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The theory of far-infrared generation by optical mixing of focused Gaussian beams is developed, taking into
account the effects of diffraction, absorption, double refraction, and multiple and total reflections at the
boundary surfaces. Results of numerical calculations are presented. It is shown that focusing of the pump
beams appreciably enhances the far-infrared output despite the strong far-infrared diffraction. In a 1-cm-long
crystal, the optimum focal-spot size is approximately equal to or smaller than the far-infrared wavelength for
an output at frequency less than 100 cm~!. Double refraction of the pump beams is relatively unimportant.
Both far-infrared absorption and boundary reflections have major effects on the far-infrared output and its
angular distribution. The former is often the factor which limits the output power. We show that a simple
model treating the nonlinear polarization as a constant-1/e-radius Gaussian distribution of radiating dipoles is
a good approximation to the problem. We also compare the results of our calculations with those for second-

harmonic generation.

I. INTRODUCTION

Far-infrared generation by optical mixing has
recently received increasing attention.' It has the
potential of providing a coherent tunable far-in-
frared source which complements far-infrared
molecular lasers. The most commonly used
scheme is that of difference-frequency generation
(DFG) by the mixing of two laser beams ina noncentro-
symmetric crystal. Withdye lasers,®3Co,lasers,*°
or spin-flip Raman lasers'’-?° ag the pump beams,
DFG can provide a far-infrared source discretely
or continucusly tunable from 1 to 200 cm™ or
more. The output linewidth can easily be less
than 0.1 cm™ as determined by the pump laser
linewidths. In most cases, the output is in pulses
with pulsewidths between 10 nsec and 10 usec, but
cw operation has recently been achieved.

A serious limitation of far-infrared generation
by optical mixing has been the attainable average
power, although so far as spectral power per unit
solid angle is concerned it is already bettér than a
blackbody source at 5000 °K.* While focusing of the
pump beams may increase the far-infrared output,
it is not clear how tight the focusing can be before
the detrimental effect of far-infrared diffraction
sets in. No adequate theoretical calculation of
nonlinear far-infrared generation with focusing
and diffraction properly taken into account has
been reported. Experimentally, on the other hand,
a tight focusing geometry has so far been avoided.
As a result, the full potential of nonlinear far-in-
frared generation has not been assessed.

In the literature, the plane-wave theory was often
used to interpret the results of far-infrared gen-
eration experiments,?7s11,12,21=25 The theory as-
sumes a single spatial Fourier component for

each monochromatic wave so that the nonlinear
process is characterized by a single phase-match-
ing relation. However, when the pump beams are
focused to a spot comparable in size to the far-in-
frared wavelength, far-infrared diffraction is im-
portant and the spatial Fourier components of the
output extend over a large cone. Each Fourier
component now has its own phase-matching relation
with respect to the pump beams. Since it is not
possible to phase match all the Fourier components
simultaneously, focusing of the pump beams does
not improve the far-infrared output power as much
as the plane-wave theory predicts.

The plane-wave theory also assumes a single
transmission coefficient for the far-infrared output
across the boundary surface. Actually, with the
far-infrared output extending over a large cone,
the transmission coefficient is different for each
Fourier component and falls to zero at the total
reflection angle. Thus the real output can be con-
siderably less than what the plane-wave theory
predicts. Finally, the plane-wave theory often
ignores the reduction in output power due to double
refraction which can be significant for small spot
sizes in crystalline media.

Improvement in the calculations of far-infrared
generation by optical mixing has been achieved by
Faries et al.?® using the far-field diffraction theory
for a distribution of oscillating dipoles induced by
the pump beams.?®?® They used an average trans-
mission coefficient for the far-infrared output
across the boundary and excluded the contribution
from the totally reflected modes. The effect of
double refraction was however ignored. As we
shall see later, in the absence of double refraction,
this approach in fact gives a remarkably good
estimate of the far-infrared output.
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In this paper we present a more rigorous calcula-
tion of far-infrared generation by optical mixing.
It proceeds by first calculating separately each
Fourier component of the output field and then
evaluating the output power by summing over the
Fourier components. The effects of focusing, ab-
sorption, phase matching, and double refraction
can all be properly taken into account. For the
sake of simplicity, the pump beams are assumed
to be of single mode with Gaussian profiles. Our
approach is essentially the same as that used by
Bjorkholm?®® and by Kleinman et al.* for second-
harmonic generation by focused beams.

The main difference between second-harmonic
(or sum-frequency) generation in the visible or
near infrared and difference-frequency generation
in the far infrared is diffraction. Validity of the
scalar Fresnel approximation for the pump beams
guarantees its validity for the sum frequency but
not for the difference frequency. Because of its
much longer wavelength and hence stronger diffrac-
tion, the far-infrared output extends over a much
broader cone. Thus the phase-matching condition
varies much more appreciably among the output
Fourier components in difference-frequency gen-
eration (DFG) than in sum-frequency generation
(SFG). All the Fourier components can often be
nearly simultaneously phase matched for SFG but
not for DFG. An accurate description of DFG
also requires knowledge of the difference-frequen-
cy transmission coefficients over a very broad
output cone.

The body of the paper is organized into the fol-
lowing sections. Section II describes the theory
of DFG by monochromatic Gaussian laser beams
which is valid even when the pump focal spot size
is smaller than a far-infrared wavelength. This
theory is developed from a generalization of the
nonlinear polarization used by Boyd and Kleinman®
and by Faries.?® Section III contains the results
of numerical calculations obtained from this the-
ory. First we present the results for the ideal
case of no double refraction. Then we discuss
briefly the reductions in attainable power due to
far-infrared absorption and double refraction.
Finally, in Sec. IV, we compare our results with
the results of three other calculations: a simple
plane-wave calculation, a far-field diffraction
calculation assuming a constant-1/e-radius Gaus-
sian distribution of induced dipoles, and the sec-
ond-harmonic generation calculations of Boyd and
Kleinman.**
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II. THEORY
A. Nonlinear polarization

We assume that the pump beams are mono-
chromatic with the Gaussian TEM , mode. If
focusing and diffraction of the pump beams are
not too strong the focused pump fields in a slab
medium can be written®®3!

