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Floquet's theorem and a corresponding perturbation theory are derived for Hamiltonians periodic in time. The
resulting theory is then applied to the interaction of stationary and moving, neutral two-level atomic or
molecular systems with monochromatic linearly and circularly polarized electromagnetic radiation.

I. INTRODUCTION

A. Origin and statement of the problem

A recently developed spectroscopic technique'
uses an optical field (&o= 10" rad/sec) to interact
with a group of slowly moving atoms whose velocity
components parallel to the direction of the field
are small. ReQecting on the limits of resolution
of this technique leads to considering the effect of
an applied field on the orbital motion of an atom. '
Of particular interest are the effects of (i) the res-
onant interaction of the field with the internal lev-
els of the atom on the evolution of the wave packet
describing the atomic center-of-mass motion and
(ii) the recoil effect associated with the absorption
or emission of a photon by the atom. ' An under-
standing of this problem would lead to additional
insight in a number of other areas: the theory of
gas lasers; frequency standards which use a
gaseous absorption cell as reference; such appli-
cations as discussed by Ashkin' "to separate, ve-
locity analyze or trap neutral atoms of specific
isotropic species or hyperfine level"; and in the
recently observed deflection of an atomic beam by
laser light. "

To study the problem mentioned above, it is
necessary to consider solutions of Schrodinger's
equation with a temporally periodic Hamiltonian.
The main purpose of this paper is to discuss
Floquet's theorem for general temporally periodic
Hamiltonians, derive a perturbation theory from
Floquet's theorem, and apply this theory to the
interaction of stationary and moving neutral two-
level atomic or molecular systems with mono-
chromatic linearly and circularly polarized elec-
tromagnetic radiation.

B. Background

Bloch and Siegert, ' in one of the earliest discus-
sions of the interaction of atoms with periodic
fields, considered the interaction of a stationary
spin-2 atom in a static magnetic field 80 with an
applied radio-frequency field 2B, cos(&ut) of small

intensity and which was aligned perpendicular to
B,. They concluded that increasing the oscillating
field strength causes a shift in the resonance fre-
quency from &u

= &a, to &u defined by z, =& —(yB,)'/
4&, where y=-&uJB, a,nd &u, is the Rabi frequency.
Magerie and Brossel' experimentally demonstrated
that a sufficient increase in field strength causes
multiple transitions, thus showing that the next
B', term in the series for the resonance frequency
eventually becomes signif icant. Further cwork
aimed directly at approximating the Bloch and
Siegert shift has been done by Ahmad and Bul-
lough and by S. Swain io

Shirley" took an approach to the Bloch and
Siegert problem which is close in spirit to the
general approach used in this paper. By means
of Floquet theory, he derived expressions for the
higher-order terms in the Bloch and Siegert shift.
He related the solution of a Schrodinger equation
with a temporally periodic Hamiltonian represented
by an infinite matrix. In this way, he determined
resonance transition probabilities including higher-
order frequency shifts as well as multiple quantum
transitions for the case of a stationary two-state
system excited by a strong oscillating field. Pegg
and Series" "obtained similar results by viewing
the atomic Hamiltonian from a reference frame in

. which it appeared to be nearly static, thus obtaining
a time-dependent Schrodinger equation in an ap-
proximately integrable form. Quantum transitions
and higher-order terms in the Bloch-Siegert shift
were described as transitions induced by field
harmonics in the appropriate frame. Other ap-
proaches to the problem of a time-dependent
Schrodinger equation have been developed, ""but
they will not be discussed here.

All of the methods mentioned above are powerful
in that they can be applied to a broad range of
time-dependent quantum-mechanical problems. A
common limitation is, however, that they do not
easily generalize to systems with Hamiltonians
which possess operators with continuous spec-
trums. A simple example occurs in the case of a
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slowly moving two-state atom in a z-directed
static magnetic field B, interacting with a plane
wave, classical field propagating in the z direction
with components aligned perpendicular to Bo. The
total Hamiltonian in this case is given by a 2&& 2

matrix, periodic in time, containing both position
and momentum operators. The methods which will
be introduced here are capable of dealing with such
cases.

C. Organization and summary

Let the total Hamiltonian for a system be of the
form H(t) =H, +H, (f), where H, denotes the unper-
turbed static Hamiltonian, H, (t) a temporally
periodic perturbation of H„and A. a coupling pa-
rameter. We will first consider what modification
of the finite-dimensional matrix version of Floquet
theory will be necessary to include cases in which
H, or H, (i) possess continuous or discrete or both
types of spectrums. A version of time-dependent
perturbation theory appropriate to this case will
be presented and discussed in Sec. II.

In Sec. OI, we consider the Bloch-Siegert prob-
lem. Using the versi'. on of Floquet theory developed
in Sec. II, we determine resonance transition
probabilities, the higher-order Bloch-Siegert
frequency shift, and also discuss multiple quantum
transitions from a mathematical point of view.

A generalization of the Bloch-Siegert problem
is presented early in Sec. IV. We allow the two-
state atom to move slowly through a certain pre-
scribed, classical standing wave. A transforma-
tion of the relevant Schrodinger equation then en-
ables us to relate the solution of this problem to
the solution of the corresponding "stationary-
atom" problem worked out in Sec. III. We note the
appearance of Doppler frequency shifts and recoil
terms due to the motion of the atom through the
standing wave. Our third example is concerned
with an exactly soluble model: a single two-state
neutral atom in a monochromatic, circularly
polarized plane wave of arbitrary intensity. We
study the coupling between the center of mass and
internal degrees of freedom from the Floquet point
of view.

II. FLOQUET'S THEOREM AND HAMILTONIANS

PERIODIC IN TIME

Floquet's theorem has become a well known and
much utilized tool of solid-state physics. Here it
has been used in connection with the spatial perio-
dicity of the effective potential for a single electron.
According to Floquet's theorem, the spatial peri-
odicity implies that the solutions of Schrodingers
equation for the electron wave function can be
chosen as the product of a spatially periodic func-

tion and an exponential function of position. These
so called Bloch waves have played a very import-
ant role in solid-state physics. However, in con-
nection with Hamiltonians periodic in time it ap-
pears that Floquet's theorem has seldom been ex-
ploited. ' ~" It is of course a rather simple math-
ematical point that Floquet's theorem applies to
systems periodic in time as well as in position.
But it is still reasonable to expect that new phys-
ical insights will emerge when time periodic Ham-
iltonians are considered from this point of view.

A. Elementary example

In order to motivate our later discussion con-
sider a stationary two-state dipole in a linearly
polarized, single frequency, classical field. The
Hamiltonian is

H(t) = —,'h (o,o, + —,'h ~, Ao„sin(ut, (2.1)

where &, denotes the transition frequency, ~ is
the applied field frequency, and A. is a coupling
parameter proportional to the amplitude of the
oscillating field. (More precisely, X is the ratio
of the Rabi frequency to &u, .) o„and o, are the
Pauli spin operators. Schrodinger's equation can
be written

NU(t) = ~8 m&0(o, + ho, sin&et)U(i), (2.2)

U„(i)= e' "i'U(i) . -
The transformed version of Eq. (2.3) reads

(2 4)

U~ + [—,i+,&uX a, cosset + —,
' u,'(1 + A.

' sin'&et)] U~ = 0 .

