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The mapping of operator equations into C-number differential form by means of the atomic coherent-state
representation leads to mathematical difficulties that have no counterpart in the case of the Glauber-
Sudarshan representation for Bose systems. We give sufficient conditions for the solutions of C-number
equations in the atomic coherent-state representation to be physically meaningful.

I. INTRODUCTION

I

The mapping of Bose operator equations into C-
number differential form using the Glauber-
Sudarshan representation' has been used exten-
sively in the past." Recently, similar mapping
techniques based on the atomic 'coherent state
representation' have been developed and applied
to the Markoffian superradiance master equation'
and to the non-Markoffian superfluorescence equa-
tion. ' The resulting C-number differentia1 equa-
tions describe the evolution of quasi-probability
functions corresponding to collective atomic oper-
ators.

There are special mathematical difficulties that
arise with the atomic coherent state representa-
tion which Iiave no counterpart in the case of the
Glauber-Sudarshan representation. This differ-
ence stems from the lack of uniqueness of the C-
number functions associated to given operators in
the atomic coherent state representation.

Before stating the problem, we need to discuss
the procedure for constructing C -number differ-
ential equations from given operator equations.
For definiteness, we consider a linear equation

n A(n) (s/st)P(n, t) = dn P(n, f) V(A(n)),

A (n) =- in) (ni . (1.4)

The operator functional F(A(n)) can be mapped
into a differential form acting on the angular vari-
ables of the projector A(n). ' After the appropri-
ate integration by parts, Eq. (1.4) can be cast into
the form

where in) is the coherent atomic state of fixed
angular momentum j. As shown in Ref. 4, the
function P(n, t) is not uniquely defined by Eq. (1.2).
In fact, if P, (n, t) satisfies Eq (1.2)., the addition
to P, (n, t) of any convergent linear combination of
spherical harmonics I', (n) with I &2j leads to a
new distribution function P, (n, I) which satisfies
Eq. (1.2) as well. In order to define P(n, t)
uniquely, it is common to prescribe that it be given
by a linear combination of only the first (2j +1)'
spherical harmonics

29

P(n t)=Z Z c.(f)I' (~, q) . (1.3)
l=o m=-1

If we now substitute Eq. (1.2) into Eq. (1.1), we ob-
tain

dnA(n)(sP/st —gP) +S =O, (1.5)

w(f) = dn in) &nip(n, t),
dQ =sin8d8dy

(1.2)

for the density operator W, and assume that 8' is
defined over the Hilbert space of the angular mo-
mentum spanned by the basis vectors i j, m) with
a fixed value of j. Following Arecchi et al. ,

' we
define a, real valued C-number function P(n, f)
from the integra1 representation

where 2 is a differential operator on the variables
0 and q of the Bloch sphere and 8 stands for the
surface terms.

Narducci et at. ' have demonstrated that under
reasonable conditions the surface terms originat-
ing from the Markoffian superradiance master
equation vanish identically. On the other hand,
Gronchi and Lugiato' resorted to physical argu-
ments in order to discard the surface terms from
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their equations.
It is interesting, therefore, to establish the

mathematical conditions for the vanishing of the
surface terms. The first aim of our paper is to
prove that the condition (1.3) guarantees that the
surface terms vanish identically. The operator
equation (1.1) is now equivalent to

W(t) = Q C„A„W(t)B„, (2 1)

where A.„and 8 are arbitrary products of angular
momentum operators. From the integral repre-
sentation (1.2) one easily arrives at

n A(n) —= P c„. an p(n, t)
BP

n, m

QA(0)(sP/st -SP) =0 . (1.6) xg) (+„)gP(B )A(Q)

Until now, it has been tacitly assumed" that one
could obtain P(0, t) .by solving the differential
equation

BP——ZP=O .
Bt

(1.7)

In reality, Eq. (1.6) does not imply that the func-
tion BP/st —ZP is equal to zero, but rather that it
is a linear combination of spherical harmonic
functions Y', (0) with I & 2j. This is a, consequence
of the results discussed in Appendix D of Ref. 4.
[See, in particular, Eq. (D.22).] Indeed, an ex-
ample of P function that satisfies Eqs. (1.3) and
(1.6), but not Eq. (1.7) is not hard to find, as we
show in the main text.