- 8, ((x—ai—éiz)2+y2 . )
E,-(r,t)—1+i€iexp w§(1+i£i) +ik;z —w;t
(1)

for 0=z=], where the subindex i denotes the ith
beam; w; is the e”? beam radius in the focal plane
which is located at z =z,;; the beam axis inter-
sects the front surface of the medium at x=a; and
v =0; the quantity £, is defined by £,=2(z —z,,)/
kv with k;=wmn,/c,n; being the refractive index;
finally ¢, is the walk-off angle given by ¢;
=2sin(26, 0302, ; —n;?;) if the beam is an extra-
ordinary ray propagating in a uniaxial medium
along a direction at an angle 6 with respect to the
optical axis where n, ; and n,, ; are, respectively,
the ordinary and extraordinary refractive indices
at 6=90°. The derivation of Eq. (1) involves some
approximations which can easily be justified as
shown in Appendix A. In the following, to simplify
the calculations in practical cases, we can assume
that the largely overlapping pump beams are fo-
cused to the same spot size at the same point with
w;=w, £;=&, and z,;=z. This is a good approxi-
mation when the refractive indices of the pump
beams are not very different, as is true in all
practical cases which have been investigated.

The pump fields now induce a nonlinear polari-
zation at the far-infrared frequency in the med-
ium. We consider here only the case of DFG in a
uniaxial crystal as an example, although the for-
malism can be easily extended to more general
cases of optical mixing. The nonlinear polariza-
tion at the difference frequency w is then given by

PO(TF, 0) =X®(w=w, —w,):E,(F, w)EXF,0,), @)

where X is the second-order nonlinear suscepti-
bility tensor. We assume that E, is an ordinary
ray and E, is extraordinary. The nonlinear polar-
ization P®)(T) can be readily found by substituting
the expression of E; of Eq. (1) into Eq. (2). For
convenience of solving the wave equation later,

we are however interested in the transverse
Fourier components of P®’(¥). The transverse
Fourier transform gives

2
%L;l_ %szwz(l +£2) - %kx(u1 - ZZ)&) , @
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where kT—xk +9k, and we set a,=0 as part of a
convenient choice of the origin. For economy of
notation, we omit explicit mention of the argument
w.

B. Solution of wave equations

Far-infrared generation by optical mixing is de-
scribed by the set of wave equations

[V X (VX) = (w?/e?)E* JE(F, w) =47 (w?/c)PN (T, w)
(4a)

and

v [€ E(F, 0)]=-4rve BY(F, 0), (4b)

where the nonlinear polarization PN- acts as a
driving source for the nonlinear process. For
DFG in a uniaxial medium, PN =P ® given by Eq.
(2). ‘Since the normal to the slab boundary planes
is Z, the easiest method is to Fourier transform
the x and y variables in Eg. (4) and to solve for
each Fourier component E(kT,z) separately.” The
corresponding source term for E(kT,z) is
47 (w?/c®)P? (K, 2) With P‘z’(k,.,z) given by Eq. (3).
The general solution for E(kT,z) consists of two
parts, the homogeneous solution and the particu-
lar solution, respectively. The homogeneous
solution is well known. For ordinary and extra-
ordinary polarizations, respectively, it can be
written

- - 2
ER (kp, 2) = 8,.0, 80, 22
and

B Ry, 2)=8,,8,eMe 27 )

“ »

where the subindices and “~” denote forward
and backward propagatmg waves, respectively,
with the same ky, and &, ,=x[wn,/c)? - k%]1/?
with a similar expression for k,, ,. To find the
particular solution, let us first assume that the
nonlinear slab is imbedded in a linear medium
with an equal linear dielectric constant. Thus
reflection and refraction at the crystal boundaries
can be ignored. The boundary effects will be
taken into account later. As shown in Appendix B,
" the particular solution for E(ET,Z) is then given by

E?(Kp,2) = E2,(Ky, 2)0,+ ES_(R 7, 2)0. + E?, (K 1, 2)2,

E?_ (ET,z)é_ — (dmn2/n2n2,, )P (2)(ET,Z) y
(6)

where n,, is the refractive index for an extraordi-
nary ray propagating perpendicular to the optical
axis,

o 2 z
- 2miw >0y . o
BBy, 2) = (6, BOE, 27)eore 0z
oz 0
> (v 2miwW? (P A By iy mikggleeet) gt
Eo_(kT,Z)=czk o_'P (7, 2" )e tRoa'2-20q 7" |

2miw?® PO~ . .
(kT’ z)= 2(k y J‘ é; P(Z)(ET,Z’)e’ke"‘yz(z 20z’ ,
eff, +

ez (7)
- 2 ! ~ = > : ’
E?_(kp, Z)*%_ f 8. P®(k,, 2" e tke-, 250qz" |
2lest, - 7z

_ (ke+, 2" ke—,z)ngm _ .
- 2”2{1 - [(n% - ngm)/n%](é'ﬁe;e)z/kﬁ}

(kez)eff, +

y ¢ is the optical axis of the crystal. The last term

in Eq. (6) is a longitudinal field which leads to op-
tical rectification®® when w=w, - w,=0. It is, how-
ever, a nonradiating term and we shall neglect it
in the following discussion.

The solution in Egs. (6) and (7) appear in the
form normally obtained for nonlinear optical pro-
cesses in the slowly varying envelope approxima-
tion. However, no such approximation has been
made. As shown in Appendix B, Eq. (6) together
with Eq. (7) is an exact solution of Eq. (4) with
P®(Kk,, z) as the source term. The field E* (K, z)
in the medium does not have a slowly varying am-
plitude since 9*| E*(Ky, z)| /922 is not negligible in
comparison with 28 |E?(K,,2)|/9z. Infact, the
slowly varying envelope approximation is equiva-
lent to assuming for each polarization a wave
propagating in one direction only.