(2.6)

Let ~0) denote the state vector for the dipole at
i =0, ~s) (s =+1) denote the eigenvectors of o„and
g~(t, s) —= (s~U„(i)~0). The wave-function equivalent
of Eq. (2.5) is

lj~)s (f, S) + [28&do(dA S Cos ~i

+g4)0(1 +X sin (di)]ps(i, s) =0 . (2.6)

According to Floquet's theorem, Eq. (2.6) has so-
lutions of the form e""'Q', (A. , t), where Q', (X, i) are

where U is the time displacement operator for the
system. Differentiating this equation with respect
to time gives

ikU=( —,hu, eho, cos&t)U

+ 2h (u, (o, +Zo„sin(ut) U

Using Eq. (2.2) to eliminate U yields an operator
version of Hill's equation, viz. ,

U+ [,iu, e A, —cosa&to„+—,'&u,'(1+3.' sin'et)]U =0. (2.3)

Equation (2.3) can be put into diagonal form by
passing from U to U~ where
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periodic in time with period 2m/u& and g is time
independent. p. must be entirely real in order for
gs(t, s) to be normalizable for all time. The most
general solution to Eq. (2.6} is

gz(t, s) =a,e'"'Q', (A, t). +b,e '&'p, (a, t), (2.7)

where a, and b, are constants determined by the
initial conditions. Replacing t by tin-Eq. (2.6)
shows that e '~'g', (X, t) -is a. solution. This means
that P, (X, t) is proportional to P",(X, t) -As .a
consequence we need only to calculate one of these
functions.

Several methods have been developed to deter-
mine the Floquet constant u{X) and the periodic
functions P,'(A. , t)." We employ the standard ap-
proach of expanding g and Q', (A., t) into power
series in A, , i.e.,

g = p p, „A.", p', (A. , t) = p &p„(s, t)A.
"

n=0 n=O
(2 8)

Also for the Hamiltonian of Eq. (2.1) it is conveni-
ent to expand (p —&u/2)' as a power series in A. ,
i.e., set

+{A.) = ~m+~t(vo —~) + jU. ', X + p, i2 X + ~ ~ ~ ] t

(2.10)

In the important case that & =&o, the series in Eq.
(2.10) has a positive radius of convergence. The
representation for g(A) given in Eq. (2.10} thus re-
mains valid in this case. Contrast this with the
series for p, (X) given in Eq. (2.8): for ~ =&a„each
term is infinite] Coefficients for the power series

-of (p —~/2)', as well as the first few a, b coeffi-
cients, are listed in Appendix A. The a and b co-
efficients exhibit infinite resonances whenever the
applied field frequency is an odd subharmonic of
the transition frequency &o. The existence of such
resonances has been demonstrated both theoreti-
cally" "and experimentally' in connection with
optical pumping experiments. We will return to
this example in the next section.

B. General remarks

The central idea in the previous example and the
features which allow generalization are (a)

We then substitute these expansions into Eq. (2.6).
For each power of A, we obtain a linear second-

order differential equation for the time-dependent
coefficients. The condition that the solution has
no secular time dependence determines the values
of the expansion coefficients for p, (A). Using this
procedure we can, in principle, calculate p(A) and
&f&', to any order in A. . The function P', (A. , t) is of
the form

oo n

P', = g A" g (a„' cosmet+b'„' sinm(ut). (2.9)

Floquet's theorem introduces a characteristic con-
stant tl. (A) for the system, (b) periodic functions
Q '(A, , t) with the period of the Hamiltonian from
which the general solution can be constructed, and
(c) there is a, systematic procedure for calculating
these quantities to each order in A. . In the general
case of an arbitrary but periodic Hamiltonian these
three features persist.

If the Hamiltonian H(t) is periodic with period v
the solution of Schrodinger's equation for the time
evolution operator U(t) can be w'ritten as the prod-
uct of a periodic operator P(t) with period r and
an exponential operator e'"', where p is a time-
independent operator, i.e.,

U(t) =P(t)e '"' . (2.11)

P(t+ T) = U(t+ ~)e'&'"»

Using the previous result we obtain

P(t+ T) = U(t) (U~)e'&"'» .

Because U(v) =e '"' the above two time-independ-
ent factors cancel leaving U(t)e'I" which is just
P(t). Thus P(t+r) =P(t) completing the proof.

Before we leave the proof, we remark that the
order of the factors on the right of Eq. (2.11) is
important. If these factors are reversed, the
resulting P(t) will not be periodic unless U(w) com-
mutes with U(t) for all t.

Notice that in a sense p is an effective constant
Hamiltonian for the system. More precisely if the
time scale for secular changes is large compared
to the period v, the time-averaged state vector,
averaged over a period T, evolves as if p, were the
Hamil tonian.

In addition p, must be Hermitian and P(t) unitary as
well as periodic. These properties follow from
only the assumption that the time evolution opera-
tor of Schrodinger's equation is unitary for all
time. To prove this we use the spectral theorem
for unitary operators, " i.e. , there exists a Hermi-
tian operator p, such that U(t = T) =e '"'. We define
a new operator P(t) = U(t)e'"' and note that, be-
cause p. = p,

' and U(t) is unitary, P(t) must be uni-
tary. In addition we can conclude that the operator
P(t) is periodic with period T In ord. er to verify
this, set V(t) = U(t+T). Since by assumption H(t+v)
=H{t), it follows that V(t) must be a solution to
Schrodinger's equation with the initial condition
V(t =0) = U(7). Next set W{t) = U(t)U(v). By operat-
ing with U(~) from the left on both sides of Schro-
dinger's equation for U(t) it follows that W(t) is
also a solution with the initial condition W(t =0)
= U(r). From the uniqueness of the solution we
must then have IV(t) = V(t) or U(t+7) = U(t)U(v).
From the definition of the operator P(t) we have
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a(t) =a, +a,f(t) . (2.12)

For the time range (0, r,) the Hamiltonian is H,
and the time evolution operator is

U(t) =e ""o", 0 & f & T, . (2.13)

In the time range (70, T) the Hamiltonian is H, +H, .
In this time range the time evolution operator is
the product of the exponential e '«Ho+Hi&/" and a
constant operator. This constant operator is de-
termined by the condition that U(t) must be con-
tinuous at t =Tp. Thus

U(f) e-it(Hp+Hi)/ eiroHi/ T & I & ~p (2.14)

But by Floquet's theorem the time evolution opera, -
tor U(t) can also be written as P(/)e '~', where )/,

is a constant Hermitian operator and P(f) is a uni-
tary periodic operator with period v.. The perio-
dicity of P(t) can be used to obtain )), . In order to
do this first note that P(0) =I, the identity opera-
tor, so P(7 ) =I. Then by making use of the Floquet
form expressed in Eq. (2.11) it follows that U(T)
=e 'i . But U(g) is known from Eq. (2.14) and
therefore

II —e ( p+ y) / e~~p I/

(i/7) ln(e i~(HO+Hy) /& e'7p/ii/h)

In the special case that IJp and FIy commute,

, ) =a,/a+(1 ~,/~)(a, /n)

(2.15)

(2.16)

The determination of p. is connected with the de-
termination of P(t) in the following way. Since
P(t) is periodic in time with period 7 Eq. (2.11)
implies that only a knowledge of U(t) over one
cycle is necessary to determine P(t) for all time.
Of course the truth of this last statement also re-
lies on the fact that p has already been calculated.
Because of Eq. (2.11) P(t) can be written as the

C. Second example

As an illustration of the idea of p playing the
role of an effective constant Hamiltonian for time
periodic systems, consider the following problem.
Suppose that the Hamiltonian for a system can be
written as the sum of a time-independent part FIp

and a time-dependent part H,f (t), where &, is
constant and f(t) is shown in Fig. 1:

product U(t)e'"', and since p, is known from Eq.
(2.16) above this determines the exponential fac-
tor. Also Eq. (2.13) yields the expression for U(t)
in the time range (0, w, ) and Eq. (2.14) yields the
corresponding result for the range (g„v). In this
way we obtain

it II,P (t) = exp —(T —T,) @', 0 & t & ~„

P(f) =exp '(v —t) ", ~,&t&~ .S7p 8,
T

(2.17)

(2,18)

D. Perturbation theory

Previously reference was made to three general
features concerning systems with time periodic
Hamiltonians. Two of these have been introduced
and discussed briefly with respect to the periodic
square-wave Hamiltonian. The first was related
to the appearance of p. , the effective constant Harn-
iltonian for time periodic systems, and the second
feature had to do with the existence of the periodic
operator P(f) for such systems. From a knowledge
of these two operators it turned out that one could
determine the time evolution operator U(f) for the
system. The third feature connected with time
periodic Hamiltonians deals with the question of
determining the two operators p, and P(t) of
Floquet's theorem through an appropriate version
of perturbation theory.

