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The theory of far-infrared generation by optical mixing of focused Gaussian beams is developed, taking into
account the effectsof diffraction, absorption, double refraction, and multiple and total reflections at the
boundary surfaces. Results of numerical calculations are presented. It is shown that focusing of the pump
beams appreciably enhances the far-infrared output despite the strong far-infrared diffraction. In a 1-cm-long

crystal, the optimum focal-spot size is approximately equal to or smaller than the far-infrared wavelength for
an output at frequency less than 100 cm '. Double refraction of the pump beams is relatively unimportant.
Both far-infrared absorption and boundary reflections have major effects on the far-infrared output and its
angular distribution. The former is often the factor which limits the output power. We show that a simple

model treating the nonlinear polarization as a constant-1/e-radius Gaussian distribution of radiating dipoles is

a good approximation to the problem. We also compare the results of our calculations with those for second-
harmonic generation.

I. INTRODUCTION

Far-infrared generation by optical mixing has
recently received increasing attention. ' It has the
potentiaI of providing a coherent tunable far-in-
frared source which complements far-infrared
molecular lasers. The most commonly used
scheme is that of difference-frequency generation
(DFG) by the mixing of two laser beams in a noncentro-
symmetric crystal, With dye lasers, Co2 lasers, ~ '
or spin-flip Haman lasers" "as the pump beams,
DFG can provide a far-infrared source discretely
or continuously tunable from 1 to 200 cm"' or
more. The output liriewidth can easily be less
than 0.1 cm ~ as determined by the pump laser
linewidths. In most cases, the output is in pulses
with pulsewidths between 10 nsec and 10 p, sec, but
cw operation has recently been achieved.

A serious limitation of far-infrared generation
by optical mixing has been the atta'inable average
power, although so far as spectral power per unit
solid angle is concerned it is already better than a
blackbody source at 5000 'K.' While focusing of the
pump beams may increase the far-infrared output, ,
it is not clear how tight the focusing can be before
the detrimental effect of far-infrared diffraction
sets in. No adequate theoretical calculation of
nonlinear far-inf rared generation with focusipg
and diffraction properly taken into account has
been reported. Experimentally, on the other hand,
a tight focusing geometry has so far been avoided.
As a result, the full potential of nonlinear far-in-
frared generation has not been assessed.

In the literature, the plane-wave theory was often
used to interpret the results of far-infrared gen-
eration experiments. "'"'"'"" The theory as-
sumes a single spatial Fourier component for

each monochromatic wave so that the nonlinear
process is characterized by a single phase-match-
ing relation. However, when the pump beams are
focused to a spot comparable in size to the far-in-
frared wavelength, far-infrared diffraction is im-
portant and the spatial Fourier components of the
output extend over a large cone. Each Fourier
component now has its own phase-matching relation
with respect to the pump beams. Since it is not
possible to phase match all the Fourier components
simultaneously, focusing of the pump beams does
not improve the far-infrared output power as much
as the plane-wave theory predicts.

The plane-wave theory also assumes a single
transmission coefficient for the far-infrared output
across the boundary surface. Actually, with the
fa, r-infrared output extending over a large cone,
the transmission coefficient is different for each
Fourier component and falls to zero at the total
reflection angle. Thus the real output can be con-
siderably less than what the plane-wave theory
predicts. Finally, the plane-wave theory often
ignores the reduction in output power due to double
refraction which can be significant for small spot
sizes in crystalline media.

Improvement in the calculations of far-infrared
generation by optical mixing has been achieved by
Faries et al."using the far-field diffraction theory
for a distribution of oscillating dipoles induced by
the pump beams. ' " They used an average trans-
mission coefficient for the far-infrared output
across the boundary and excluded the contribution
from the totally reflected modes. The effect of
double refraction was however ignored. As we
shall see later, in the absence of double refraction,
this approach in fact gives a remarkably good
estimate of the far-infrared output.
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In this'paper we present a more rigorous calcula-
tion of far-infrared generation by optical mixing.
It proceeds by first calculating separately each
Fourier component of the output field and then
evaluating the output power by summing over the
Fourier components. The effects of focusing, ab-
sorption, phase matching, and double refraction
can all be properly taken into account. For the
sake of simplicity, the pump beams are assumed
to be of single mode with Gaussian profiles. Our
approach is essentially the same as that used by
Bjorkholm" and by Kleinman et al."for second-
harmonic generation by focused beams.