As a check, we can use Egs. (6) and (7) to derive
the solution for the special case of optical mixing
at an infinite boundary surface discussed by
Bloembergen. % We have k,=0, I~ =, and
P(z’(k z)=P je*sz? in the medium. Equation (7)
gives for the reflected output

27 w?
- czkoz(koz + ksZ)

and for the transmitted output

27Tw 2k, i 1 i z>
<k2 k 3¢ —ksz'—koze *

for z>0. (8b)

_F:fz PP e *oz% for z<0,  (8a)

-
b
Et

The above solution is, however, only true for the
case with no reflection at the boundary, but the
boundary effects can be easily incorporated by
taking into account the linear reflection of E” at
the boundary surface. The complete solution for
the problem with a crystal-vacuum plane boundary
is then given by

Ef,;: k Er(z =0)e~i*27 for z <0,
9)
EP..»P k koz_E.p(,_O) ikyz  f >0
=By — k "2 »\& =v)e "o or z s

z oz
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where &, =[(w/c)* - k;]!/?. Substitution of the ex-
pressions for E’> and E" in Eq. (8) into Eq. (9)
yields results identical to those derived by Bloem-
bergen.3*

The above example suggests that the boundary
effects can indeed be taken care of separately.
In Sec. IIC we shall use the same procedure to
take into account the boundary conditions of opti-
cal mixing in a slab medium. Then, with the ex-
pression of P‘z’(k z) in Eq. (3), we can calculate
from Egs. (5)--(7) and the appropriate boundary
conditions the Fourier component E(kT,z) of the
DFG gutput and hence the difference-frequency
field E(T) in space. In many cases, only one of
the four waves in Eq. (7) is nearly phase matched.
When this happens, we need to retain only the
phase-matched component in a good approximate
calculation.

C. Boundary effects

We have seen in Sec. II B how we can take into
account the boundary effects of a crystal-vacuum
interface by simply incorporating linear reflection
and transmission of the waves at the boundary into
the solution. We now discuss the boundary effects
of the more general case of a slab crystalline
medium. We can consider E? in Eq. (6) as for-
ward propagating waves starting from z =0 in
the medium and subsequently undergoing multiple
partial reflections at the two slab surfaces. Simi-
larly, we consider E? (6) as backward propagating
waves starting from z =/ in the medium. Thus the
field outside the slab is given by the sum of E"
and E{’ weighted, respectively, by appropriate
Fabry-Perot factors due to multiple reflections
and transmissions. To find the Fabry-Perot fac-
tors, we first calculate the transmission and re-
flection matrices for ordinary and extraordinary
waves at a single-crystal vacuum boundary sur-
face, and then find the overall transmission and
reflection matrices of the slab for the two waves
by summing over multiple transmissions and re-
flections at the slab surfaces.

Consider first the case defined in Fig. 1( )

The incident monochromatic plane wave E Lk T)
=Ej H +E3, I and the reflected plane wave

E, (kT) E” Jl+E4T are related to the refracted

ordmary and extraordinary waves E,,(,) and

Fe*(kT), respectively, by the matrlx relations®®

E‘f) - <E )
i+ =A+ o+ s
()5 4s

e+/ (10)
()55
E,. \E,./,
where

joski
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£ \Biko/(L+7p)e  Bik /(1+1f” e

5 :<0‘07’o/(1+7’L) atyt,/(L+7L) >
B o/ (L+vie  BEvh Iee/(1+1fei

e¥es
0= (e, =k o)/ (b, +E,,)
= (k2k, - K%k, ,)/ (R2kz +k°R,,)
o= (ks xR/ (R, xR,),
vh = (= k2 £ k2B /(P £ R kEBY)
a3=0," (z Xkyp), B=0,[E xky) XE3],
as= 6 Xky), Bize,[@xkp) xR,
ek
With subindex “~” applied to the case of Fig. 1(b)
with

)26 (a5)-2(e)
- =A- (2 , r+ =B- o= .
<Eg_ E,) \E., E,

We next consider transmission and reflection of
ordinary and extraordinary waves incident from the
crystal side onto the boundary surface as described
by diagram a in Fig. 2. Clearly, diagram a is
equivalent to the sum of diagram b and diagram c,
and diagrams b and c are identical to those in
Figs. 1(a) and 1(c), respectively. We therefore
have

- = = = [E
E,=E, + E';_=T_<E° >

e=

e- -

Crystal Vacuum Crystal
(b) (c)

FIG. 1. Wave-vector diagram for reflection of a plane-
wave incident from the vacuum side on the plane inter-
face between vacuum and uniaxial crystal half-spaces:

(a) crystal fills the right half-space, (b) crystal fills the
left half-space, and (c) an equivalent diagram with the
crystal on the right,



and

(&)= Em), an

where

’.ft = .At - .é;K;l‘ég ’

ﬁt == X;lﬁﬁ H
the subindices “+” and “~” now refer to cases
where the crystallme medium occupies the left
half-space and the right half-space, respectively.

We can now use the results in Eq. (11) to calcu-

late the effect of multiple transmissions and re-
flections at the boundaries of a crystal slab. In
particular, we are interested in finding the forward
and backward propagating far-infrared waves
outside the slab created by optical mixing inside
the slab. As we mentioned earlier, we can imagine
that optical mixing generates waves E? starting at
z =0 and E? starting at z=1 and in getting out of the
slab, these waves undergo multiple transmissions
and reflections. Therefore for the generated field
outside the slab, we readily find for z =!
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Vacuum Crystal Vacuum Crystal Vacuum Crystal
(a) b (c)

FIG. 2. Wave-vector diagrams showing (a) boundary
transmission and reflection of ordinary and extraordinary
waves and its decomposition into (b) and (¢) which de-
scribe two simpler cases of linear transmission and re-
flection of waves at an interface.