Suppose that the given Hamiltonian can be written
as the sum of a, time-independent part Flp and a
time-dependent part AH, (f):

Notice that the constant operator p of Eq. (2.16)
appears as a weighted average between the two

constant parts Hp and FI, of the original Hamilto-
nian. While this feature applies only to this prob-
lem it does serve to emphasize the idea that p,

acts like an effective constant Hamiltonian for
periodic systems. Also it is interesting and worth-
while to note how with the aid of Floquet's theorem,
U(t), the time evolution operator, has been deter-
mined for all values of time through only a know-
ledge of its value over one time cycle. Actually
this feature is always present fax any time periodic
Hamiltonian. Suppose U(t) is known on the interval
(0, v), where 7 is the period of the given Hamilto-
nian. Since U(v) =e '"" this determines )) at least
in principle and from the Floquet form Eq. (2.11)
we can determine P(t) on the interval (0, w). This
completes the determination of P(t) because of the

periodicity requirement on this operator and hence
U(t) has also been determined for all values of
tlQle.

Yp TT+Vo a(f) =a, +)a,(f) . (2.19)

FIQ. 1. The Periodic function f (t) [see Eq. (2.12)]. It is assumed also that the operator H, (t) is period-
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Hpp ~~ y1l~
k

gg

(2.20)

ic in time with period 7 and A. is a coupling param-
eter. With the Floquet solution in mind the natural
perturbation approach is to expand the operator p
into a time-independent power series in A. and to
expand the periodic operator P(t) into a time-de-
pendent power series in A. , i.e.,

(2.25) and (2.26) determine I', (t) and P,(t), re-
spectively. To obtain the next order, set n =2 in
(2.22). For 1,(t) the result is

1'.(t) =H, (t)P,(t) —P, (t) tt, —tt. , (2.29)

while P, (t) is obtained by setting n = 2 in (2.23).
Repeating the previous argument, p, is determined
by

P(t) =I++ ~ P„(t).
f5= 1

(2.21)
T

dt'e" "p "[H(t')P, (t') -P,(t'))i,je (" "H

Notice that the leading term in the series for p, is
proportional to the constant part of the Hamilto-
nian H, while the corresponding term for P(t) is
the unit operator. When such expansions exist the
following three equations form a set of recursion
relations from which the operators )t„and P„(t)
can be obtained:

dtl ett Hp/0 tt e 'it Hp/h (2 30)
0

Again, assuming this equation can be solved for
y.„both P,(t) and 1",(t) are determined. The gen-
eral case, which is a bit messy, is quite similar:
At each step an equation of the form,

n

r „(t) =H, (t)P„,(t) - g eP„.(t)( .,

1
e&csge-ice g~ (2.31)

P„(t) =I, (2.22)

dt e-t(i/h)( -t'Vtp 1 (tt) (i/h)(t t')Hp-
p

(2.23)

where B and C a,re known operators, is to be
solved for the unknown operator G. The operator
C is assumed self-adjoint.

Under the assumption that the spectrum of C is
contained entirely in an interval of length less than
2t(, E{l, (2.31) has the solution

0 =P„(0)= P„(~), tt =1, 2, . . . (2.24)
C= go exp —,c z —i 8

The recursion calculation begins with a deter-
mination of tt, . Setting tt = 1 in (2.22) and (2.23),
we have

x exp(--,'c(n —t))dn, (2.32)

1',(t) = H, (t) —)t, , (2.2 5)
8'(n) =«""(1+e ) '. (2.33)

t
&ftP (t) dti e (i/h) {t t-')Hp 1 (ti) -(i/h)(t t')Hp-

p

(2.26)

p gp e($/5) f Hp p gl e 4'0 Hp//5
1

p

Substitution of (2.25) into (2.27) finally yields

(2.2V)

~~

dtt e(it'/h)HpH (ts)e it'Hp/h-
p

The operator p, , is determined by (2.26) and by the
boundary condition, P, (7) =0, given in (2.24). An
application of this boundary condition to (2.26),
followed by cancellations of exponentials on the
right and left of the resulting equation, gives

To establish (2.32), first substitute the integral
given there into (2.31), apply the spectral theorem
to the self-adjoint operator C, and interchange the
integrals in the resultant equation. W'e have

(c)
dK(x) B dE(y)

e((-) ~ po

1
x ts ssp {n—i sSis)), {4.84)

p 2

«Z(n)

sin(-,' x-y )(.) ds = exp(-,'-(x —y) n) (-'(x —y))
(2.3 5)

while standard contour integration shows that

where dE( ) is the spectral resolution of C and
sp(C) is the spectrum of C. We want to prove that
B=B Note that the. integral over s in (2.34) has the
value

T

dti e it'Hp/h)) e it'Hp/h (-2 26)
p

g me dot= (2.36)

It is this last equation which must be inverted to
obtain p, . If it is possible to carry this out, then

if -m &-P &m. Since the spectrum of C is assumed
to be contained in an interval of length less than
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(C)
dE (x)B dE(y) .

(c)
(2.37)

However, both integrals are equal to the identity
operator because dE( ), as a spectral resolution,
is also a resolution of the identity. Thus B =B.

Several remarks are in order. Note that no as-
sumptions were made on the spectrum of C, other
than that it must be contained in an interval of
length less than 2m. In particular, the spectrum
may contain both discrete and continuous parts.
Finally, even when the spectrum does not satisfy
the length restriction, the operator C may be
scaled and a solution to (2.31) can then be obtained
from (2.32). Such a solution is often valid even
when the scale factor is removed.

Let us now focus attention on the properties of
p„, P„(t), and the series defined by these opera-
tors.

Because of the boundary condition (2.24), it is
not obvious that expansions for p and P(t), when
derived from a solution of the recurrence rela-
tions (2.22)-(2.24), give the appropriate Floquet
solution to Schrodinger's equation with the Ham-
iltonian given in Eq (2.19).. To see that this is the
case if we assume the recurrence relations (2.22)-
(2.24) have a solution, differentiate Eq. (2.23) with
respect to time, eliminate I „(t) by means of Eq.
(2.22), multiply the resultant equation by A", sum
from n = 1 to ~, and use the expansion for P(t)
given in Eq. (2.21). The result is

2m, it is clear that

—.'(x — ) &m

and, hence, (2.36) is applicable. Combining (2.34),
(2.35), and (2.36) gives

tore P„(t) are first shown to be periodic and, by
(2.21), it follows that P(t) is also periodic.

III. STATIONARY TWO-STATE ATOMS IN LINEARLY AND

CIRCULARLY POLARIZED FIELDS

H(t) =2h(u, (x, +h(u, Xg„f(t), (3.1)

where ~ is a dimensionless coupling parameter
which measures the ratio of the oscillating field
component to the constant z-directed component,
and

In this section we consider in detail the problem
of a stationary two-state dipole in a linearly po-
larized field. The time evolution operator U(t) is
calculated using the perturbation theory associated
with Floquet's theorem. From this operator we
then obtain wave functions and transition proba-
bilities for the system. As noted previously the
expansions for these quantities exhibit resonances
whenever the applied field frequency is an odd sub-
harmonic of the atomic transition frequency. Al-
ternative forms of these expansions are presented
which suggest that these resonances can be inter-
preted as branch points of certain functions. This
interpretation is supported by a comparison of (i)
the expression for the frequency with which the
atom alternates between the upper and lower states
and (ii) the expression for the transition probability
with similar quantities calculated by Bloch and

Siege rt. '
Consider a statioriary two-state neutral system

interacting with a monochromatic field that can be
either circularly or linearly polarized and de-
tuned from the transition frequency a, . The Ham-
iltonian describing this situation is

n

ih —,+ [P(f),a,] = ~a, (f)P(f) —g g ~"hP„.(&)g. .
at n=l m=1 f (t) = ~ sin+i, linear polarization,

(3.2)
The double sum on the right is the product,
P(t)h(p —p, ,). This follows from the general form
of the product of two power series together with
Eqs. (2.20) and (2.21). The equation for P(t) is
thus

ibad(t) +P(t)hiJ. = [H, +H?, (t)]P(t) .