Still, equations of the type (1.6) have been solved
until now by looking for a solution P(0, t) such that

(2.2)

where S and &" are the appropriate differential
operators acting on the angular variables of the
atomic coherent-state projector A(0). In the
physically interesting cases, equations of the type
(2.1) involve, at most, bilinear combinations of
angular momentum operators. %e direct our at-
tention to this case in order to limit the amount of
algebraic manipulations. Our immediate goal is to
integrate the right-hand side of Eq. (2.2) by parts
and to study the conditions under which the surface.
terms vanish identically.

To this purpose, consider first the typical oper-
ator combination AW(t), where A stands for J'„
J', or J . Following the rules developers in Ref.
(7) we can write

—-SP=O .BP
Bt

(1.8)
ww(t) = an P(n, t)m'(w)A(n)

dn A(0)f) (A) [P(0, t)] +8 (2.3)
Since, in general, P is not equal to P, we raise
the question: Is it possible to claim that P(0, t),
solution of Eq. (1.8), is physically equivalent to
P(0, t)'? Or, more precisely, can we prove under
reasonable assumptions that

Explicit expressions for the f)~ operators are
given in Sec. VI of Ref. (7). An elementary calcu-
lation shows that the surface terms vanish if the
function P(0, t) is single valued, and if the condi-
tion

0 A(0)P(0, t) = dn A(0)P(0, t) ? (1.9) lim sin8P(0, t) =0
6 O, 7t'

(2.4)

Our paper is addressed to the two related prob-
lems: (1) the vanishing of the surface terms in
Eq. (1.5), and (2) the proof of Eq. (1.9) under ap-
propriate conditions.

In Sec. II we discuss a sufficient condition for
the vanishing of the surface terms. In Sec. III we
present a simple example in which the density
functions P(0, t) and P(0, t) are manifestly differ-
ent from one another. The proof of Eq. (1.9) and
the conditions for its validity are given in Sec. IV.

II. QUESTION OF THE SURFACE TERMS

The mapping of operator equations such as Eq.
(1.1) into the general integral form of Eq. (1.5) is
best accomplished by the simple rules developed
in Ref. (7). For definiteness, we consider a class
of equations of the form

is satisfied. Consider now the bilinear combina-
tion ABW(t). Proceeding as indicated above we
find

A.BW(t) =w dn p(n, t)u'(B)A(0)

dn A(0)&'(B)[P(0, t)] . (2.5)

In Eq. (2.5) we have integrated by parts, and as-
sumed that P(0, t) is single valued in y and that it
satisfies Eq. (2.4). Proceeding further, we find

ABW(t) = dn Sz(A) [A(0)]P'(0, t)

d 0 A(0)& (4) [P'(0, t)] +8, (2.6)

where P'(0, t) =&~(B)P(0,t). A detailed analysis
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sP{n, t) . 8P(n, t)lim sin8 ' a i
e~o, m 8(p

(2."l)

It is shown below that as long as Eq (1.3.) holds,
the surface terms associated to Eq. (2.6) and all
other similar expressions derived from bilinear
combinations of angular momentum operators will
vanish. From Eq. (1.3) it follows that

2)
( ' ) =i g g C (t)mP (8)e'"~

l =0 m=-J
(2 8)

aP—goo
88

(2.9)

Since the associated Legendre functions P, ,
mao, contain a factor (sin8)~ ~, it is obvious that
Eq. (2.7) is satisfied. It may be remarked that,
under the assumption (1.3), all the surface terms
discussed in Ref. 6 are identically zero.

In conclusion, we can state that all the physical-
ly interesting operator equations that have been
studied thus far can be mapped into the integral
form

Q A (Q) (BP/st —ZP) = 0

of the surface terms that originate from every bi-
linear combination of angular momentum opera-
tors reveals that single valuedness in the variable
&p and the condition (2.4) are no longer sufficient
to insure that the surface terms will vanish iden-
tically. This situation is a consequence of the fact
that &~(B) may involve trigonometric functions
such as tan 28 or cot28 which diverge at m and 0,
respectively. Appendix A contains a detailed sam-
ple calculation that illustrates the point. Here we
state that the surface terms will vanish if P(n, t)
is single valued and if

We have also indicated that the function P(n, t),
solution of the differential equation

'P(n " -zp(n, t) =o
Bt

(3.3)

W(p) =exp(peJ, ), p = I/kT . (3.5)

For the present calculation it is convenient to re-
gard W(P) as the solution of the Bloch equation

BW = —g tff, W},=—,e (J',W+ WZ, ) (3.6)

We define the density function P(Q, P), satisfying
Eq. (1.3), by the integral representation

w(p) = dn A(n)p(n, p),
and construct an integral equation of the type (3.1)
following the procedure described in Ref. 7, Sec.
VI. The result is

&P & . BP
d Q A (Q) + —sin8 + —cos8P =0,sp' 2 88 2

(3.7)
O'=i3e .

is not, in general, a finite linear combination of
spherical harmonics. [Yhe new symbol P empha-
sizes that usually P(n, t) is not equal to P(n, t) ].