+

B = (exp(ikozl) exp(ﬂkz)

and

F,=(1-P,R,PR)"= Z (P,R,B,R,)" (13)
Because of the generalized Fabry-Perot factor

, the output fields ET* can be rapidly varying
functlons of kT, w, and /. In some cases, how-

B, -T.F [(Eo,»(l)) +§*§_<EO-(0)>} , (122) ever, when the pump laser beams have fairly
E,W0) E,(0) broad linewidths or the crystal slab is wedged or
not sufficiently well polished, it is more appropri-
and for 2z <0 ate to find an average Fabry-Perot factor or the
= = [/E,(O\ == (E. () average output by averaging over one Fabry-Perot
E;.=T_F_ KEO-(O)) +P_R <Eo*(l)>jl (12b) period. For example, in the nearly isotropic
e e case, we find from Eq. (12) after some manipula-
where tion,
J
11 —-7,1?
- o a+* B+ 5 L 0 CX* B+
(B2 (T F)NEF,) = 1-lr,exp(-7) ot , (14)
B+ _Qt¥ 0 —Vu B+ ot

where v is the attenuation constant along z.

D. Far-infrared output power and its far-field angular distribution

The total far-infrared power outputs from the
slab in the forward and backward directions are

ou:—z%fdxdy(ées‘z)ﬁ;i(x,y)lz , 15)

evaluated at large z.
can be written as

By Parseval’s theorem, this

_ i -~ . A* - - 2
@, =5 kzwzskzdkxdky(z R*) | En,) |2, (16)
Xy
where E,(k,) is given by Eq. (12).
In most practical cases, we are also interested
in the far-field angular distribution of the output

1- ‘Vu [4eXp(-’yl)

power. As shown in the Appendix of Miyamoto
and Wolf,?® it has the expression

de (6, ¢)
a
- 2
= é% cos?0 ETi<’ET =c8 sinf (x cos¢ +7 sinqb))

(17)

III. RESULTS OF NUMERICAL CALCULATIONS

In this section we shall present numerical cal-
culations of far-infrared generation by difference-
frequency mixing using the equations given in the
previous section. We choose somewhat arbitrarily
the following values for the characteristic parame-
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ters of the nonlinear crystal: »,=2, n(w)=4, and
X®=1.87x10"® esu. The two nearly overlapped
pump beams, one ordinary and one extraordinary,
are assumed to have the same focal spot in the
crystal with both beams always along the normal
to the slab. The question we propose to answer

is how various quantities such as phase mismatch,
focusing, beam walkoff, and absorption affect the
far-infrared output at different frequencies.

A. Far-infrared generation in the absence of absorption and
optical walkoff

We assume in this case that the optical axis of
the crystal is in the plane of the slab along X.

The two pump beams, one ordinary and one extra-
ordinary, propagate along the normal to the slab
z with essentially no walkoff, the nonlinear polari-
zation PY? is along 5, and the common focal spot
of the two pump beams is at the center of the slab.
We also assume that the extraordinary refractive
index #,,, of the pump beam can be varied by ex-
ternal means such as temperature in order to ad-
just the amount of phase mismatch in DFG and
that only the ordinary far-infrared waves in the
forward direction can be nearly phase matched.
Since the phase mismatch is different for different
Fourier components E(K,, w) of the far-infrared
output, we define an axial phase mismatch Ak,

=k, (w,) =k,(w,) —k,(w) to describe the overall
phase-matching condition.

Figure 3 shows the far-field angular distribution
of the far-infrared output d®(8)/d® vs 6, at 100
cm™ calculated from Eq. (17). In the calculation
the slab has a thickness of 1 cm, the focal spot

0.8 -

0.6 .

0.4~ -

0.2 -

0 I J\] | \/\L‘_ I

-90 -60 -30 0 30 60 90
Angle from slab normal (deg.)

Power per steradian (arb. units)

FIG. 3. Angular distribution of far-infrared power
output at w=100 ecm”! with the axial phase mismatch at
its optimum value Ak, =—5.1 cm™!, a near optimum fo-
cal spot radius w=25 pm, a zero walkoff angle £ =0, and
a crystal lengthl=1 cm.
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size is w=25 um, and the axial phase mismatch
corresponds to Ak,=-5.1 cm™. Since the far-in-
frared output is approximately symmetric about

% [i.e., nearly independent of the azimuth angle

¢ =tan™ (¢ /k,)], Fig. 3 actually shows a distribu-
tion in the form of a hollow cone. The radiation
peaks at the angle

0,,=sin {n2(w) = [n,(w) + Ak c /W] /2
at which phase matching
Akz =k1 "kz _koz(w) =0

occurs. The secondary maxima of the phase-
matching curve can also be seen. They become
more pronounced for shorter far-infrared wave-
lengths as the effect of diffraction becomes less
important. From the expression of 6, it is seen
that if Ak, =0, then 6, =0 and the far-infrared
output appears as a narrow solid cone along the
z axis. If Ak, >0, then there is no solution for
6,, and the far-infrared output is strongly sup-
pressed by phase mismatch; the angular distribu-
tion may show a weak central peak at 6 =0 and some
secondary maxima at finite 6. For negative Ak,
the phase-matched peak shifts to larger 6, until
6, =2m; then because of total reflection at the
surface, the far-infrared radiation in the phase-
matched direction can no longer get out of the
slab and the output peak at 6 = 37 drops quickly.
The total far-infrared power output ® vs Ak,
is shown in Fig. 4 with the same set of parameters
used for Fig. 3. The curve has a maximum around
Ak,=-5.1 cm™ corresponding to the full develop-
ment of the hollow phase-matched cone in Fig. 3.
The steep rise of the curve at A%, ~0 cm™ is due
to the initial appearance of the phase-matched

Far infrared power (arb. units)

20

FIG. 4. Far-infrared power output at w=100 cm™! as
a function of Akyl, assuming a=0, {=0, w=25um, and
l=1cm,
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cone. The gradual decrease between Ak, ~ —10
cm™ and -75 cm™ is due to the combined effects
of decrease of the far-infrared transmission coef-
ficients and decrease of the effective P?’ for the
generation of ordinary far-infrared waves around
the phase-matched direction. The steep drop after
Ak,~ -T5 cm™ is due to total reflection of an in-
creasing portion of those far-infrared waves gen-
erated near phase matching.