Operating from the right with e '~' gives,

f(t) = —e' "s, circular polarization.

A. Linear polarization

Following the method outlined in Sec. II, the
perturbation calculation begins with the determin-
ation of p, Putting s =i/v in Eq. (2.28) gives

i h —P(t)e '"' = [H, + AH, (t)]P(t),

which is Schrodinger's equation. But is P(t) peri-
odic'? By Eqs. (2.24) and (2.21) P(7) =P(0) =1.
A repetition of the argument used to prove
Floquet's theorem in Sec. IIB then implies that
P(t) is periodic. The periodicity can also be ob-
tained from the recurrence relations. The opera-

ds eirsso?hiI e irsso/& (3 3)-
where Ho and H, (t) are defined by Eqs. (3.1) and
(3.2). In this example, v =2m/~. Equation (3.3)
can be cast into the form of Eq. (2.31) by setting

1C = 2{doTQg
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and

d& &i rslto/rrII ( &)e irs-so/i(
1

o

X /7'

(do —(d
(3.4)

nances whenever & is an odd subharmonic of ~,.
Also exhibiting this resonant property are the sca-
lar coefficients i)„of Eq. (3.8) which serve to de-
fine the p expansion. Of course the reason for
these infinite resonances is that for these values
of & the solution is not analytic at X =0.

An application of Eq. (2.32) yields

[i(d(d()/2((d —(d())] (Ts Cfs (3 5)

which is valid for (d, &(d. Alternately, Eq. (3.5)
can be thought of as an ansatz for p, . From Eq.
(3.3) and the commutation rules for the Pauli spin
matrices, we then obtain that Eq. (3.5) is valid
under the condition that &o is not an integer multi-
ple of &. This is the only restriction necessary to
invert Eq. (2.31). Substituting Eq. (3.5) into Eq.
(2.22) we have

ki(d(d()/2I', (t) = sh (d(r„si (ntd—, , (J„v,—('d 0
(3.6)

With the determination of I",(t) the periodic opera-
tor P,(t) can be evaluated by substituting Eq. (3.6)
into Eq. (2.23). One finds

P (t) = —*.
1

ggt ei(t-t )fiIoaz

&(d t'do
rosint' —

2 2 cr~
0

2 (d eight a+ e-i&to
Q)po'g —

2 2 + +
4 (d o + +o +(do

(3.7)

A, g„v„o,
n=o

(3.8)

p(t) P ~n~n Q (g eim(n&a + Ietim(sio )
m=p

The coefficients v„, g„, and B„are listed in
Appendix 8 for n «4. They exhibit infinite reso-

Notice that the initial conditon for P, (t) is correct
since P,(t=0) =0. Next observe that P,(t) of Eq.
(3.7) is also periodic with period r.

The higher-order coefficients ti„and P„(t) are
obtained by the same procedure. In this case the
form for p„ is v„g„"g„where v„ is a scalar which
is determined from the condition that P„(T) =0. It
is assumed that all lower-order coefficients have
been evaluated so that each term of I'„(t) is known

except for the p„ term. Once p„has been calcu-
lated I'„(t) can then be determined from Eq. (2.22).
Finally, P„(t) is obtained using I'„(t) together with
Eq. (2.23). When this procedure is carried out for
each order n one finds that ti, and P(t) have the
following general forms

where b, =(d, —(d and D =(b, '+4(d,'V)' '. The solu-
tion for U(t) most often quoted is

U(t) =e '/'& "eXsp( it[-,'(-(d, —(d)Os —(d, Xgs]j.

(3.10)

It can be shown that the Floquet solution P(t)e '"'
is equivalent to this familiar result. 'O'" The im-
portance of form (3.10) for the time evolution op-
erator is that it enables us to readily calculate the
induced transition probability. By expanding the
exponential of Eq. (3.10) into trigonometric func-
tions and by taking matrix elements we obtain for
the upper-state wave function g, (t)

e' ' 'g, (t) = cos D+ —. —sin —D I(())02 iD 2

+ ' sin —D qs(0),
22 (d(g

where b, =(d, —(d and D =(t).'+4(d,'X')'/'. W(t), the
transition probability, is obtained from this last
equation by setting II),(0) = 0 and calculating ~(i),(t)['.
The result is

4 'x'
W(t) =

(rr, —rd)
* + 4 rd,

'
X *)

xsirr'
&

((ra, —rr)*+4rr„*z*]'r*). (3.11)

The same expression for the transition probability
can be derived using the Floquet form for U(t).
While rederiving Eq. (3.11) from this point of view
requires more work than the previous method, it
is important in that it will act as a. guide in re-
ducing the more complicated expression for linear
polarization to something similar to Eq. (3.11).

C. Floquet operators p, , e 't", and P(t)

A very important operator in this calculation for
both the circularly and linearly polarized cases is

B. Circular polarization

In the case of circular polarization closed-form
expressions for p, and P(t) can be found. In par-
ticular,

v =(I+(d/D)(2 «, —(d.».),
(3.9)

P(t) =I+(I-e ' "s) .' o, + ———1ia 2 D
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the exponential e '"'. The trigonometric expansion
of this ultimately gives rise to the slowly varying
part of the transition probability. It is obtained
using the expansion

varying part of the transition probability for lin-
ear polarization as calculated by Bloch and Siegert.
For this frequency they obtain

e '"' = cos(Q)t -(ip/0) sin(nt), (3.12)

valid for any operator p that has associated with
it a scalar Q with the property that p, '=O'I. For
the case of circular polarization

0 =~((u+D) . (3.13)

The corresponding expression for Q in the linearly
polarized case has the same form as that given by
Eq (3..13) except that D is replaced by

(u' A.
2 &'A, 4

D = (a) -(d +

H*, = ~ H„and H„*=H, (1-H',/16H„'), (3.16a)

pH~ = 25(do%, , p,IIO =
q N~o, pH„= z Ago . (3.17)

A substitution of Eq. (3.17) into Eq. (3.16a) yields
((8 9)0)

where IJ, denotes the amplitude of the oscillating
field taken to be in the x direction, and H„denotes
the resonance value of the constant z-directed
field H, . In our notation

(3.14) H = 2 Q(1+ i' ~')~0 —~]'+(l~o &)']" . (3.16b)

In view of the infinite resonances (whenever e is
an odd subharmonic of ~0) that are exhibited by the
v„coefficients that define the operator p, Eq. (3.14)
is rather remarkable for it implies that none of
these resonances are present in p'. The absence
of infinite resonances in the expression for D is
consistent with the interpretation of D/2 as the
frequency of the slowly varying part of the induced
transition probability. The basis for this interpre-
tation will become clear with the determination of
the expression for the induced-transition proba-
bility. The derivation of Eq (3.14).can be found

in Appendix C.
An alternative expression for the frequency D

given by Eq. (3.14) can be obtained by expanding
the coefficients of A.

2 and A.
4 about the frequency

difference cu, —~. This yields

e '"' = cos-,'t(Id +D) —[ip/ ,'(~ +D-)] sin-,'t(&g +D),
3 2

{do XD= 400 —40 +
2

5 g4 1/2„+~ ~ ~, (linear)
32 (do+(d)

D = [(+,—&u)'+4m', A.']'~', (circular).

(3.18)

A comparison of this result with the frequency D/2
of Eq. (3.15) reveals an agreement to terms of the
order A. '. However, since the calculation of Bloch
and Siegert included only A.

' dependence no higher-
order comparison could be made.