The main difference between second-harmonic
(or sum-frequency) generation in the visible or
near inf rared and difference-frequency generation
in the far infrared is diffraction. Validity of the
scalar Fresnel approximation for the pump beams
guarantees its validity for the sum frequency but
not for the difference frequency. Because of its
much longer wavelength and hence stronger diffrac-
tion, the far-infrared output extends over a much
broader cone. Thus the phase-matching condition
varies much more appreciably among the output
Fourier components in difference-frequency gen-
eration (DFG) than in sum-frequency generation
(SFG). All the Fourier components can often be
nearly simultaneously phase matched for SFG but
not for DFG. An accurate description of DFG
also requires knowledge of the difference-frequen-
cy transmission coefficients over a very broad
output cone.

The body of the paper is organized into the fol-
lowing sections. Section II describes the theory
of DFG by monochromatic Gaussian laser beams
which is valid even when the pump focal spot size
is smaller than a far-infrared wavelength. This
theory is developed from a generalization of the
nonlinear polarization used by Boyd and Kleinman '
and by Faries." Section III contains the results
of numerical calculations obtained from this the-
ory. First we present the results for the ideal
case of no double refraction. Then we discuss
briefly the reductions in attainable power due to
far-infrared absorption and double refraction.
Finally, in Sec. IV, we compare our results with
the results of three other calculations: a simple
plane-wave calculation, a far-field diffraction
calculation assuming a constant-1/e-radius Gaus-
sian distribution of induced dipoles, and the sec-
ond-harmonic generation calculations of Boyd and
Klein man. "

II. THEORY

A. Nonlinear polarization

We assume that the pump beams are mono-
chromatic with the Gaussian TEM«mode. If
focusing and diffraction of the pump beams are
not too strong the focused pump fields in a slab
medium can be written" "

1+i I!()[1+X

(1)
for 0 —z —l, where the subindex i denotes the ith
beam; ze,. is the e"' beam radius in the focal plane
which is located at s =z„.; the beam axis inter-
sects the front surface of the medium at x=a,. and

y =0; the quantity $,. is defined by (,. = 2(z —zo,.)/
k;z(),.' with k, = (d,n, /c, n, bei.n. g the refractive index;
finally f,. is the walk-off angle given by P,.
= zsin(28, .)n',.(n,„,. -n, ',.) if the beam is an extra-
ordinary ray propagating in a uniaxial medium
along a, direction at an angle 6 with respect to the
optical axis where n, , and n, , are, respectively,
the ordinary and extraordinary refractive indices
at 8 = 90 . The derivation of Eq. (1) involves some
approximations which can easily be justified as
shown in Appendix A. In the following, to simplify
the calculations in practical cases, we can assume
that the largely overlapping pump beams are fo-
cused to the same spot size at the same point with

w, —=~, $,. =- g, and z„—=z. This is a good approxi-
mation when the refractive indices of the pump
beams are not very different, as is true in all
practical cases which have been investigated.

The pump fields now induce a nonlinear polari-
zation at the far-infrared frequency in the med-
ium. We consider here only the case of DFG in a
uniaxial crystal as an example, although the for-
malism can be easily extended to more general
cases of optical mixing. The nonlinear polariza-
tion at the difference frequency + is then given by

P(2'(r, &u) =)[(2)(ur =(d, —(d,):E,(r, ~,)E,*(r, (u,), (2)

where X"' is the second-order nonlinear suscepti-
bility tensor. We assume that E, is an ordinary
ray and E, is extraordinary. The nonlinear polar-
ization P"'(r) can be readily found by substituting
the expression of E, of Eq. (1) into Eq. (2). For
convenience of solving the wave equation later,
we are however interested in the transverse
Fourier components of P"'(r). The transverse
Fourier transform gives

P(z)(kr, z) =—I dxdyP(2)(r) exp(-ik„x -ik„y)
aa ed

2

3,3,"-,' XtexP[([(3,a-2;)z —3„(a,—(z)/2) )exa — '2, —3)z a (3 e 2') ——2„(a*,—'1, (z)(32)
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where k~=xk„+yk, and we set a, =0 as part of a
convenient choice of the origin. For economy of
notation, we omit explicit mention of the argument
(d.

8. Solution of wave equations

Far-infrared generation by optical mixing is de-
scribed by the set of wave equations

[V x (Vx) —(to'/c')6']E(r, (d) =4)(((0'/c')P"L(r, (d)

and

v [~ E(r, (o)]=-4)(v P""(r,(d), (4b)

where the nonlinear polarization P"" acts as a
driving source for the nonlinear process. For
DFG in a uniaxial medium, P "=P"' given by Eq.
(2). Since the normal to the slab boundary planes
is z, the easiest method is to Fourier transform
the x and y variables in Eq. (4) and to solve for
each Fourier component E(kr, z) separately. " The
corresponding source term for E(kr, z) is
4)((&u'/c')P(2)(kr, z) with P")(kr, z) given by Eq. (8).

