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Analytical and numerical results are presented which are related to tB'e following higher-order atomic
processes: retardation effects in two-photon bound-bound transitions, evaluation of the Bethe logarithm in
excited states, and multiphoton ionization. These calculations are carried out within the framework of the
conventional perturbation theory by using different representations of the Coulomb Green's function, each
representation offering its own particular advantages.

I. INTRODUCTION

Recent experimental refinements observed in
the field of atomic physics have given rise to a
great interest in the calculation of higher-order
terms of the perturbation expansion. This general
trend is particularly important in calculations re-
lated to the study of multiphoton processes, as a
matter of fact most of the features of these pro-
cesses may be interpreted within the framework
of time-dependent perturbation theory.

The main difficulty encountered in computation
of amplitudes of order N «2, comes from the
presence of infinite sums extended to the whole
atomic spectrum. Such sums are usually evalu-
ated by using some adequate approximation tech-
niques, but it is well known that if the atomic
system under consideration is a hydrogenic one,
the calculation can be carried out "exactly, " i.e. ,
without approximation.

To date two methods have been proposed in order
to perform such exact calculations. Chronologi-
cally, the first one was given by Dalgarno and
Lewis' in 1955. These authors reduced the cal-
culation of a second-order amplitude to the nu-
merical integration of an inhomogeneous differen-
tial equation. The method has been successfully
applied to various two-photon problems such as
Lamb-shift calculations by Schwartz and Tiemann, '
elastic scattering of photons by Mittleman and
Wolf, ' and two-photon ionization by Zernik. ~ Later
on Gontier and Trahin' succeeded in generalizing
it to the cases where the number of photons in-
volved in the process is greater than 2. Now this
method has proven its reliability, but we must
note that it is not so easy to use since it involves
elaborate numerical methods, especially for
higher-order calculations (»2).

The other method proposed, based on the use of
compact representations of the Coulomb Green's
function (CGF), does not suffer such limitation
since it permits us to obtain, in theory, analytical

expressions of the desired amplitudes. The ad-
vantages of this method have been recognized by
Vetchinkin and Khristenko" and by Gavrila' in
1967, who used it in the calculation of second-
order amplitudes in hydrogen atoms. Later on,
as we shall explain, a number of authors have
improved the technique and applied it to the study
of many higher-order processes.

We used this latter method, and we shall present
here our results concerning various multiphoton
processes. Moreover, since in the course of this
work we were induced to use different represen-
tations of the CGF, we have been able to achieve
two distinct purposes, Qn the one hand, we got
some interesting results on the retardation effect
in two-photon bound-bound transitions, Lamb-shift
calculations, and multiphoton ionization. Qn the
other hand, we compared the respective advantages
of the various representations of the CGF.

In Sec. II we recall some general properties of
Green's functions and give a brief survey of the
most useful representations of the CGF. Section
III is dedicated to the study of the retardation ef-
fect in two-photon bound-bound transitions. An
exact analytical evaluation of the Bethe sums for
Lamb-shift calculations in higher excited states
is given in Sec. IV, and Sec. V deals with the
calculation of multiphoton ionization transition
rates.

II. REPRESENTATIONS OF THE COULOMB GREEN'S
FUNCTION

A, .Generalities

The Green's function or resolva~t for an operator
H is the operator

Equation (l) is equivalent to the relation

(P SI) G(E) =I . -
On multiplying Eq. (1) by the projector P, =

~ v) (v ~
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BP„=E~P„,
one gets

(2)

associated with an eigenvalue E, of the operator jI,
which satisfies the equation

Eq. (7) becomes

Y($) =
2,, d('I'($') I $

where

G(Z) I „=(Z-e) 'P, =(Z -Z„)-'I„,
and by using the closure relation we have

G(z) ~ I v& &vl

(3) v =ox ', Y(g) =-,'(x'+p') 'x '~'e(p),

and S' is the unit hypersphere in Q, '.
The corresponding momentum-space CQF is the

solution of the equation

where the sum is extended to the whole spectrum
of the operator H.