Returning to the calculation of induced transition
probability for the fixed dipole, and in particular
to the expansion of the exponential e '"', Eqs.
(3.12), (3.13), and (3.14) imply the following:

X2 3X4 2

D 1 + ~ ~ + ~ ~ ~ + ~ 4g16 16.64

+~X 1 ——+ ~ ~ ~ + ~ ~ ~ (3.15)

The exponential e '"' is not the only quantity that
exhibits a similarity of form between the linearly
and circularly polarized cases. We find that even

p. has a form common to both cases. In particular

A check of this result can now be obtained by com-
paring D/2 above with the frequency of the slowly

1 a bA.
P =2(~+D) —o, ——o

D z jg

where

(+0 A) 3(+O X) (8(u —3(g (go —4'(go —(go)

4(~ + ~o) 16((d + 420) (9(d —(do )
(linear)

&u + &oo 4(Id + coo) '(9&v —&oo)

(3.19)

a =ufo —CO,

b =2(a)0, (circular) .
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C, = —,'(1 -a/D),

4, = -b/2D,

4, = 2(1+a/D).

(3.20)

As in the case of p, , the exponential e '"' also con-
tains no infinite resonances at & =~, up to and in-
cluding A.

4 terms.

It is true that Eq. (3.19) for p simply represents
a replacement of the operator series of Eq. (3.8)
with the a()).) and b(A) series. However, we can
see that Eq. (3.19) contains no infinite resonances
at ~ =w, up to and including the A.

' terms. This
feature by itself makes form (3.19}for g prefer-
able to form (3.8). The functions a()() and b()() for
the linear cases were determined by equating ex-
pressions (3.8) and (3.19) for the operator )).

A rather important feature of p in the linear
case is the dependence of the radius of conver-
gence on ar and {(),. From Eq. (3.19) we can see
that at 3~ = +, the radius of convergence for both
of the series defining a()() and b()() is zero. One
possible explanation for this resonant behavior is
that of a branch point at Su =~0. Two functions
a())) and b()() consistent with this interpretation
and having the proper expansions can be con-
structed.

The determination of p simplifies the calculation
of e ')". Equation (3.18) can be written as

(~ +D)e-{))t [L( +D) ){ je({t/2)(QJ+ u)()N

[) ( +D) ~ ]&
(it/2)((d+D-)az

By substituting Eq. (3.19) into this equation we get

{))t (@ f yc, )s((t 2/)(4P+ D)og
2

+ (C, +i )).@,o)e ("/')(

8, = -8, = (u,/D (3.21)

Equation (3.22) reveals that the )).' terms of the ex-
pansion of 8, or 8, would contain double pole at
& =~, due to the presence of the denominator
D(D+b). It will be seen shortly that a similar
resonant behavior exists in the corresponding
terms of the linear-case expansion for P(t) and
that the introduction of D(D+/), ) as a denominator
for these terms suggests that the resonances at

(JL)p and 3& = +, should be interpreted as branch
points. Based on Eq. (3.8) we can write P(t) for
the linear case as follows:

P(t) = 8, +i A.8,g„+e ' ' g(8, +i X8,o„)+ ~ ~ ~,
where

The next step on the way to determining the
transition probability W(t) is the calculation of the
periodic operator P(t). Since the expression for
P(t) in the linear case involves an infinite harmon-
ic series the much simpler and closed form circu-
lar-case expression for P(t) given by Eq. (3.9) ~ill
be examined first. It is expected that this expres-
sion can be used as a guide to tell us what harmon-
ics to retain and what resonant denominators are
present in the linear case. From Eq. (3.9) we
have

P(t) =8, +i){8,{),+e ' ' ~(8, +i)(8,{J„),

where

1 1 &()(go(u), )).)
'

+ ~ Q + + ~ ~ ~

2 2D 4A (e + &(),)'

({(),X)', , (cu, ){)'(-(d'+'ll(o'{(),+82(o'(o,'+ 58o)'{()',—(d(o,' —(u,')
6D(D a)+((o+(v,)' 64{() ((d +(do) b,

2({()+(d,)D 166,(&() +(do)'(9&()' —{()')

e(v, X)' ) (w, a)'(-)lie +80+'~, +22+'s)', +4(ow' —zJ
)4({()+ (u,)D(D +a) 32{()b,({()+ &o,)'(9{()'—(o',)

~Id (td A) (td —5fa )

)4D 32{()E({()+(do)

In Eq. (3.23) notice that co = (d, and 3& = &0 appear as single-order poles.
The expressions given below in (3.24} are constructed by analogy with the circularly polarized case.

They agree with those given in (3.23) to order X and make explicit the desired branch-point behavior. This
feature suggests that these resonances could be interpreted as branch points. Using partial fraction de-
compositions we have
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1 1
8&= —+ ((do —(u) +

((u,X )'
8D(D+ &)((d+ (d, )

((d,A.)'
8D (D + b ){(u+ (d,)'

a (o, (id i)'
)
'i'

2((d + (d())

~ ~

~ ~
(~,i)'(-sP + 7(td'td, + Biuptd,'+ )29~,')

)64(d {(d+(do)

2((d+ (do) (3(d+ (do]+

2(~+ ~,)ii (~+td. )
'

(td+ td, )(»+ ~ ) )
1

( )2
(9(d + 10(d(d()+ (d())((doA)+

(3(u+ (u, ) ' 4((d+ (u, ) '
(3.24)

+ [(3(u - (d, )'+ -(') ((d,x)'+ + ]'~'
3M+ (do

((d,x)', (u((u, ) )'
84

( )D
2(u

32
+ ((uo (u) +

4( )
+

This completes the discussion of the resonant be-
havior of the first few terms of P(t). As was the
case for p, and the exponential e "' an expression
for P(t) could be found which was devoid of any
infinite resonances at either Q) &0 OI 3Q) (do.

D. Transition probability for linear polarization

With the determination of both P(t) and the oper-
ator e '~' we are now in a position to calculate the
time evolution operator for both cases. The prod-
uct P(f) '"' can be obtained using Eqs. (3.20) and
(3.23). With P, (f= 0) = 0 and j P, (t= 0)

~

' = 1 wave func-
tion g, (t) can be obtained by taking matrix elements
of the product P(t)e "': we obtain

( + D)q ( )fe(i/2)&at

=A/, (0)A(8,4, —8,4,)e"'~"

+A(, (0)A.(8,4, +8,4,)e ("~" + ~ ~ ~

with A = (2
~

ia
~
1). Taking the square of the modu-

lus

(~+D)'fe, (f) f'= ~'[8.4, + 8,4.
(8, —8,)4,j' cos'(-, tD)

+X'[8,4, -8,4,

(8, + 8,)@,]' sin'( —2fD) + ~

(3.25)

We obtain for the linear-case probability W(t)

((u,&)' (d,'f ',
W(t)=

16( )2 (
')2 cos (~iD)

2

+ -' sin'( —'tii))+ ~, (3.28)

where

((uo~) (8 1(d + 30(d (do+ 8(d (d() + 2(d(d() + (do)

32(d((u+ (d()) (9(d —(do)

+ ~ ~ ~
2

f2 = 3(d + (do

((u,X)'(105(d'+ 66(u'(u, + 24(u'(uo —2(d(d,
' —(u', )

32(d((d + (uo) (9(d —(do)

+ d ~ 0

For (d =(do the omitted terms in Eq. (3.26) all os-
cillate with frequencies (do or greater. For (d —(d, /
3 the series for f, , obviously diverges. Possibly
1=0 is a branch point of W(t) for (u=(u, /3 similar
to the branch point at X= 0 for & = ~,.

In an earlier discussion of the frequency term
D given by Eq. (3.14) it was noted that Hooch and
Siegert also obtained an expression for the transi-
tion probability W(t) for the linearly polarized
case which involved an equivalent frequency. This
calculation was carried out from a different point of
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view. Agreement to terms of order A,
' was obtained

between the frequency D/2 and the equivalent expres-
sion presented by Bloch and Siegert. This was
accomplished by expanding certain terms of Eq.
(3.14) about the frequency difference +, —&u. The
result of this expansion was Eq. (3.15). In order
to compare the full expression for W(t) with the
Bloch-Siegert result write, for (d = &„

((o,A./2)'(I —3A.'/64+ ~ ~ ~ )' . , t
+ g)2

san' —D + ~ ~ ~

2

where

H(t) ~P'/2M + ,' k&u—og, h&-u„hf ( r, t), (4.1)

where M is the atomic mass, ~0 the internal tran-
sition frequency, ur (= bc) is the applied field fre-
quency, and k is in the z direction. The coupling
constant A. is proportional to the atomic dipole
moment and the field'strength. Ke study two
special field configurations

f ( r, t) =
~ v„sinet cos k ~ r ——,

' o, sin&et sin k ~ r

exactly soluble. In this case particular emphasis
will be given to the modulation of wave packets
and to the time dependence of level populations.