This observation will be supported by a simple
example. The more general issue of the physical
relation between P(n, t) and P(n, t) will be dis-
cussed in detail in the next section.

Consider the model Hamiltonian

(3 4)

for a two-level system (j =-, ), and assume thermal
equilibrium between the system and a reservoir
at a temperature T. The (unnormalized) canonical
density operator W(P) is given by

if the density function P(n, t) satisfies the condi-
tion (1.3), or more generally if P(n, t) is a finite
linear combination of spherical harmonics.

III. PHYSICALLY EQUIVALENT P FUNCTIONS

As the next step, we consider the associated
partial differential equation

BP & . BP 3
+ —sinO —= ——cosoP,

Bp' 2 88 2

subject to the initial conditon

(3.8)

It was remarked in the Introduction and shown
in the previous section that if P(n, t) is a finite
linear combination of spherical harmonics, the
integral equation

P(n, p'=0) =I/2w (3 9)

The solution of Eq. (3.8) can be obtained by appli-
cation of the method of characteristics. The re-
sult is

dnil(n)(sP/st -ZP) =O (3.1) P(n, P') = (1/2w)[cosh( —,'P') +sinh(2P') cos8] ' .

W(t) = dnA(n)P(n, t) (3.2)

is equivalent to the operator equation W=6:(W).
The operator 8'and the corresponding P function
are related to one another by the representation

(3.10)

It is obvious by inspection that even for j =2,
P(n, P') is not a finite linear combination of spher
ical harmonics. Still, we claim that P(Q, P') pro-
vides a representation of the density operator
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(3.5) in the sense that

W(P') = dnA(n)P(Q, P') . (3.11)

This can be checked by direct comparison of the
matrix elements of the left- and right-hand sides
of Eq. (3.11) in the angular momentum represen-
tation.

The simple structure of the density operator
(3.5) enables us to evaluate the density function
P(n, P') directly using the inversion formula de-
veloped in Sec. VII of Ref. (7). The inversion pro-
cess requires the preliminary calculation of the
function Q(n) = (Q

~
W(P') ~n) and its expansion in

terms of spherical harmonics
2S

Q(Q, P')=Q Q ai (t'i) IP(n) (312)
l=o m=-l

In our case the task is especially simple since

e(n, tl') = &Ql" "I»

IV. EQUIVALENCE OF THE DISTRIBUTION FUNCTIONS
P(Q, t) ANDP (Q, t): MATHEMATICAL CONDITIONS

The discussion of the previous section makes it
plausible that the solution P(n, t) of the C-number
differential equation

(a/at -Z)P(n, t) =O (4.1)

A final remark of interest concerns the question
of positive definiteness. It is readily seen that
P(Q, P ) [Eq. (3.10)] is positive definite for all val-
ues of p' and 8. By contrast, P(Q, p') [Eq. (3.17)]
is not positive definite at least for sufficiently low
temperatures (large P') such that

3 tanh(&P') cos8 &1

Hence, we have produced a simple physical ex-
ample of the lack of positive definiteness that
characterizes the quasi-probability distributions
associated to the overcomplete set of coherent
atomic states.

= cosh(~P') —sinh(-,'P') cos8

The expansion coefficients are given by

q, , = (4m)'~' cosh( —,'P'),
q, , = -(4v/3) '~' sinh( —,

'
P ')

a...=a'.. .=0 .

(3.13)

(3.14)

should be physically equivalent to the density func-
tion P(n, t), at least if appropriate conditions are
satisfied. It is also clear that, in general, P(n, t)
and P(n, t) have different functional forms. In this
section we establish sufficient conditions under
which the equality

The P function is given by the finite sum QP(n, t)A(n) = dnP(n, t)A(n) (4.2)

P(n, t!') = g g ~.(S')(~.'.)-'1;(Q)
l=o m=. -l

(3.15)

(2j+I +1)!(2j —I)! (3.16)

After setting j =& and using the coefficients p,
given by Eq. (3.14), the result follows

P(n, P') = (1/2v) [cosh(~P') -3 sinh(2P') cos8]

(3.17)

Clearly P(n, P') has quite a. different functional
form from P(Q, P'). It is elementary to verify the
validity of the integral representation for W(P'),
again by direct calculation of the operator matrix
elements.