The general solution for E(kr, z) consists of two

parts, the homogeneous solution and the particu-
lar solution, respectively. The homogeneous
solution is well known. For ordinary and extra-
ordinary polarizations, respectively, it can be
written

E" (kr, z) = S„o,e"~.g'

and

where the subindiees "+"and "-"denote forward
and backward propagating waves, respectively,
with the same kr, and k, =+[&n,/c)' —kr]'i'
with a similar expression for k„,. To find the
particular solution, let us first assume that the
nonlinear slab is imbedded in a linear medium
with an equal linear dielectric constant. Thus
reflection and refraction at the crystal boundaries
can be ignored. The boundary effects will be
taken into account later. As shown in Appendix B,
the particular solution for E(kr, z) is then given by

E~(k, z) =E~„(k,z)8.+E~ (k, z)o +E„(k,z)e.

+E', (k, z)e —(4)(n', /n~', )zP")(k, z),
(6)

where ~, is the refractive index for an extraordi-
nary ray propagating perpendicular to the optical
axis

q

E'„(kr, z) =, o P"'(kr, z')e'"~" "'dz'2Kb

oz "0

2
p

~~ - -a„zE„=—,
( )yPe o forz 0,

OZ Oz SZ

and for the transmitted output

(8a)

for z & 0 . (8b)

The above solution is, however, only true for the
ease with no reflection at the boundary, but the
boundary effects can be easily incorporated by
taking into account the linear reflection of E~ at
the boundary surface. The complete solution for
the problem with a crystal-vacuum plane boundary
is then given by

2kF — E (z —P)e z f()r z (0~u+u
OZ Z

E~ =E~ — ' "E~(z =0)e'"0' for z &0
k +k 7

Z OZ

EP (k z), Q, P(2)(k zl)e-i)'oz(z-8')dz&
oz ~z

~ 2 +Z

E~ (k z) = & 'P"'(k z')e'~e+ z dz'

(7)
gg QP

E& (k z)= 8 'P (k z')e' e z -dz'"(k ),ez elf, - "z

(k„,-k, ,) ',.
2n2(l [(n2 n2 )/ n2]( c k).'/k']

c is the optical axis of the crystal. The last term
in Eq. (6) is a longitudinal field which leads to op-
tical rectification" when ~= ~, —(d, =0. It is, how-
ever, a nonradiating term and we shall neglect it
in the following discussion.

The solution in Eqs. (6) and (7) appear in the
form normally obtained for nonlinear optical pro-
cesses in the slowly varying envelope approxima-
tion. However, no such approximation has been
made. As shown in Appendix B, Eq. (6) together
with Eq. (7) is an exact solution of Eq. (4) with
P(2)(kr, z) as the source term. The field E~(kr, z)
in the medium does not have a slowly varying am-
plitude since ()'

~
E~(kr, z)

~

/Sz' is not negligible in

comparison with 2ke
~

E~(kr, z) ~/Sz. ln fact, the
slowly varying envelope approximation is equiva-
lent to assuming for each polarization a wave
propagating in one direction only.

As a check, we can use Eqs. (6) and (7) to derive
the solution for the special case of optical mixing
at an infinite boundary surface discussed by
Bloembergen. " %e have k, =0, l- ~, and
P(2)(kr, z) =Poye'"8*' in the medium. Equation (7)
gives for the reflected output
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where k, =[(u/c)' —k'„]'~'. Substitution of the ex-
pressions for E~ and E~~ in Eq. (8) into Eq. (9)
yields results identical to those derived by Bloem-
bergen. '4

The above example suggests that the boundary
effects can indeed be taken care of separately.
In Sec. IIC we shall use the same procedure to
take into account the boundary conditions of opti-
cal mixing in a slab medium. Then, with the ex-
pression of P"'(kr, z) in Eq. (3), we ca.n calculate
from Eqs. (5)-(7) and the appropriate boundary
conditions the Fourier component E(kz, g) of the
DFG output and hence the difference-frequency
field E(r) in space. In many cases, only one of
the four waves in Eq. (7) is nearly phase matched.
When this happens, we need to retain only the
phase-matched component in a good approximate
calculation.