For slowly moving atoms we use the Hamiltonian

~ +
y6 64 + cL)0 (Jo

+ ~g ] + ~ ~ ~
(3.27)

For the transition probability Bloch and Siegert
give

(-', (o,X)' sin'(-,'tI] (1+—,', x') cu, —~]'+ (-'up, &)']' ')
I (I+ ig~ )(do —(d] + (2(dO~)

(3.28)

Equations (3.27) and (3.28) agree to order X' ex-
cept for the cosine term of Eq. (3.27). This term
is perhaps more properly grouped with the higher-
frequency terms in W(t) since it serves to match
these terms to the initial condition at t= 0.

(4.2)

f (r, t) =a„cos(&ut —k r) +o„sin(&ot —k ~ r) .
The center-of-mass position r and momentum p
operators are assumed to satisfy the usual com-
mutation rules. In addition the internal coordin-
ates 0 commute with the translational coordinates
(p, r). The above Hamiltonian is the Pauli Ham-
iltonian for a neutral, spin--,' particle with a non-
vanishing magnetic moment in combined static
magnetic and transverse plane wave fields. ",

A. Standing wave

In order to use the Floquet form of perturbation
theory the Hamiltonian of Eq. (4.1) must be written
in terms of a time-independent part H, and a time-
dependent part H, (t). For the standing wave H, is
given by

Ho p'/2M + —,
'

h&uoo, , (4.3)
IV. MOVABLE TWO-STATE ATOM IN TWO

FIELD CONFIGURATIONS

A neutral atomic system in an optical field
nearly resonant with an internal transition peri-
odically exchanges energy with the field. The
associated linear momentum transfer alters the
motion of the atomic center of mass. This sec-
tion is concerned with several features of this
phenomenon which appears in connection with two
models. The first model to be considered is that
of a movable two-state atom in a prescribed,
single-frequency, standing wave. The Floquet so-
lution to Schrodinger s equation for this model
will be compared with the Floquet solution to
Schrodinger's equation for the corresponding situ-
ation in which a stationary two-state atom inter-
acts with a prescribed, linearly polarized, single-
frequency field. (See Sec. III.) The second mod-
el, viz. , a two-state atom in a prescribed, single-
frequency, circularly polarized, plane wave, is

while for H, (t) we have

H, (t) = ——,
'

h&u, sin(&ut) (o„cosk ~ r —o, sink ~ r),
= ——,

'
S(uo sin((ut) &x„e '" ' ' ". (4.4)

The connection between this example and that of
the previous fixed dipole case becomes clear after
performing a certain unitary transformation of the
Schrodinger equation corresponding to the Hamil-
tonian defined by Eqs. (4.3) and (4.4). For the
purpose of defining this transformation the follow-
ing notation will be useful

p'+ (5k/2)' k ~ p0 = 2~, (d& =coo+ (4.5)

Instead of considering the Schrodinger equation for
the time evolution operator U(t) consider the trans-
formed version of this equation for the operator
Ur(t) defined below

U (t) —/9 &A ~& e( P) e 0/ PJ az U(t) (4.6)
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For the transformed Hamiltonian one finds

IIr(t) = —,')I&r), (p) o, + z $(r)aug„sin&dt . (4.7)

since it played a nonessential role. j Equations
(4.6) and (4.8) imply

A comparison of the Hamiltonian IIr (t) above with
the Hamiltonian of the previous example defined
by Eqs. (3.1) and (3.2) reveals that the only differ-
ence is the presence of the additional k p/M mo-
mentum term in the time-independent part of IIr(t).
Consequently the algebra of the Floquet pertur-
bation theory for the present problem is quite
similar to that of the previous case. The reason
for this being that since the operator k ~ p/M com-
mutes with any component of the Pauli spin opera-
tor o the operator &o,(p) defined by Eq. (4.5) acts
just like a scalar. However, the% ~ p/M term is
important physically since this term is responsible
for the appearance of Doppler shifts of the applied
field frequency & to the atomic transition fre-
quency ao, i.e. ,

(r), - &z) = (d, - &r) + &P, /M = ~o - (r)(1+P, /Mc) .
Having transformed the problem to something

very similar to the previous stationary dipole
example mathematically means that the solution
for Ur(t) will closely resemble that of the pre
vious case and should be identical in the k = 0
limit. Applying the Floquet theorem to the Ham-
iltonian defined by Eq. (4.7) leads to the conclu-
sion that there exists g Hermitian time-indepen-
dent operator p, T and a time-dependent, unitary
operator Pr(t) having period r (=2t(/rd) such that

Ur(t) Pr(t) e ""r. But due to the similarity dis-
cussed above the expansion coefficients for these
operators are given by Eq. (3.8) with the differ-
ence being that in the present case instead of

p„, A.„, and B„representing scalars they now

represent functions of the operator k p/M. The
significant difference between these coefficients
is that the momentum operator &o,(p) replaces ea
in all resonant denominators and also in certain
numerators. With respect to the algebra of the
perturbation calculation this is a minor point and
in fact the outline for calculating )t„and P„(t) for
the fixed-dipole example holds here as well. Based
on this outline the expansion coefficients up to and

including p, and P,(t) have been calculated and re-
corded in Appendix B.

In addition to the Doppler shifting of the field
frequency co another feature associated with this
model is the recoil effect. Mathematically it is
contained in the position exponentials of Eq. (4.6).
Hecalling the transformation defined by this equa-
tion note that at t =0

II (t ()) -(i/a) k r az P (t ()) (4.8)

[IIaving P (t =0) =e ('/')"'az instead of P (t=0) =I
was ignored in the above perturbation calculation

II(t) —e(i/2) k r az e (tt/-rr) t)( P) [P (t) e-t& rt ] e-(t/2) 1&
~ r az

T

(4.9)

Noting that

g(&/2) jf & &z p g (~/2) k I'
Og — 1 I' k Op 2

yields

II(t) — e(tt/&) e(p-(

/krak

a)z(e/t8)k rIoz

X[P (t) e ttrrt j e-(i/3) k roz ~ .

(4.10)

(4.11)

%'e found that many of the expansion coefficients
defining the operators p, r and Pr(t) contained the
momentum-dependent resonant term (d, —u. An

application of Eq. (4.10) gives (n = 1, 2, . . . )

~(i/2) k ~ r o~ &-(3/2) R ~ r a~
((d, —(d)"

1
(4. 12)[~, -~+(k/M) (p-z@&(.)]" '

which clarifies the origin of the atomic recoil
effect.

B. Circularly polarized plane wave

Consider the Hamiltonian of Eqs. (4.1) and (4.2)
with the circularly polarized oscillating field
f (r, t). The time-independent part of this Ham-
iltonianII, is given by Eq. (4.3) while the time-
dependent part may be written as

II (t) II& &
ei(rzt-k r)a (4.13)

e(t/k) k ~ r az & & f (p) e -(i/2) k r az
y s 1 (4.14)

r, (t) =-hg„e
X [& er (ut z a+tf(p)] e-(i/2)k r az

where

ada+ k ~ p/M

(4.15)

(4.16)

The evaluation of P,(t) follows the determination
of p. , and 1",(t). This is accomplished by sub-
stituting Eqs. (4.13)-(4.16) into Eq. (2.20). This

Although this Hamiltonian differs from that of the

previous case, Doppler shifts and recoil effects will
again be present in the solution.