The representation of G(Z) in the position space
G(r, r';Z) = &r I G(Z)l r'& can be defined either from
Eq (4):

~ &rl v&&vlr'&

—,'(p'+x') G(p, p';Z)

In the new variables Eq. (10) reads

(10)

d'p" G(p", p';Z) I
p" -pl '=-6(p-p').

or from Eq. (1'), as the solution of an inhomo-
genous diff erential equation:

(Z -H) G(r, r';Z) =5(r —r') . (6)

r(], (') =6(] -g')+ 2,

with

d~» F(~ ~»))
I ~ ~»I

-2

Note that the momentum-space representation of
the Green's function is the solution of an integral
equation, the form of which may be obtained from
Eq. (6) by taking its Fourier transform.

The Green's function is introduced in the per-
turbation expansion in the form (4), but its prop-
erties are generally derived from the differential
equation (6). The compact representations of the
CGF used in our work have been obtained in this
way —we recall it briefly in the following para-
graphs.

B. Schwinger's representation (Ref. 7)

Schwinger' has obtained a representation of the
CQF in momentum space. In his derivation, which
we summarize below, he used the O(4) symmetry
properties of the hydrogen atom revealed by the
Fock transformation. ' The Schrodinger equation
for a nonrelativistic hydrogenic atom in momentum
space reads (throughout this paper we will use
atomic units):

-'.((*-')o())- ™.) ~') e() )I) -) (l-'=0,

I"(&,&') =--.'(2x)-'I(" u') (x"u"))'G(p, p';Z).

I (&, &') = g 1- —„ I;..(&) I'.*,.(&'),

nate

(13)

where the functions Y'„, (() are surface hyper-
spherical harmonics.

Qne of the most remarkable properties of this
expression is that the infinite sum is extended
only to a discrete spectrum. This feature is
closely related to the character of the pock trans-
formation as noted by Decoster. ' Moreover, this
representation may be considered as a four-
dimensional counterpart'o'" of the so-called Stur-
mian representation introduced later on (see
Sec. ID).

From Eq. (13) one gets: (i) integral represen-
tations of I ($, (') by using the relations

I —— =I+ +

Schwinger has shown that Eq. (11) is more easily
solved than the original one in ordinary momentum

space, and he got the result

where x = ( 2Z)'~' (Z &0), -and c(= Z corresponds
to the coupling of the Coulomb potential.

Under the Pock transformation, corresponding
to the variable change

2x p~-(&., &), ~- .,„.,
5o= 2 „2, $,+5=

(n-v) '= dzz 8 ~ p&1~

(ii) corresponding expressions for G(p, p';Z).
Such a momentum-space integral representation

was used first by Gavrila, ' who studied the elastic
scattering of photons on a hydrogenic atom in the
ground state. Later on he extended these calcula-
tions in order to take into account the retardation
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effect in elastic" and inelastic' (Compton) scat-
tering on a K-shell electron. More recently, a
similar technique has been used by Douglas'4
who applied it to the calculation of hyperfine-
structure corrections.

We used a representation of this type, but in
order to take full advantage of the O(4) symmetry
of the H atom, we performed the complete calcula-
tion in the four-dimensional space introduced by
Fock's transformation (see Sec. III). A similar
technique has been used by Lieber" in a Lamb-
shif t calculation.

C. Hostler's integral representation (Ref. 16)

Hostler" has given an integral representation of
the CGF in position space. He used an approach,
different from Schwinger's, based on a known
theorem which states that a one-dimensional
Green's function may be expressed as a product
of two independent solutions of the corresponding
homogeneous differential equation. " Thus if we
consider the partial-wave component of the CGF,
which is the solution of the inhomogeneous differ-
ential equation

Whittaker functions [Eq. (16)]. He obtained in this
way the following formula:

G (& &'E) = —2(tr') 'l

x dte ~"'" ~xcosht
0

x (coth-,'f)' "I„,(2x(r~')'h sinhf),

(18)

where I~(z) is a Bessel function of imaginary
ar gument.

This partial-wave representation of the CGF
has been found to be very useful for calculations
made within the dipole approximation, and a num-
ber of authors have used it for calculations related
to various two-photon processes. As far as we
are concerned, we used it in the evaluation of the
13ethe logarithm in excited states (see Sec. 1V).