Thus, we have derived two physically equivalent
C-number representations for the same density
operator. It is interesting to point out that while

holds. For definiteness, we label Eq. (4.2) as the
condition for physical equivalence of P(n, t) and
p(n, t).

It is convenient to modify our notations in order
to stress the dependence of the various quantities
on the parameter j. Thus, in the Hilbert space of
total angular momentum j, let Wci (t) be the den-
sity operator, solution of Eq. (1.1) for a given
initial condition W!tl(0), and Ai~~(Q) the diagonal
coherent atomic-state projector. %e define the
density function Pi~l(n, t) from the integral repre-
sentation

Wi'&(t) = d n A&'i(n)P!'~(Q, t) (4 3)

2' l
P" (n, t) = g C,' (t)Y'", (Q) .

=0 m=-l
(4.4)

and require that Pt '~ be expressed as linear super-
position of the first (2j +1)' spherical harmonics

BI' 1 . BI' 3—;+ —sine —. + —cos8P 0ap' 2 a8 2
(3.18)

' Finally, we define Pi~i(n, t) as the solution of the
C-number differential equation

for P(Q, P') given by Eq. (3.17), the integral equa-
tion (3.7) is instead identically satisfied, as it
must be.

(a/at -z&")P&'&(n, t) =o (4 5)

subject to the initial condition P i(n, 0) =f (Q), such
that
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wt' (0) = dnf(n)«' (n) . (4.6)

(YP, P &&)—= dn Y", (Q)P (Q, t)

It is important that we stress the following feature
of Eq. (4.5): The differential operator d' depends
analytically on the parameter j. Consequently,
the function Pt& (n, t) and the scalar products

(Ym q(j)) (4.12)

are analytic functions of j for all l and m. (In
particular, these scalar products are identically
zero for l & 2j.) On the other hand, for l ~ 2j we
have

obeys a suitable linear time-evolution equation.
Since the generator of this equation depends ana-
lytically on the parameter j, the scalar products

(l, n& arbitrary) (4.7) c",.'(t) =(Y, , Q ')(ll,',)-', (4.13)

will also be analytic functions of j.
Our main objective is to identify the conditions

under which Eq. (4.2) holds. We do this in a few
steps.

(a) We observe that Eqs. (4.3) and (4.4) will in-
sure the validity of the integral relation

n A&'&(n) (a/a t —d'&)P&'&(Q, t) = 0

n A" (&n)(a/at-6'&)P&'&(n, t) =O . (4.9)

since, as we have shown, the surface terms van-
ish if Eq. (4.4) is satisfied. Consider now an ar-
bitrary function P,'& (Q, t) (with s & 2j) defined as

Pt~ (Q, t) =P'~ (n, t) + Q C(~„(t)Y P(n) .
t=2 +1 fit= l

(4.8)

Since P,&& and P ' differ only by a finite linear
combination of spherical harmonics with /&2j,
I'~~~ will also satisfy the integral relation

where A,', is given by Eq. (3.16). The function
Ci, '&(t) given by Eq. (4.13) is the required analytic
function of j.

(c) Next, we assume the existence of the limits

and

lim P,& (Q, t) —=Pt' (Q, t)
S

(4.14)

(a/at —Z'~')P" (n, t) =0 (4.16)

Equation (4.16) shows that the function P '& (Q, t),
constructed as indicated above, is solution of the
C-number differential equation.

Proof. First, we show that for all l, m

1im (a/at —2 )p,' (Q, t) = (a/at —2 '
)p~' (n, t) .

S ~ot&

(4.15)

Equations (4.14) and (4.15), together with the rea-
sonable requirement that Pi& (Q, t) depends ana-
lytically on j represent sufficient conditions for the
validity of the identity

It follows from Eq. (4.9) that

(Y&, (a/at —I' J )P,~) =0, for l ~ 2j, (4.10)

(Y, , (a/at —g"&)P"&(Q, t)) =0 .
From Eq. (4.15) we have

(4.1 t)

since (a/at —I' ~ )P,' (Q, t) is a linear combination
of spherical harmonics Y, with l & 2j.