If the far-infrared wavelength A inside the crys-
tal becomes much smaller than the focal spot size
w, the variation of far-infrared output versus phase
mismatch Ak, appears more like the usual phase-
matching function (sin®x)/x? for the ideal plane-
wave case. An example is shown in Fig. 5 for the
case of A=3w. Because of the smaller \/w ratio,
the off-axis Fourier components of the far-infrared
become relatively less important, and hence the
output drops more rapidly with increase of Ak,.
The curve in Fig. 5 is, however, still noticeably
asymmetric and its peak occurs at Ak,=—-2 cm™
rather than Ak, =0. As the ratio of A/w decreases
further, the effect of far-infrared diffraction be-
comes even smaller; the phase-matching curve
@ vs Ak, then develops more clearly defined
secondary peaks and approaches the symmetric
form sin®(Ak1/2)/(Ak 1/2)3.

The focusing geometry of the Gaussian pump
beams is completely characterized by the focal
spot size w. In order to see how the far-infrared
output varies with focusing, we calculate the {=0
curve in Fig. 6 which shows the maximum of
®(A%,) as a function of w. Because of the higher
pump intensity resulting from tighter focusing, the
far-infrared output increases sharply with de-
crease of w. However, it reaches a maximum at
w =13 um as the corresponding reduction of the

1.0 T T T T ]

0.8~ .

0.6 .

0.4} -

Power (arb. units)

0.2 -

(-)30 -20 -10 0 10 20

Akal

FIG. 5. Far-infrared power output at =100 cm™! as
a function of Ak,l assuming @=0, {=0, w=0.2 mm, and
{=1cm,
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1.0+

0.6

Power (arb. units)

0.4

| 1 {
0.5 1.0 1.5 2.0
Focal spot radius (10'2cm)

FIG. 6. Far-infrared power output at w=100 cm™! as
a function of the focal spot radius w for various walkoff
angles {, @=0, and!=1 cm. The calculation was done
by always adjusting the axial phase mismatch Ak, to its
optimum value for maximum power output.

longitudinal focal dimension takes its toll. It is
interesting to note that in the model of collimated:
Gaussian pump beams with a radius w and with
w?|E,E, |= constant, ® vs w has no maximum.
This is because when 2w <1 for all significant
far-infrared Fourier components, P®(K,,z) in
Eq. (3) becomes independent of 2, and w.

While Figs. 3—-6 are for w=100 cm™, Figs. 7-9
show results of similar calculation for w=10
cm™. The far-field angular distribution of the
output is given in Fig. 7 for two values of the
azimuth angle ¢ =tan™(¢,/k,) =0 and z7. In this
case, because \/w =10 is large, far-infrared
diffraction is more important; phase matching oc-
curs around 6 =37 and the phase-matched peak is
very broad. As a result, the output asymmetry
with respect to ¢ shows up because at relatively
large 6, the transmission coefficient for the
ordinary far-infrared wave across the slab boun-
daries is different for different ¢. For ¢ =0 the
wave is linearly polarized perpendicular to the
plane of incidence, while for ¢ =37 the wave is
linearly polarized in the plane of incidence. The
latter case has a Brewster angle at 6 =76°,
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Figure 8 shows the total far-infrared output at
w=10 cm™ as a function of the axial phase mis-
match Ak,. The curve again resembles the well-
known phase-matching curve (sin*)/x? for the
plane-wave case except that its maximum is at
Ak,=-4 cm™ instead of Ak, =0 and it has no well-
defined nodes. However, this resemblance does
not occur because diffraction is unimportant. It
occurs because when the far-infrared wavelength
is sufficiently long, then all the far-infrared
Fourier components E(ET,Z) have roughly the
same AkJ~ AkJ; in other words, if Ak]=0, then
all the far-infrared Fourier components are near-
ly phase matched. The small difference of Ak
among the Fourier components, however, broadens
the phase-matching peak and obscures the fine
structure.

The £ =0 curve in Fig. 9 describes the peak
value of ®(A%,) at w=10 cm™ as a function of the
focal spot size w. We notice that in the range of
our calculation, this maximum output power
® . (Ak,) always increases with decrease of w.

In this case, kw becomes so much smaller than

1 at small w that the nonlinear polarization P‘z’(l?T)
approaches a constant independent of 2., w, and

z in spite of the factor (1 +£2%) in the exponential
function in Eq. (3). Consequently, the £ =0 curve
of Fig. 9 flattens out at small w. Eventually, for
even smaller w, we should expect the curve to go
through a maximum like the {=0 curve in Fig. 6
for w=100 cm™,

$=n/2

units)

0.8 -
$=0

0.4k .

Power per steradian (arb.

0.2 ]

0 L 1 1 1 L
-90 -60 -30 0 30 60 90

Angle from slab normal (deg.)

FIG. 7. Angular distribution of far-infrared power
output at w=10 ecm™! for Ak, =—4.0 cm™!, w=25pm,
£=0, @=0, andl=1 cm. The azimuth ¢ is defined by
¢ =tan"'(y/x).
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units)

Power (arb.

FIG. 8. Far-infrared power output at w=10 cm™! as
a function of Ak,l assuming @=0, {=0, w=25um, and
L=1cm.

B. Far-infrared generation with a finite walkoff angle between
the pump beams

We now consider the effect of optical walkoff on
far-infrared generation. We still assume that the
pump beams propagate normal to the slab and
absorption is negligible, but the orientation of the
optical ¢ axis of the crystal is new varied in the
X—Zz plane in order to vary the walkoff angle £.
The primary effect of optical walkoff is that it
limits the effective interaction length of the beams.

L L —

Power (arb. units)

0 0.5 1.0
Focal spot radius (mm)

TIG. 9. Far-infrared power output at @w=10 cm™! as
a function of the focal spot radius w for various walkoff
angles £, =0, and/=1 cm. The axial phase mismatch
was always adjusted to its optimum value in the calcula-
tion.
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When ¢ is much larger than the divergence angle of
the pump beams, the two pump beams overlap in
the focal region only over a distance of 2w/ I g |;
most of the far-infrared radiation is generated
from this overlapping region. As |§| increases,
the effective interaction length decreases, and
hence the phase-matching peak in the far-field
angular distribution becomes weaker and broader,
as shown in Fig. 10 for w =10 cm™. For smaller
focal spot sizes w, the walkoff effect is stronger.
This gives rise to a lower maximum at a larger
w for the {#0 curves in Figs. 6 and 9.