~;/(I+~,') ~;/(I+ H, )
P',k,/(1+ x",)k P;k,/(1+ r",,)k

~;= (k-, —k.,)/(k, +k.,),
r," = (k.'k, —k'k „)/(k'.k~+k'k. ,},
r,', =- (-k;, + k,)/(k'„+ k.),

(- k'y-', + k,k;P'.)/(k'y', + k.kP:),
o. ', —= o ~ (~ x kr) P; = o ~ [ (z x k r) x k;]

;=e, (~&&k,), p -=,, [(, xk, )xk]
A

y', =—e, ' 0

With subindex "-"applied to the case of Fig. 1(b)
with

C. Boundary effects

We have seen in Sec. II 8 how we can take into
account the boundary effects of a crystal-vacuum
interface by simply incorporating linear reflection
and transmission of the waves at the boundary into
the solution. We now discuss the boundary effects
of the more general case of a slab crystalline
medium. We can consider E, in Eq. (6) as for-
ward propagating waves starting from z =0 in
the medium and subsequently undergoing multiple
partial reflections at the two slab surfaces. Simi-
larly, we consider E~ (6) as backward propagating
waves starting from z =l in the medium. Thus the
field outside the slab is given by the sum of E~

and E~ weighted, respectively, by appropriate
Fabry-Perot factors due to multiple reflections
and transmissions. To find the Fabry-Perot fac-
tors, we first calculate the transmission and re-
flection matrices for ordinary. and extraordinary
waves at a single-crystal vacuum boundary sur-
face, and then find the overall transmission and
reflection matrices of the slab for the two waves
by summing over multiple transmissions and re-
flections at the slab surfaces.

Consider first the case defined in Fig. 1(a).
The incident monochromatic plane wave E;,(kz)
= E',.', ~[,+ E', ,-L and the reflected plane wave

E„(kr)=E„" [~ +E„-L are related to the refracted
ordinary and extraordinary waves E„(kr) and

E„(kz), respectively, by. the matrix relations"

e-

Ee+
k

Vacuum Crystal
(a)

k.
kr „E

Crystal
(b)

Vacuum Crystal
(c)

We next consider transmission and reflection of
ordinary and extraordinary waves incident from the
crystal side onto the boundary surface as described
by diagram a in Fig. 2. Clearly, diagram a is
equivalent to the sum of diagram b and diagram c,
and diagrams b and c are identical to those in
Figs. 1(a) and 1(c), respectively. We therefore
have

where

(10)
FIG. 1. Wave-vector diagram for reflection of a plane-

wave incident from the vacuum side on the plane inter-
face between vacuum and uniaxial crystal half-spaces:
(a) crystal fills the tight half-space, (b) crystal fills the
left half-space, and (c) an equivalent diagram with the
crystal on the r'ight.
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and
E+

where

T, =A, -B,A B„ Vacuum
(a)

0-
E

Cr ystal

sE

Vacuum Crystal
(b)

-E
s E

Vacuum Crystal
(c)

and for z &0

E~ -T F +PH (12b)

where

R, =-A, 'B, ;

the subindices "+"and "-"' now refer to cases
where the crystalline medium occupies the left
half-space and the right half-space, respectively.

We can now use the results in Eq. (11) to calcu-
la.te the effect of multiple transmissions and re-
flections at the boundaries of a crystal slab. In
particular, we are interested in finding the forward
and backward propagating far-infrared waves
outside the slab created by optical mixing inside
the slab. As we mentioned earlier, we can imagine
that optical mixing generates waves E~ starting at
z =0 and E~ sta, rting at z=l and in getting out of the
slab, these waves undergo multiple transmissions
and reflections. Therefore for the generated field
outside the slab, we readily find for z =l

FIG. 2. Wave-vector diagrams showing (a) boundary
transmission and reflection of ordinary and extraordinary
waves and its decomposition into (b) and (c) which de-
scribe two simpler cases of linear transmission and re-
flection of waves at an interface.

exp ik„l
exp(wk"„)

F, = (1 —P H~PQ) = Q (P,H P H, )".
n=o

Because of the generalized Fabry-Perot factor
F„ the output fields E~, can be rapidly varying
functions of k~, ~, and l. In some cases, how-
ever, when the pump laser beams have fairly
broad linewidths or the crystal slab is wedged or
not sufficiently well polished, it is more appropri-
ate to find an average Fabry-Perot factor or the
average output by averaging over one Fabry-Perot
period. For example, in the nearly isotropic
case, we find from Eq. (12) after some manipula-
tion,

I (1 r„) I'-
1 —I r„ I

~ exp (-yE)

where y is the attenuation constant along z.