(b) We fix the coefficients in Eq. (4.8) as follows.
For a given value of l consider the set of numbers
CI (t), with j™—,l, defined by Eq. (4.4), i.e. ,

CP„'(t) = (Y,",P"&), (4.11)

Let us assume that the collection of numbers
CI& &(t) with l, n&, , and t fixed can be interpolated
by an analytic function of j' such that the isolated
points j' = ,n (n inte—ger& 0) and n&l belong to the
domain of analyticity of the function. The value of
this function for j' =j defines the coefficients
Ci, „&(t) in Eq. (4.8). The analytic function inter-
polating the values (4.11) can be constructed ex-
plicitly following the inversion procedure dis-
cussed in Sec. VII of Ref. V. More precisely, in
Ref. 7 it is shown that

Q (Q, t) = Tr[A ' (Q)Wt' (t)]

(Y.„(a/at —zi'&)Pi»(n, t))

=lim(Y', , (a/at -2 )P,' (n, t)) . (4.18)

Furthermore, from Eq. (4.10) we have

(Y", , (a/at -z&'&)P&'&(n,lt)) =0, l (4.19)

and consequently [Eq. (4.18)]

(Y", , (a/at —2 )P (Q, t)) =0, l ~ 2j . (4.20)

Consider, now, the case l & 2j. Given an arbitrary
value j' with 2j'& l, Eq. (4.20) insures that

(Yp, (a/at —g ' )P (Q, t))=0,
l &2j j&& pl . (4.21)

On the other hand, the expression
(Yp, (a/at —d& )P & (n, t) is given by the analytic
continuation of the function of
j'(Yp, (a/at —2&& &)Pi& &) evaluated at j'= j.

Therefore, aside from unusual situations which
are certainly excluded, for example, if the ana-



MAPPING OF OPERATOR EQUATIONS INTO C-NUMBER. . .

lytic functions in question satisfy Garison's theo-
rem, ' Eq. (4.21) implies

flIld

(I'", , (s/st —2&'&)P&'&(Q, t))=O, I &2j . (4.22)
8+O' W= J'+ d Q P(Q, t)$ (j+) [A (Q)] (A1)

In summary, Eqs. (4.19) and (4.22) imply the va-
lidity of Eq. (4.17), which in turn implies Eq.
(4.16).

(d) By construction, the function P"&(Q, t) satis-
fies the equality

where the square brackets indicate that the differ-
ential operator 5& (Z') acts on the angular vari-
ables of the projector A(Q). After a first integra-
tion by parts and the replacement of the operator
J' by the appropriate differential form, we find

QP '&(Q, t)A (Q) = dQP~ (Q, t)Ai (Q) J'J'W= d Q Sz (J')[A (Q)]P'(Q, t), (A2)

On the other hand, since

P&'&(Q, o) =f(Q),

(4.23)

(4.24)

where P'(Q, t) =K) (J+)[P(Q, t)]. A second integra-
tion by parts leads to the final result

Z"g'W= d Q 3&'(Z' )3&'(Z')[P(Q, t)] A(Q) +6,
we obtain from Eqs. (4.5), (4.6), and (4.16) that
the following equality is satisfied (A3)

P~'&(Q, t) =P~'&(Q, f) . (4.25)
where the surface terms (8) are given by

In conclusion, Eqs. (4.23) and (4.25) show that the
conditions (4.14) and (4.15) are sufficient to guar-
antee the validity of Eq. (4.2).

A final remark is in order concerning the ana-
lytic function that interpolates the infinite sequence
of numbers CI~ &(t) corresponding to all values of

j . Such analytic function is not unique, since the
addition of a term such as, for example,
Ksin2mj', where K is an arbitrary constant, leads
to another interpolating function (sin2wj is zero
for integral or half-integral values of j'). It is
clear, however, that this fact does not introduce
any ambiguity in the definition of C~~ (f) for, 2j ~l.

APPENDIX

We consider the mapping of the operator J'J'W.
Following the procedure outlined in Sec. II, we

2'
dy sin8 cos'( ', 0)e~~—

xA(Q)5) {g')[P(Q, t)] +6',
8=o

where 8' consists of terms that are in fact identi-
cally zero because of the single-valuedness of
P{Q,t). After some elementary calculations, Eq.
(A4) can be reduced to the following expression:

(A5)

As shown in Sec. II, Eq. (A5) is identically zero
if P(Q, t) is a finite linear combination of spheri-
cal harmonies.
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