The far-infrared output should in general consist
of both ordinary and extraordinary waves. We
have so far assumed that the e wave is strongly
phase mismatched and can be neglected. This is
true for 6, =cos"1(¢*2) larger than the total reflec-
tion angle 6,. However, when ¢ approaches Z or
6, approaches zero, the phase mismatch of the e
wave is greatly reduced and the e-wave output
becomes non-negligible. For 6 =0 we have the
nearly degenerate case where the e wave and the
o wave contribute almost equally to the far-in-
frared output.

There are two other less important effects of
optical walkoff on far-infrared generation. First,
the exp(ik,£z/2) term in Eq. (3) contributes to the
phase-matching relation, which now becomes
Ak, =k, -ky+k, ~k,=0. This term shifts the

1.0 T T T T7 T
z=0
0.8 |
"
+
£ L 4
=
£ 0.6 4
A
<
‘M
S r ]
<
3
v 0.4 .
S
[
(=1
5 i
5 L
§ z=-0.01
0.2 |
£=-0.02 i
0 ] ] ] I ]
-90  -60  -30 0 30 60 90

Angle from slab normal (deg.)

FIG. 10. Angular distribution of the far-infrared
power output at @w=10 cm”! for various walkoff angles
¢ assuming w=25pum, @=0, !=1 cm, and the optimum
value of Ak, (). All curves were computed in the ¢=0
plane. .

center of the phase-matching cone in Figs. 3, T,
and 10 from k_ =0 to k,=3&(Ak, +n,w/c). Since

for ¢ =0, the far-infrared transmission coefficient
for o waves at the boundary falls off monotonically
with increase of 6, this increases the phase-
matched output for £,>0 and decreases that for
k<0, Second, as seen from Eq. (3), the maximum
of |P®(k,,z2)| is shifted from k =k, =0 to k,

=k, ££2/(1+£%) and k= 0; its effect on the far-field
angular distribution is just the opposite of that

due to the shift of the phase-matching cone. De-
pending on the situation, one effect may dominate
over the other. They are responsible for the slight
asymmetry of the £ =0 curves in Fig. 10. The
phase-matching effect is more important for the
¢=-0.01 case while the |[P® (g,)| effect is more
important for the £ =-0.02 case. For shorter
crystals ({ <0.5 cm), the phase-matching effect

is more important.

C. Effects of linear absorption on far-infrared generation.

In practice, nonlinear far-infrared generation in
crystals is always limited by far-infrared absorp-
tion. This is the main reason why far-infrared
DFG in solids has in most cases been restricted
to the range between 1 and 200 cm™. Roughly
speaking, with an absorption coefficient y, the ef-
fective length of the crystal for DFG cannot be
much more than 2/v.

Figure 11 shows how the far-infrared output
from a 1-cm slab decreases as a function of the
far-infrared absorption coefficient v for w=10
and 100 cm™, In the calculation, the focal spot
size was chosen as w =25 um and the location of
the focal spot was at the center of the slab for y
=0, while for increasing y it moves towards the
end surface of the slab. As we mentioned earlier
in Sec. IIA, for w=10 cm™, all the significant
far-infrared Fourier components are nearly
phase matched (A%, <7). Therefore the curve
for w=10 cm™ in Fig. 11 agrees fairly well with
that described by [1 —exp(=y1/2)]?/(¥1/2)? for the
phase-matched plane-wave case. For w=100 cm™,
since not all the significant far-infrared Fourier
components can be nearly phase matched, the re-
duction of far-infrared output with increasing
absorption is slower and cannot be approximated
by the phase-matched plane-wave form at small
Y.

In some respects, the effects of y for /=2 can
be simulated by an absorptionless crystal with a
length 2y™. An increase of ¥ increases the phase-
matching angle and broadens the phase-matched
peak in the angular distribution of the far-infrared
output. It also makes (Ak,),,, the optimum axial
phase mismatch for maximum total far-infrared
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output, more negative. This latter effect is quite
pronounced for w =100 cm™ as shown in Fig. 12.

IV. COMPARISON WITH OTHER MODELS AND WITH
CALCULATIONS OF SECOND-HARMONIC GENERATION

We now compare the results of our detailed cal-
culations with those obtained from two simple
models for the case where the optical walk-off
effect is negligible. One is the Gaussian distribu-
tion (GD) model in which we assume a Gaussian
profile for the nonlinear polarization at the dif-
ference frequency,

POFE )= ({2 glgz)
Xexpl - 22 +92)/w? +i(k, — ky)z —iwt]
(18)

in the crystal slab where the pump fields are given
by

EjG, t):gjexp[— (& +92)/w? +ik z —iw,t], j=1,2.

This is an extension of an earlier model used by
Zernike and Berman® and Faries et al.?® which as-
sumes a uniform amplitude for P® (¥, ¢) throughout
a cylinder with a finite radius. The other simple
model is the usual plane wave model in which we
assume that the geometric ray approximation is
valid and that each beam can be described by a

T T T T

IBRANLRARE]
Ll Ll

Lol

T
L

[ERATAS

Relative power
S

T T T TTTTT7

T

P.W.

10 1 | 1 I
0 20 40 60 80 100
Absorption coefficient (cm-1)

FIG. 11. ¢(a)/®(a=0) vs a showing the reduction of
output power due to far-infrared absorption. For each
point on the curves for w=10 and 100 cm™!, w=25
pm, an optimum value of Ak,, and an optimum location
of the focal plane were used in the calculation. A cor-
responding curve calculated from the plane-wave model
is also shown for comparison.

cylindrical pencil of rays with a single wave vec-
tor.

From the GD model, we obtain for the lossless
case a total output power at w of

-

2,34
WW™ | r
'X(z) . glgglzlz

m
(-PS’D ((A)) = 4C2

w/c
x f dk gk /R )T (k1)) C (AR )T/
0

(19)

where (T(k,)), is the far-infrared transmission
factor averaged over the azimuthal angle ¢ with
multiple reflections at the slab boundaries taken
into account, and C(A%,) describes the effect of
phase mismatch.  They are given by

1 '(k,,(k,,zmgkz)z (ko k), )
2k, +k,,) \ R +nik2 B2, +R2 Toz)’

Tk =

(20)
C(ok,) =sin*(Ak,1/2)/(AR,L/2)?,

with
Ak, =n,w/c+ Ak, —k,, and Ak,=k; -k, -nw/c.