D. Far-infrared output power and its far-field angular distribution

The total fa.r-infrared power outputs from the
slab in the forward and backward directions are

(P~ =— dxdg z" 0 Eg~ x~g

power. As shown in the Appendix of Miyamoto
and Wolf, "it has the expression

da, (e, y)
dQ

2

cos'8 Er, i'r =—sin0(x cos@+y sing)
2m C

evaluated at large z. By Parseval's theorem, this
can be written as

where Er, (kr) is given by Eq. (12).
In most practical cases, we are also interested

in the far-field angular distribution of the output

III. RESULTS OF NUMERICAL CALCULATIONS

In this section we shall. present numerical cal-
culations of far-infrared generation by difference-
frequency mixing using the equations given in the
previous section. We choose somewhat arbitrarily
the following values for the characteristic parame-
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ters of the nonlinear crystal: n, =2, n(~) =4, and
&"' = 1.87 ~10 ' esu. The two nearly overlapped
pump beams, one ordinary and one extraordinary,
are assumed to have the same focal spot in the
crystal with both beams always along the normal
to the slab. The question we propose to answer
is how various quantities such as phase mismatch,
focusing, beam walkoff, and absorption affect the
far-infrared output at different frequencies.

A. Far-infrared generation in the absence of absorption and

optical walkoff

We assume in this case that the optical axis of
the crystal is in the plane of the slab along x.
The two pump beams, one ordinary and one extra-
ordinary, propagate along the normal to the slab
z with essentially no walkoff, the nonlinear polari-
zation P~~ is along y, and the common focal spot
of the two pump beams is at the center of the slab.
We also assume that the extraordinary refractive
index n, of the pump beam can be varied by ex-
ternal means such as temperature in order to ad-
just the amount of phase mismatch in DFG and
that only the ordinary far-infrared waves in the
forward direction can be nearly phase matched.
Since the phase mismatch is different for different
Fourier components E(kr, &u) of the far-infrared
output, we define an axial phase mismatch M,
=k, (&,) -k, (u&, ) —k, (e) to describe the overall
phase-matching condition.

Figure 3 shows the far-field angular distribution
of the far-infrared output d(P (8)/dQ vs 8, at 100
cm ' calculated from Eq. (17). In the calculation
the slab has a thickness of 1 cm, the focal spot

size is so=25 p. m, and the axial phase mismatch
corresponds to 4k, = —5.1 cm '. Since the far-in-
frared output is approximately symmetric about
z [i.e., nearly independent of the azimuth angle

g =tan ' (k,/0„)], Fig. 3 actually shows a distribu-
tion in the form of a hollow cone. The radiation
peaks at the angle

0„=sin '(n', (ur) —[n, (~)+ah.c/(u]'j'~'

at which phase matching

hk, =k, —k, —k„(~)=0

occurs. The secondary maxima of the phase-
matching curve can also be seen. They become
more pronounced for shorter far-infrared wave-
lengths as the effect of diffraction. becomes less
important. From the expression of 0, it is seen
that if b, k, =0, then 0 =0 and the far-infrared d
output appears as a narrow solid cone along the
z axis. If 4k, &0, then there is no solution for
0 and the far-infrared output is strongly sup-
pressed by phase mismatch; the angular distribu-
tion may show a weak central peak at 0=0 and some
secondary maxima at finite 0. For negative hk„
the phase-matched peak shifts to larger 0 until
0 = &m; then because of total reflection at the
surface, the far-infrared radiation in the phase-
matched direction can. no longer get out of the
slab and the output peak at 0 = &m drops quickly.

The total far-infrared power output 6' vs 4k,
is shown in Fig. 4 with the same set of parameters
used for Fig. 3. The curve has a maximum around
~k, = —5.1 cm ' corresponding to the full develop-
ment of the hollow phase-matched cone in Fig. 3.
The steep rise of the curve at ~k, —0 cm ' is due
to the initial appearance of the phase-matched

th
~ 0.8—
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0.2—
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0 I I IAL I
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FIG. 3. Angular distribution of far-infrared power
output at ~= 100 cm ~ with the axial phase mismatch at
its optimum value && —5.1 cm" ~, a near optimum fo-
cal spot radius ~= 25 pm, a zero walkoff angle 4 =0, and
a crystal length l =1 cm.

ak a
a

FIG. 4. Far-infrared power output at =100 cm ~ as
a function of &&,l, assuming +=0, 4=0, ~=25@m, and
L =1 cm.
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output, more negative. This latter effect is quite
pronounced for & =100 cm ' as shown in Fig. 12.