As in the previous two examples the perturbation
theory begins with the determination of the opera-
tor p, Based on the technique of Sec. II we obtain
for p.
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gives

ef QJ Qg t
P (f) e(i/z)k ~ r ani~ o —(r)+k p/M

&( e -(f/a) k. r a~ (4.17)

p (f) e(i/2)k ~ r a [( I)n/&]

&-i(arran) n e-(i/2)k r an
n (4.21)

A comparison of Eq. (4.18) with Eq. (4.21) reveals
that

In this type of computation it occasionally happens
that the first-order coefficients such as p. , and

P,(t) reveal a general pattern for the higher-order
expansion coefficients. Expecting that there will
be a certain degree of similarity between the first-
order and higher-order coefficients we propose
the ansatz

P (f) s(i/2)k r anf (p)

X (I &
r(nian) one-(i/2)k r an

8(i/a) k r an & ( p) &n e -(i/a) k r an,
n n y

where for each integer rr the coefficients a„(p) and

t)„(p) are functions of only the linear momentum
operator p. This assumption means that both a„
and b„commute with any component of the Pauli
spin operator o. With ri =1 Eqs. (4.16), (4.17),
and (4.18) then imply

(da+% p/M
a, =le

ea —&o + k ~ p/M

$(do
5 =-

(()a
- (d + R p/M

(4.18)

(4.19)

&o„=—,
' [1—(-1)"](&()a+2 p/M), (n = 1,2, . . . ).

If Eq. (4.20) is used to eliminate the (()„(p) coef-
ficients from I „(f), then the operator P„(t) can be
rewritten as

The higher-order coefficients a„and b„will be
determined in the process of establishing the
validity of the above ansatz. Specifically by in-
serting Eq. (4.18) into the general recursion re
lations (2.22), (2.23), and (2.24) two basic equa-
tions relating a„and b„ to lower-order terms will
be obtained. One of these equations will then be
used to eliminate the b„ terms from the other equa-
tion leaving a„as a function of only the lower-or-
der a„coefficients. The solution to this relation
will then yield the general expression for a„. In

turn the b„coefficients will be obtained by insert-
ing the a„expression into the relation originally
used to eliminate 5„ from the calculation. The
consistency of the original ansatz will then be ap-
parent from the a„and b„expressions.

Employing the above procedure yields

n-1
a„= i~,( () b +pa (-„")', „(4,.20)

n m= I

where

b„=(-1)"a„/(r), n =2, 3, . . . . (4.22)

I
A.„=-—QA A„„„(-1)",8 =2p 4p ~ ~ ~

(4.24)

2i(daA„, -Q„":,'A A„(-1)"
-(d+% p/M

Based on the form of the first few values of A.„
let us assume that there exists a set of scalars
1f„}with f, = 1 such that for n = 1, 2, . . .

(d(i(da)"f„ (4.2
((r)a —(r) +k ' p/M)

Fortunately it turns out that such a set of scalars
does exist. " These scalars are related to the
binomial- coefficients in the following way:

f»= ~, f»+r=2f», ~=1,2, (428)
2u-I)

The determination of the set(f„}completes the
solution since Eq. (4.25) can be used to evaluate
each An coefficient. Having determined the A.„
coefficients Eq. (4.23) determines the associated
value of B„. A list of these coefficients follows.

AI =Z+X) BI = —ZXq

n, =td(-()~K'
)

( (), „(rk.-()

n„„=2k'(-))'x""' ),
a,„,= —2i(-I)"X

)'r

This expression can now be used to obtain a re-
cursion relat;ion for a„. However, before doing
this it is more convenient to introduce a slight
notational change. For v =2, 3, . . . setA. „=a„
and take A, =a, - i(do. With B„=b„for g = 1, 2, . . .
Eq. (4.22) becomes

(4.23)

By rewriting Eq. (4.20) in terms of the A„and 8„
coefficients and then using Eq. (4.23) to eliminate
all of the B„coefficients we get
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where

COOX= r

(d —(d+k p/M
(4.27)

8 ()() =
& (dog

+)((t(do+A(�

) (j&(rz+ P )( Az(r& (Tz

Pl=2

= z (doO'z+1)(. ((do+(dX) (Tr (Tz

++( 1) ()x)
l

( '2")(x")2k 1

k=l u )

(4.28)

For the purpose of evaluating the above expression
the momentum operator p can be visualized as
being replaced by its transform variable p'. With
this replacement in mind we have

Q (-r)'l&&(rH"
( )

= —
(
——1),

k=1

(4.29)
where

tk =(do —(d+k ~ p/M, D =((k2+4)('(do')'/'.

The ultimate justification for this operator re-
placement is that the final expression for the time
evolution operator must be a solution to Schro-
dinger's equation for all real values of X. A sub-
stitution of Eq. (4.29) into Eq. (4.28) then yields

e(f/2) k r 0'r i i e ('iSk r az
yxpI ~

where again

6 =(do —(d+R ~ p/M, D=(b. '+4(doz)(')'/'.

A similar calculation based on Eq. (4.29) yields

P(t) I+(I e-i(otaz) e(i/2)k r o I (p) e-(i/2) k r oz

(4.31)

I",(P) = —(t'(d o)(/D) (r, + r'(tt /D —1) .

C. Alternate forms of the time development operator

for circular polarization

Naturally the next question that comes to mind
is: Can the perturbation series for the operators
p. and P(t) be summed for certain values of )(?
The answer to this question is yes! A closed-
form expression for both p. and P(t) does exist
and moreover it is valid for all real A, . Let us
consider the series for g first. By inserting the
A„coefficients of Eq. (4.27) into Eq. (4. 18) we get

p 2/2 IM + &(i/2) k ' r az $()() e -(i/2) k ~ r oz

where

Notice that the time-independent operator p de-
fined by Eq. (4.30) is Hermitian and that P(t) as
given by Eq. (4.31) is periodic with period v =2w/(d.
It can be verified that P(t) is unitary. The pre-
viously mentioned recoil effects are contained in
the position exponentials while the Doppler shifts
are contained in the% p/M terms which are found
hidden in the 6 and D operators. Finally the Flo-
quet solution P(t) e '"' with p, and P(t) defined
above for the time evolution operator satisfies
Schr6dinger's equation with the Hamiltonian of
Eq. (4.12) for all real X! This can be verified by
a rather long but straightforward calculation. This
calculation also shows P(t) is unitary for all t.

If the Schrodinger equation

N v(—t) =a(t) v(t),Bt

for the Hamiltonian of Eq. (4.12) is cast into the
form

[8((/Rl ((d t-k r ) az V(t)] =If r [&(i/2) (&u t -k. r ) az V(t)]Bt

one flDds

p + + (00 —('d + O'

—SQpo A,g (4.32)

V. CONCLUDING REMARKS

In summary, we have given a general form of
Floquet's theorem (see also Salzman's discus-
sion"), derived a perturbation theory aimed at
obtaining the Floquet operators, and applied this
theory to the interaction of stationary and moving
neutral two-level atoms or molecular systems
with monochromatic linearly and circularly po-
larized electromagnetic radiation.

Floquet's theorem is derived under quite general
assumptions, but it should be noted that the opera-
tor p, is not unique. The perturbation theory given
in Sec. II is designed to give the "physical" p, :
When the coupling parameter vanishes, this choice

This form emphasizes the relationship of the pres-
ent calculation to the problem of a stationary two-
state atom in a circularly polarized field. The
middle term in II' shows again that new effects
encountered for a movable (finite M) dipole are to
be interpreted in terms of the Doppler effect. The
solution for the time evolution operator V(t) may
be written

V(t) e-(i/2)( t(-zk r ) az (it/k) (( --(t/S k r oz (4 33)

The equivalence of this solution and the Floquet
solution P(t) e '"' is another long but straight-
forward calculation.
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of p, reduces to a constant multiple of the unper-
turbed Hamiltonian. While conditions for the phys-
ical p, to exist were given in Sec. IID, general
necessary and sufficient conditions are not known.

ACKNOWLEDGMENTS

One of us (F. J. N. ) wishes to acknowledge help-
ful. conversations with Professor Q. D. Allen and
Professor J. Ward.