The output powers at 100 and 10 cm™calculated
from Eq. (19) as a function of w are shown in Figs.
13 and 14, respectively, in comparison with the
results of Eq. (16) from our more exact calcula-
tions. At 100 cm™, the only perceptible difference
between the two curves occurs at small beam
sizes and amounts to 6% at w=13 um. At 10 cm™,

a

Optimum Ak_2

| I | I
0 20 40 60 80 100

Absorption coefficient (cm'])

FIG. 12. Optimura values of Ak,l vs the absorption
coefficient o for the case of Fig. 11 with w=100 cm™!
where Ak, is the axial phase mismatch.
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the two curves are virtually indistinguishable.
Thus the GD model appears to be a very satisfac-
tory approximation.

The output power from the plane-wave model
without boundary conditions is given by

2,2, 2 .
oY () =T [x @ 88 T, . @D

The result calculated from Eq. (21) is also shown -
in Fig. 13. It is 20% higher than the correct value
at w=0.02 cm. The deviation becomes much worse
at smaller w and diverges as w approaches zero.
This shows that the plane-wave model gives unac-
ceptable results at small w because of its diffrac-
tionless approximation. With diffraction, the total
far-infrared output power is decreased by total re-
flection of those Fourier components with large

%, and by phase mismatch [described by C(Ak,) in
Eq. (19)] for other Fourier components.

The plane-wave calculation is, however, simple
and does not require numerical integration. It is
therefore preferred when one wants to crudely
estimate the output power. We can make the esti-
mate more exact by multiplying the calculated re-
sult by a correction factor. Comparison of Eqgs.

1.4 ; : -

= N\,
o - B
s
3
£ o0.8F i
=
S~
Y
=z - 4
&
Present calc.
0.6}
0.4

—— Gaussian distribution model

0.2 1 | I J
0 1 2

Focal spot radius (10'2cm)

FIG. 13. Comparison of the results of the Gaussian
distribution model, the plane-wave model, and our pre-
sent calculation for w=100 em™!, a=0, {=0, andi=1
cm.

1.0

Power (arb. units)

0.7 & Gaussian distribution model
—Present calculation

0.6 I | . 1 L
0 1 2 3

Focal spot radius (lo'zcm)

FIG. 14. Comparison of the results of the Gaussian
distribution model and our present calculation for
w=10 cm™!, @=0,1=0, and /=1 cm,

(19) and (21) shows that this correction factor is
given by

F =(PGD/(PPW ,

kowz w/e B s
=§<T(6)_>§fo d"*?‘(;;fz><T(kT)>°C(AkZ)e W /e

(22)

We approximate (T'(k,)),C(Ak,)/k,, in the integral
by (T(0)),/k, for k. <k, and by 0 for* k. >k,
where %, is defined as k, =[2Ak, (1 ,w/c - AR, /2]*/?
with Ak, being the smaller of the two quantities
21/l and [n, - % =1)/%]w/c. Physically, at
kp=Fk,, d®/dQ either has dropped to half of its
peak value or has been cut off by total reflection.
The correction factor then becomes

F=1-e™®m/4,

The output power calculated from F® *¥ using
Egs. (21) and (23) is within 20% of the correct val-
ue.

We now discuss similarities and differences be-
tween difference-frequency generation (DGF) and
second-harmonic generation (SHG). In both cases,
each pump field E; with finite beam radius has a
distribution of Fourier components with wave vec-
tors spreading effectively over an angle 26,. The
output of DFG or SHG from a nonlinear slab is
significant only when part of these significant
Fourier components within the angular spread 25,
can satisfy the axial phase-matching condition
Ak,=0. As shown in Fig. 15, this happens for
SHG only if AkS =2k(w,) ~k(2w,) =0 and Akjy
=2k(w,)(1 - cosd,)= AES, and for DFG only if Ak
=k, -k, —k(w)=0 and AkZ =k (w)(l —cosd)= - Ak2,
where 20 is the angular spread of the significant
far-infrared Fourier components which can get out
of the crystal slab. We emphasize that for an ef-
ficient nonlinear interaction we must have
ARS=0{for SHG and Ak?=0 for DFG.
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The quantity A%§ in SHG or Ak2 in DFG governs
the qualitative behavior of the phase-matching
curve ® vs Ak,. As we mentioned before, the
output is most efficient when A%S (or —-AE2) falls
in the range between 0 and A%S (or AkD). There-
fore if A%37(or Akpl)>> 2w, then the phase-match-
ing curve has a broad peak; it rises sharply to the
peak around A%k (or A%P)=0, then slopes down-
ward as AES (or ARP) increases from 0 to A%}
(or AEB), and finally in the case of DFG falls
rapidly at a certain A%2 value because of the cutoff
due to total reflection at the boundaries. Examples
are shown in Fig. 4 for DFG with A%2/=280 and in
Fig. 16 for SHG with A%k3/=100.3" Such a phase-
matching curve is characteristic of SHG with
strong focusing of the pump beam. In DFG it oc-
curs when the pump beams are more weakly
focused because of large far-infrared diffraction.
When Ak3l (or AkR) =< 27 the range of AkS (or
ARP) for efficient output is much narrower, and
the phase-matching curve now shows a central
peak and secondary maxima and minima, resembl-
ing the well-known plane-wave phase-matching
curve described by sin®(Aakl/2)/(Akl/2)?. Exam-
ples are shown in Fig. 5 for DFG at 100 cm™ with
ARPl =4, in Fig. 9 for DFG at 10 cm™ with A%k32!
=8, and in Fig. 17 for SHG with Ak3] =5.68. All
these curves are, however, slightly asymmetric
with a small shoulder on one side. This is because
for ARSI<0 (or AkP>0), the phase-matching con-
dition Ak, =0 is not satisfied for any of the Fourier
components.