IV, COMPARISON WITH OTHER MODELS AND WITH

CALCULATIONS OF SECOND-HARMONIC GENERATION

%e now compare the results of our detailed cal-
culations with those obtained from two simple
models for the case where the optical walk-off
effect is negligible. One is the Gaussian distribu-
tion (GD) model in which we assume a Gaussian
profile for the nonlinear polarization at the dif-
ference frequency,

P (2) (r f) (X(2) . g hw)

&& exp[- 2 (x'+y')/m'+ i (k, —k, )z —i u&t]

cylindrical pencil of rays with a single wave vec-
tor.

From the GD model, we obtain for the lossless
case a total output power at co of

7T (d
(pGD(~) ~g(2) . g gg~2f2

C

dk (k /k„)(T(k )),C(&k,)e " 'r~',

where (T(kr)) is the far-infrared transmission
factor averaged over the azimuthal angle P with

multiple reflections at the slab boundaries taken
into account, and C(ak, ) describes the effect of
phase mismatch. They are given by

in the crystal slab where the pump fields are given
by

E,.(r, i) = 8,. exp[ —(x' y+')/~'+ik, .z —iv),.t], j = 1, 2 .

This is an extension of an earlier model used by
Zernike and Herman" and Faries et a/. ' which as-
sumes a uniform amplitude for P"'(r, f) throughout
a cylinder with a finite radius. The other simple
model is the usual plane wave model in which we

assume that the geometric ray approximation is
valid and that each beam can be described by a

(20)
C (ak, ) = sin'(&k, l/2)/(ak, l/2)',

with

hk, =n, co/c+ 6k, —k„and 4k, =k, —k, n, &o/c. —

The output powers at 100 and 10 cm 'calculated
from Eq. (19) as a function of w are shown in Figs.
13 and 14, respectively, in comparison with the
results of Eg. (16) from our more exact calcula-
tions. At 100 cm ', the only perceptible difference
between the two curves occurs at small beam
sizes and amounts to 6/g at w =13 p, m. At 10 cm ",

10

)
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E
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I t I

20 40 60 80
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FIG. 11. +(0.')/6'(+=0) vs & showing the reduction of
output power due to far-infrared absorption. For each
point on the curves for co = 10 and 100 cm, w = 25
pm, an optimum value of &k~, and an optimum location
of the focal plane were used in the calculation. A cor-
responding curve calculated from the plane-wave model
is also shown for comparison.

I I (

20 40 60 80

Abso)"ption coefficient (cm )

100

FIG. 12. Optimums values of &k,l vs the absorption
coefficient + for the case of Fig. 11 with ~=100 cm ~

where &k, is the axial phase mismatch.
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the two curves are virtually indistinguishable.
Thus the GD model appears to be a very satisfac-
tory approximation.

The output power from the plane-wave model
without boundary conditions is given by

1.0—
(Il

~4
C

0.9—

W 47ZU
(p PIP(~) ~)((2) . g Eg ~2I2(T(0))

C'Pl o
(21)

S-

0.8—

The result calculated from Eq. (21) is also shown
in Fig. 13. It is 20/o higher tha, n the correct value
at sv =0.02 cm. The deviation becomes much worse
at smaller zo and diverges as zv approaches zero.
This shows that the plane-wave model gives unac-
ceptable results at small m because of its diffrac-
tionless approximation. With diffraction, the total
far-infrared output power is decreased by total re-
flection of those Fourier components with large
kr and by phase mismatch [described by C(hk, ) in
Eq. (19)] for other Fourier components.

The plane-wave calculation is, however, simple
and does not require numerical integration. It is
therefore preferred when one wants to crudely
estimate the output power. We can make the esti-
mate more exact by multiplying the calculated re-
sult by a correction factor. Comparison of Eqs.

1.4

1.2-

—Present calculation

0.6--
0 1 2

Focal spot radius (10 cm)

FIG. 14. Comparison of tl e results of the Gaussian
distribution model and our present calculation for
co=10 cm ~, +=0, 3 =0, and l =1 em.