Cu&&d0(3Cu —Cd&)
2 8,(

2 2)2

3 cu cd 1cd0 (15 cu + cd 1)
8(cu' —cu', )'(9cu' —cu', )

'

cd&cd0(105cd + 105cu cu& —21cu cu&+ 3cu&)

128(cu' —cu', )'(9cd' —cu', )

where &, = &p for the fixed dipole and for the mov-
ing dipole cd, = cu0+k p/M. Also,

8(0QPo
10 2(~2 ~2) t

ZSQ)4)0 SQ)oa 11 2(~2 ~2) t 11 2( 2 ~2) t

Cu20(3Cd2+ Cd02)

20 16(~2 ~2)2

Q)p $(dQJo
21 4(~2 ~2 )2 t 21 4(~2 ~2)2

o coo
22 16(~2 ~2) t 22 16~(~2 ~2) t

is cdcu03(15cd4+ 50cd2 cu20—
cd 00 )

30 32(~2 ~2)3 (9~2 ~2)

a 31
3scd0(5(d3+ 10cu' cdc'&+ cd~0)

64Cd(~2 Cd2)3

SCd0(Cd + Cd0)

8(R2 —R2 )
3

ZSQ)Q)o SQ)o
32 32(~2 ~2)2 t 32 32(~2 ~2)2

0 0

APPENDIX A

The coefficients p, 2, and p, 2, of Eq. (2.22) are given
by the following relations:

3 5
(Oo 2 +0

2(cu+cu0) ' ' 32(cd+cd0)3

while the harmonic coefficients a„and b„of Eq.
(2.21) are

1
+op=~op= 2

o
10 10 2( 2 2) t

&+o &o
4 (cu —cd&) 4 (cd + cd& )

cu,'(3cu'+ cd&)
20 20 16( 2 2)2

2 2

A21 = (u(Vo

8(cu+ cu, )(cd' —cu', )
' " 8(cu —cd, )(cd' -cu', )

'

2 2

32Cd(Cd - Cd&)
' 32(d(Cd+ Cu&)

&cdcu0(15cd + 50cd cd, —cd, )
32(cd —cd&) (9cu —cu&)

zcd0(5cd + 3cd cu& + Vcdcu& + cd&)

128Cd(Cd —Cd&) (Cd —Cd&)

3cu0(5cu 3(d cd + 7cucu cd )
128cu(cu —cd&) (cu+ cd&)

0

SCOo

64(cd' —cd', )(cd+ cu, )
'

~ 3
ZCOp

64 (cd —cd &)(cu —cu1)

2h)p

128 cu (cd —cu&) (3cu —cu&)

1{do

128 Cd (Cd + Cd 1)(3Cd + Cd 1)

a 33
iscu03(3cd2+ cu02)

64cd(cu' —cu0) (9cu2 —cd', )
'

SQ)p

16(cd —cu0) (9cd —cu0)
'

cu0(9cu +548cu cd&+254cd~cd~&-44cd2cd3ycd3)

8 x 128cu'(cu' —cu&)'(9 sP —cd' )

cu0(21 cd 27 cd cd1+146cd cu& —648 cd& —|cued&+cu&)

4 &c 64(cd —cu&) (cd+ cd&)(9cd —cu&)

APPENDIX B

Here we give the coefficients v„, A.„, and 8„
for &3, m~4 [see Ecl. (3.8)]:

v, = cu, /2,

ZMQ)1%0

2(cu' —cu, )
'

cu0(2lcu +27cu cd&+146cd cu&+6cu cu& 7cucu& cd )
4 x 64( cu' —cu', )'( cu —cu, )(9cd2 —cd2)

Cu0(7Cu + 5Cd Cd&+ 9CdCd& —5Cd1)
8 &c 64cd(cd —cu ) (3cu —cu&)(cd —cu&)

'

cdp(7cu —5cd cd&+ 9cdcu&+ 5cu&)
8 & 64cu(cd' cu', )'(3cu+ cd&)(cu+ cd, )

'
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(dp
43 4 x 64((g —QP&)((0+ (d~)(3(d + &y)

Cdp

4 x 64(QP —(gz)(I'd —(oy)(3(d —d&)

4
(Op

16 x 128(d ((d —Mz) (3(d —&q)

4

8 p
4~ 16 x 128uP(co+ (u,)(3++ +&)

APPENDIX C

pr~ = vo+ (2vov~+ v~)X

+ (2v, v, + v', + 2v, v, )X'+ ~ ~ ~ .
From Appendix 8,

2 2
&i(dp

8((u' —(u', )
'

uP(u,'(105(u'+ 105(Au', —21(u'(u', + 3uP)
0 4 128( 2 2)4(g 2 2)

(C2)

(C3)

The problem of a moving two-state dipole inter-
acting with two monochromatic and oppositely
traveling c ircularly polariz ed fields was considered
from the Floquet point of view in Sec. IV. Here it
was shown that the form of Schrodinger's equation
corresponding to the Hamiltonian H, + AH, (t), where
H, was given by Eq. (4.3) and H, (t) by Eq. (4.4)
could be simplified by a certain transformation.
The result of this transformation was

(u', (o,'(240mB + 16(g'Id', )
128((o' —(o', )'(g(u' —&g', )

'

(u', (oo(162(u' —126(u'(g', + 30(o'(o', —2(g', )
2 ]28( 2 &)4(g 2 2)

(U&COO(27(d —21(0 I'd& —7(d (d&+ (0&)
0 4 & 1 3 ]28( ~ ~)&(g~& &)

i r=t &~,(p)o, + —,'~,Ao„sin(&ot)]Ur,1

where &u, (p) = ~, +k p/M. Floquet's theorem was
then applied to this equation and a solution of the
form I'r(f)e '~r' was obtained for Ur(t). The ob-
ject of this Appendix is to prove that the operator
p, ~ has the property

u'r= 4(~+D)'

where

(d(dX I'd(dX1 p 1 p

~, = &o, + k p/M . (C1)

We obtain the expansion coefficients (v„) for pr
up to fifth order in X from Appendix B. Thus

p, r=(vo+X v~+3. v~+ ''')o~
t

+ X(v, + X'v, + ~ )(r, .

A combination of Eq. (C2) and the relation o,o,
+ o„0,=0 yields

128((d —(d&)

128(aP —(o', )' (C4)

Substituting Eqs. (C3)-and (C4) into Eq. (C2) gives

Thinking of operator k p/M as being replaced
by its scalar transform variable we can take the
square root of the right-hand side of Eq. (C5).
Denoting this expression by Q~

Ar = ~(g, (1+X)'

where

(C6)2((u' —(o', ) 32((u' —&u', )'

and recalling that (1+X)'~'=1+X/2-X'/8+ ~ ~

yields

2 8 ((o' —(u', ) 128((o' —(u,')'

2 4
(d 2 X4

2 2 2 (d+ Q)j 4 (0~ (0 32 ('dj + (g 4 Q] cg 2 ~+ (d &6 Q)1 co

(d h1& —(d (XX Pg CV A.

4(&, —A) 4((cr ~
—&u) 16(~~ —&)
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where

2 4N qCOO (dc(do

2(e, + u) 32(&&+ &)

An examination of the expansion for Q~ above re-
veals that it is identical to order X with the ex-
pansion for

2I'd+ p[(hl~ —QJ) + BA. + p~ + ' ' ']
Thus

2 2
(dj COp~0 = + (I'd —(d) +

2 2 2((d&+ (d)

(d (d X
~ ~ ~

32 (co
&
+ &d )

completing the verification of the first claim.
Schrodinger's equation describing the case of

a stationary two-state dipole interacting with a
linear]. y polarized field can be obtained from Eq.
(Cl) by setting either M=~ or k=O. This implies
&, = (d, in all expressions. For the stationary di-
pole we obtain

P = ~(&+D)

where

~
~

p2 ~4 1/2
(Mo —QJ) + — — . + ~ ~ ~

2((u, + (u) 32((o,+ (g)'
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