize the result" that

b db J qb , Asb

16
=

(A ), ,E, (3, 2; 1; -q'/A' s') . (B2)

We obtain

I,(A., q)= s'ds (As) ',F(3 2 1 -q'/A' s' )
32

0

2 Il

x
2m

—Ss sssS)'" dip) .

(B3)

I,(A, q) = s'ds (As) ' E(3 2 1 -q'/A. 's')32

0

2„„I'(1 + iq)
I'(1- iq)

x dt t ""—(4 (st) J (t)}.d

0

(B4)

The hypergeometric function in Eq. (B4) is simply"

,F, (3, 2;1;-q'/A' s' )

=S S +
q2 2

~ 4q2/A2 q2/A2 2

s' +S'/s' s' +S'/S')+3

(as)

Substituting Eq. (B5) into Eq. (B4), one finds that
the three terms in Eq. (B4}are multiple integrals
+0 p +0 1 and 0 2 of the class + „discussed in
TG Appendix B. Therefore,

Since qo0 for excitation, the first term (indepen-
dent of q) under the integral in Eq. (B3}gives zero
contribution to the integral. " By introducing in-
tegral representation of TG equation (14) to replace
the integral over y in Eq. (B3) by an equivalent
integral involving Bessel functions, we have

I (A ) 25+2sq r(1+& rl) 1'
r(1-iq) A'

4q' q2 2

00 y2 01 2 02

which reduces, via TG equation (B7), to

(Bs)

I,(A, q)= 8A. '~q '+-'"1(1—iq)1(1+i@}[2 E, (1 —iq, iq; I;-A /q')—
—4(1 —tq), F, (2 —iq, —iq; 1; -A'/q2)

+ (1 —iq)(2 —iq),E, (3 —iq, iq;1; -A.'/—q')].

The sum of three hypergeometric functions in Eq. (B7}can be reduced further, via the Gaussian re-
cursion relations, "to a sum of two hypergeometric functions which is exactly Eq. (A10).

(B7)

82. Reduction of the generating function I,(&,q) using Thomas and Gerjuoy method (Ref. 11)

Again, the generating function I,(A., q} is defined by Eq. (29). Following the procedure in Appendix
B 1 and employing Eqs. (A12) and (A13}, we find that I,(A, q) can be written

I,(A, q) = — b'db J,(qb) s'dsK, (Asb) dye"'~(1 +s'-2s cosy)'" .
7l 0 0 0

(as)

The integral over b may be done immediately via""
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r
oe q2

b'db J,(qb)Ko(KSb)=2' X 3'
)8 2E, (4, 4; 3; -q2/12S2)

0 q', (, q') '( q q' I'
) (B9)

Again, by introducing the TG integral representation and by substituting Eq. (B9) into Eq. (B8), we have

I (x q)=-q'xq' —2"" . qq ———qq ),
q', I'(1 + iq) 4 q'
g8 lq(I 2l1)

2 qo 3 Q2 2 ~ 1

which reduces, via TG equation (B7), to

I, (A., q) =-8iq(1 —iq)I'(1+211)I'(3 —iq)A, ' ""q """
x[3 E(3 —iq, 2 —ip;3;-12/q2) —(3 —i11)2E1(4 —2q, 2 —iq; 3; —12/q')].

Using the Guassian recursion relations, "one can prove that Eq. (B11)is the same as Eq. (A16).

(B10)
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