There are several minor differences between the
SHG and DFG phase-matching functions. For
ARSI (or ARBI)> 2m, the phase-matching curve
for DFG, as shown in Fig. 4, has a sharp drop
around the value of AkP where significant Fourier
components of the far-infrared output begin to be

3§
(b)

FIG. 15. Phase-matched wave-vector diagrams for (a)
second-harmonic generation and (b) difference-frequency
generation.
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FIG. 16. Second-harmonic power output as a function
of Ak,l when AkSI=100. [After Boyd and Kleinman,
J. Appl. Phys. 39, 3597 (1968)].

totally reflected at the boundaries. In SHG, how-
ever, total reflection is never important and
therefore as shown in Fig. 16, no sudden drop of
the output power occurs as Akf increases. Be-
cause of the weaker diffraction effect, the phase-
matching curve for SHG has, in general, more
pronounced fine structure than that for DFG.

V. CONCLUSION

We have developed here the theory of far-in-
frared generation by optical mixing in a nonlinear
medium, using an extension of a formalism de-
veloped earlier for second-harmonic generation
by focused laser beams. The theory takes into
account the effects of focusing, diffraction, and
double refraction of the pumped beams and the ef-
fects of diffraction, absorption, and reflections
at the boundaries of the far-infrared output beam.
Numerical calculations showing these effects are
presented. Both the total power output and its
angular distribution are calculated.

We have found that focusing of the pump beams

Power (arb. units)

-80 -60 -40 -20 0 20 40 60 80
Ak, 2

FIG. 17. Second-harmonic power output as a function
of Ak,l when AkjSL=5.68. (After Boyd and Kleinman
op.cit.) -



can greatly enhance the far-infrared output. Ina
crystal of 1 cm length, the optimum focal spot ra-
dius is roughly equal to or smaller than the far-in-
frared wavelength for output frequencies less than
100 cm™. The walkoff effect of the pump beams in
birefringent crystals does not reduce the output by
more than a factor of 2. Far-infrared absorption
and boundary reflections are, however, extremely
important. The former is often the factor which
limits the output power.

We show that the usual plane-wave model which
neglects the effects of far-infrared diffraction and
boundary reflections does not give a correct de-
scription of the far-infrared output, especially for
tightly focused pump beams. A simple model
treating the nonlinear polarization as a constant-
1/e-radius Gaussian distribution of radiating di-
poles is, however, a good approximation to the
real picture. We also compare our results with
those of second-harmonic generation and notice a
great deal of similarities. Most of the differences
can be ascribed to the boundary effects, including
total reflection, which are more important in the
case of far-infrared generation.
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APPENDIX A

The extraordinary ray assumed in Sec. ITA
actually has the form

8,8,(1+£3)/2

Ez(r, ?) =[(1 +i£2x)(1 +i£2y)]1/2
(x - £,2)? y?
X exp <_ w2(1 +12352x) Twi(l +i£2y))
x expli(k,z ~ w,t)], (A1)
where

Ea= (ZO,Zx - Zo,zy)ng/{kzw%igm, 2(”2 +nz27,2)} ’
%ex = 2 (Z - Zo,zx)[”g/{kZWEnzm,zni,z}] 3
‘ge:u = 2(2 - ZO,Zy)[nZ/{k2w§nzm,2}] )

with &, being a unit vector parallel to the electric
field of the e ray for a normally incident laser
beam and the remaining parameters are as de-
fined for Eq. (1). This expression with zg,,,
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=242, i essentially the same as the one given in
Appendix I of Ref. 31, but there the factors in the

.square brackets in the definition of §,, and &,

were approximated by 1. N

The nonlinear polarization P@)(T, w) is obtained
from Eq. (2) using the expressions of E, in Eg.
(1) and E, in Eq. (A1). The transverse Fourier
transform of P (¥, w) gives P®(K,,z). To ob-
tain the expression of P®(K,, z) in Eq. (3), we
made the following simplifying assumptions.
First, we assumed w, =w,=w. Second, we as-
sumed a common focus for the two beams, z, ,
=Zg,2x=%0,2y =% Finally, we assumed §, - §,,
~§, —&,,=0. This last assumption is reasonable
as long as 3|&, - &,.],3[&, - &, <7/2. Inour
calculations, the largest value of 3 | & - 52;:‘ or
3|&, —£,,] is 1 for the case of w=10 cm™, w
=25 um and £=-0.02. For all the other cases,
3|&, —£,,] or 3|&, ~ £, | is much smaller than 1.

52x

APPENDIX B
To derive Eq. (6), we first Fourier transform
Eq. (4) and obtain
[KE =21+ 0 /c?]* E[®) = - 47(w?/c?) P (§) ,
ke E® =-41k PO[).

The particular solution of Eq. (B1) can be written
in the form

EPE) =5K) PO®).

From the inverse transform on %2,, we then have

(B1)

- - 1 ° *® s PO g -
E’(kT,z)=§; J’ dk, f dz'et*z==8(k)  P® (ky, 2') .

(B2)

A straightforward, but tedious, application of the
residue theorem finally leads to Eq. (6).

We also notice that Egs. (6) and (7) are not the
results of slowly varying envelope approximation.
This is in fact generally true for the solution of
optical mixing in the parametric approximation.
For example, consider the simple case where the
nonlinear process can be described by the wave
equation

(82/02% +R2)E (z) = 4m (w?/c?)PNL(z) , (B3)

where PN (z)#0 only if 0=z=[. Then, in the re-
gion 0=z =1, the solution of the equation is

2 z
E(Z):?ﬂw (f PNL(ZI)eika(z-z‘)le
ikocZ \ J,

1
+ J’ PNL(ZI)e-ikD(z-z')le> . (B4)
z

No slowly varying envelope approximation was
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made in the derivation. In fact, one can easily
show that with the complete expression of E(z) in
Eq. (B4), the terms 9%|E(z)| /222 and 2¢,9 |E(z)| /o2
are generally comparable in magnitude. The usual
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slowly varying envelope approximation is actually
equivalent to neglecting waves propagating in the
opposite direction.
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