(19) and (21) shows that this correction factor is
given by

(41 /C

dk, —r ( T( k)r)~ C(h k) e "r~4.
Og

(22)

We approximate (T(kr)) C(h k)/k„ in the integra, l
by (T(0))~/k, for kr&k~ and by 0 for" kr &k~
where k„, is defined as k„=[2~k,(n, ur/c —~k, /2]'(2
with b, k, being the smaller of the two quantities
2IT/l and [n, —(n', —I)'('](d/c. Physically, at
kr= k~, d(p/dQ either has dropped to half of its
peak value or has been cut off by total reflection.
The correction factor then becomes

e-A~W /4

Eh

~ y

s 0.8-
lg

0.6-
Pre

0.4-

0.2
0

I I I

1

Focal spot radius (10 cm)

2

FIG. 13. Comparison of the results of the Gaussian
distribution model, the plane-wave model, and our pre-
sent calculation for ~=100 cm ~, o.=0, K=0, and/=1
cm.

The output power calculated from I'6' using
Eqs. (21) and (23) is within 20% of the correct val-
ue.

%e now discuss similarities and differences be-
tween difference-frequency generation (DGF) and
second-harmonic generation (SHG). In both cases,
each pump field E,. with finite beam radius has a
distribution of Fourier components with wave vec-,
tors spreading effectively over an angle 2&, The
output of DFG or SHG from a nonlinear slab is
significant only when part of these significant
Fourier components within the angular spread 2&,.

can satisfy the axial phase-matching condition
hk, =0. As shown in Fig. 15, this happens for
SHG only if Ak, =—2k((d, ) —k(2(d, ) ~ 0 and akz~
= 2k((d, ) (1 —cos5, ) ~ hk, , and for DFG only if b, k~

-=k, —k, —k((d) —0 and akDs-=k((u)(1 —cosh) ~ —akD,
where 2~ is the angular spread of the significant
far-infrared Fourier components which can get out
of the crystal slab. We emphasize that for an ef-
ficient nonlinear interaction we must have
4k ~0 for SHG and 4k ~0 for DFG.
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The quantity 4k+ in SHG or SAR in DFG governs
the qualitative behavior of the phase-matching
curve 6' vs ~k, . As we mentioned before, the
output is most efficient when hk~ (or -b, k~) falls
in the range between 0 and 4k+~ (or 4k(). There-
fore if ak~)(or hkgl)»2m, then the phase-match-
ing curve has a broad peak; it rises sharply to the
peak around 6k~ (or b, kD) =0, then slopes down-
ward as Dk~ (or akD) increases from 0 to =4k)
(or akaD), and finally in the case of DFG falls
rapidly at a certain ~ka value because of the cutoff
due to total reflection at the boundaries. Examples
are shown in Fig. 4 for DFG with ~k~~l = 80.and in
Fig. 16 for SHG with ~k~l =100." Such a phase-
matching curve is characteristic of SHG with
strong focusing of the pump beam. In DFG it oc-
curs when the pump beams are more weakly
focused because of large far-infrared diffraction.
When Dkz~l (or Eked) ~ 2m the range of b k, (or
b kD) for efficient output is much narrower, and
the phase-matching curve now shows a central
peak and secondary maxima and minima, resembl-
ing the well-known plane-wave phase-matching
curve described by sin'(&kl/2)/(&kl/2)'. Exam-
ples are shown in Fig. 5 for DFG at 100 cm ' with
~k~l =4, in Fig. 9 for DFG at 10 cm with b, kR/
= 8, and in Fig. 17 for SHG with ~k~l = 5.68. All
these curves are, however, slightly asymmetric
with a small shoulder on one side. This is because
for b k~i&0 (or b, kD &0), the phase-matching con-
dition 4k, = 0 is not satisfied for any of the Fourier
components.

There are several minor differences between the
SHG and DFG phase-matching functions. For
b kz~l (or hkgl)» 2m, the phase-matching curve
for DFG, as shown in Fig. 4, has a sharp drop
around the value of 4k~ where significant Fourier
components of the far-infrared output begin to be
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sk x
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FIG. 16. Second-harmonic power output as a function
of ~kl when 4k&L =100. I. After Boyd and Kleinman,
J. Appl. Phys. 39, 3597 (1968)].

totally reflected at the boundaries. In SHG, how-
ever, total reflection is never important and
therefore as shown in Fig. 16, no sudden drop of
the output power occurs as 4k, increases. Be-
cause of the weaker diffraction effect, the phase-
matching curve for SHG has, in general, more
pronounced fine structure than that for DFG.

V. CONCLUSION

We have developed here the theory of far-in-
frared generation by optical mixing in a nonlinear
medium, using an extension of a formalism de-
veloped earlier for second-harmonic generation
by focused laser beams. The theory takes into
account the effects of focusing, diffraction, and
double refraction of the pumped beams and the ef-
fects of diffraction, absorption, and reflections
at the boundaries of the far-infrared output beam.
Numerical calculations showing these effects are
presented. Both the total power output and its
angular distribution are calculated.

We have found that focusing of the pump beams

k
2

(a}

1.0

ak =5.68
S
R

0.8—
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-80 -60 -40 -20 0 20 40 60 80
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FIG. 15. Phase-matched wave-vector diagrams for (a)
second-harmonic generation and (b) difference-frequency
generation.

FIG. 17. Second-harmonic power output as a function
of &k~l when Akzl =5.68. (After Boyd and Kleinman
op.cit .)
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can greatly enhance the far-infrared output. In a
crystal of 1 cm length, the optimum focal spot ra-
dius is roughly equal to or smaller than the far-in-
frared wavelength for output frequencies less than
100 cm '. The walkoff effect of the pump beams in
birefringent crystals does not reduce the output by
more than a factor of 2. Far-infrared absorption
and boundary reflections are, however, extremely
important. The former is often the factor which
limits the output power.

We show that the usual plane-wave model which
neglects the effects of far-infrared diffraction and
boundary reflections does not give a correct de-
scription of the far-infrared output, especially for
tightly focused pump beams. A simple model
treating the nonlinear polallzatlon as a coQstaQt-
1/e-radius Gaussian distribution of radiating di-
poles is, however, a good approximation to the
real picture. We also compare our results with
those of second-harmonic generation and notice a
great deal of similarities. Most of the differences
can be ascribed to the boundary effects, including
total reflection, which are more important in the
case of far-infrared generation.
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=so „is essentially the same as the one given in
Appendix I of Ref. 31, but there the factors in the
square brackets in the definition of ),„and P,,
were approximated by 1.

The nonlinear polarization P"'(r, ~) is obtained
from Eq. (2) using the expressions of E, in Eq.
(1) and E, in Eq. (A1). The transverse Fourier
transform of P"'(r, ~) gives P"'(kr, z). To ob-
tain the expression of P"'(kr, z) in Eq. (3), we
made the following simplifying assumptions.
First, we assumed u, =n), =sr. Second, we as-
sumed a common focus for the two beams, zo
=z»„=z», =z, . Finally, we assumed g, —g,„
= $, —$„=0. This last assumption is reasonable
as long as 3[),—$,„~,3~$, —g,, (

«v/2. In our
ca.lculations, the largest value of 3~$, —$,„~ or
3~ $, —$„~ is 1 for the case of & =10 cm ', w

=25 p, m and g= —0.02. For all the other cases,
3~ g, —&,„[ or 3($, —g,, ~

is much smaller than 1.

APPENDIX 8

To derive Eq. (6), we first Fourier tra, nsform
Eq. (4) and obtain

[kk O' I+ ~'7/c'] E(k) = 4m(~'/c')P"'(k),
(Bl)

k 7 E(k)= 4mk P"'(k).
The particular solution of Eq. (Bl) can be written
in the form

E'(k) =S(k) P"'(k).
From the inverse transform on k„we then have

dz'e*'""-"'S(k).P"'(k„z') .

APPENDIX A

The extraordinary ray assumed in Sec. IIA
actually has the form

where

(Al)

A straightforward, but tedious, application of the
residue theorem finally leads to Eq. (6).

We also notice that Eqs. (6) a.nd (7) are not the
results of slowly varying envelope approximation.
This is in fact generally true for the solution of
optical mixing in the parametric approximation.
For example, consider the simple case where the
nonlinear process can be described by the wave
equation

(s'/sz2+a', )Z(z) = 4~ (~'/c')P""(z),

]~ = (z, ,„z,„) '/(n-k, w,','n, (n,'+n', ,)},
g,„=2 (z —z...„)[n.'/4+.~.'n,'„,,n'„,H,

(„=2(z -z, „)[n',/(a, n', n', ,)],
with e, being a unit vector parallel to the electric
field of the e ray for a normally incident laser
beam and the remaining parameters are as de-
fined for Eq. (1). This expression with zo, ,„

P""(e')0" ""'da') (S4)

No slowly varying envelope approximation was

where P""(z)& 0 only if 0~ z «I . Then, in the re-
gion O~z~l, the solution of the equation is

2'
@( ) P L( Nt) Nz(eg0)dgz I

»0
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made in the derivation. In fact, one can easily
show that with the complete expression of E(z) in
Eq. (B4), the terms &' E(z)

~

/Bz' and 2k, e ~E(z) j/az
are generally comparable in magnitude. The usual

slowly varying envelope approximation is actually
equivalent to neglecting waves propagating in the
opposite direction.
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