Before going further, we can point out that
Hostler" has also given a representation of the
complete CGF, G(r, r';E), by summing the par&
tial-wave expansion

G ( r, r'; E) = g (21 + 1)P, (cos8) G, (r, x'; E),

where

. (14)
1=0

8 = (r, r'), (19)

and we apply the above-mentioned theorem, one
gets

I'(l+1-x ')
G, (x,x'; E) =—,M,g„„,g, (2'()

x Wu„„u, (2'&), (16)

where r& = s up(r, x') and r, =-inf(r, r') and the func-
tions M and W are the known Whittaker's func-
tions, "solutions of the radial Schrodinger equa-
tion

This form of the CGF was known for a long time,
but is not very useful for practical computations
since it does not factor the dependences on
r and r' of G, (y, y'; E), which obliges one to
resort to numerical quadrature techniques. More-
over, owing to the oscillatory behavior of the
functions 8' for large r, the numerical treatment
of these functions is very cumbersome. As a
consequence, this representation of the CGF has
not been used very often. We can mention, how-
ever, the recent work by Laplanche et al. ' on
multiphoton ioniz ation.

In 1964 Hostler" made a further step by using
an integral representation' for the product of two

after replacing G, by its integral representation
[Eq. (18)]. This last part of Hostler's results has
been used in calculations taking into account the
retardation effect (see for instance, the papers by
Klar sfeld" ).

Eventually we can mention that, as shown by
Hostler" by taking the Fourier transform of
G(r, r';E) one gets the corresponding represen-
tation in momentum space.

D. Sturmian representation (Ref. 22)

As we already said, the above-mentioned rep-
resentations are very useful for calculations of
second-order amplitudes related to various radi-
ative processes. Nevertheless, they have not
been used in higher-order calculations, owing to
the presence of intricate multiple integrals.

In such cases it may be convenient to use a dif-
ferent type of representation of the CGF, which
was first proposed by Hostler in 1970." We will
refer to this representation as "Sturmian" since
it is given as an expansion over the complete set
of the so-called Coulomb "Sturmian" functions
introduced by Hotenberg. " Before rederiving ex-
plicitly this expression of the CGF, it seems of
interest to recall some of the general properties
of these functions.

Let the radial Schrodinger equation for a given
angular momentum l be
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[If,'+nv(r)]fl, (r) =El', (r),
where

(20)

(21)

From Eq. (22) one has

(Ii) -Z)
I nlz& =n„, z(1/r) Inlz&

and from Eq. (27)

(28)

and n is the coupling constant.
We define the corresponding conjugate or "Stur-

mian" equation as

(
1z -If,'+ —p a(n, z) lnlz& &nlz I =f.

n=l 8
(29)

[a; -z]s, ,(r) =-n, ,v(r)s, (r),
where the Sturmian functions S, z(r) verify the
following boundary conditions:

(22)

a(n, z) =(1 —n„, z) ' (30)

By comparing these last two relations and by ap-
plying the closure theorem, Eq. (24) one gets
eventually

S, z(0)-0, S, z(~) 0 (22')
and then

and cyr ~ is an eigenvalue of the coupling constant.
The problem of finding eigenvalues of energy in

the Schrddinger equation for a given value of the
coupling constant n is transformed into a problem
of finding eigenvalues of the coupling constant for
a given value of energy and angular momentum.
One can easily show that the Sturmian function
S „,z(r) = (r ~ nlz) [solution of Eq. (22)] belongs to
a complete set with the orthogonality property

I nlZ& &nlZ (

n=l+1

or explicitly

22l+2 2l+1

G, (r, r'; E)
[(2l + 1)!]2

(31)

&n'lZ ) V) nlZ& = —~„, „ (23)

(the negative sign corresponds to the case of an
attractive potential V) and the closure relation

(2x)l+1 (n + l )l l/2

r (21+ 1)I ( (n —1 —1)!) (26')

Returning to the CGF one can give an expansion
of its partial-wave component G, (r, r', E) over the
complete set of the Coulomb Sturmian functions
for the energy 8 &0 and angular momentum /:

1
G, (2) = (2 H', + — = g a(e, Z) I m(2-) (nÃI .

n=r+1

Q I n'lZ&(nlZ (
V=- l. (24)

n'

The Coulomb Sturmian functions are obtained by
solving Eq. (22) after replacing V(r) = —1/r. Tak-
ing into account the boundary conditions [Eq. (22')],
one gets (i) the quantization of the coupling con-
stant:

n„~, z =nx, x =(-2E)'~', n =1,2, 3, . . . . (25)

(ii) The explicit form of the Coulomb Sturmian
function S'„, z(r):

S'„, z (r) =N„, ze ""r',F,(1+1-n;2l+2;2xr) .

(28)

The normalization constant N„r ~ is obtained
from the orthogonality relation [Eq. (23)] and
reads

x,F,(l 1+- n21 2+; 2x )r

x,F,(l + 1 n; 2l + 2;-2xr ') .

(32)

The main interest in this representation is that
the finite summation is extended only over a dis-
crete spectrum, as in Schwinger's Eq. (13).

To date, in spite of its interest, this represen-
tation has not been used very often in higher-order
calculations. However, we can mention the work
by Karule on multiphoton ionization~4 and by Mizuno
on the third harmonic generation in H atoms. 2"'

We shall show its usefulness in Sec. V by applying
it to the calculation of cross sections for multi-
photon ionization.

Before going further we have to point out that
there exists important literature on the properties
of the CGF, related to the study of the scattering
Coulomb T matrix. In this respect we mention the
review paper of Chen and Chen, ' which gives a
good account of the analyticity properties of the
Coulomb T matrix and discusses the connection
between the various representations of the CGF.

III. RETARDATION EFFECT IN TYCHO-PHOTON

BOUND-BOUND TRANSITIONS

Since 1969, several authors have considered
this problem besides the previously quoted papers
by Qavrila'~' and Klarsfeld, we also mention the
works by Gorshkov and Polikanov, "who used an
integral representation of the CQF similar to that
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X G(p2) peEni+ Mi) pg ' e g

xC„, „(p, k,), (33)

where the two photons involved are characterized
by their energies m, , momentum k, , and unit po-
larization vector e,. (i =1,2).

By applying the variable change [Eq. (8)] the
amplitude becomes

where

x [x„' + (p, - k, )']-'r(~„~,)

x[x' +(p -k )'] '( ~ e

x 1'„...„,(q, ), (34)

Xn~ —(x2~p2)2 (x2+p2)2 nl nn

X —pi 2Xp
&;-(&;., &;)- ...„. . ..,„. ,

[xn; +(P, n-k, )']'
Xni

of Hostler, and by Fronsdal, "who used an alge-
braic technique.

Although explicit forms may be obtained for
specialized transitions, ' an unpleasant charac-
teristic of all these methods is that the final ex-
pression of the amplitude generally contains dif-
ferential operators which act on hypergeometric
functions of several variables. Obviously, this
does not facilitate a direct numerical exploitation
of the result.

In this work we tried to overcome this obstacle
and to derive an explicit analytical expression for
the transition amplitude in the general case. With
this purpose in mind the calculation was performed
in the four-dimensional space Q,

' introduced by the
Pock transformation, in order to take full ad-
vantage of the symmetry properties of the hydro-
gen atom. In the following, we will first express
the transition amplitude in (R4 and then, after in-
troducing a convenient quaternionian formalism, "
we will derive the explicit expressions for the
18-18 and 18-28 transition amplitudes.

The amplitude associated with the second-order
bound-bound transition between states I n„ l„m,)
and I n„ l„m,) and corresponding to Fig. 1(a),
reads in momentum space

r p

Tn2/ny(+D +2) '

' d ply p2cn2 j2my (p2 2) p2 2

n, .(.m, n2, 12,m2

n&, l&,m&

FIG. 1. Diagrams assoc iated to the second-or der
bound-bound radiative transition between the states
In(, E (, m)) and

I n2, E 2, m2).

P = (x, p)
"'

$
=PP ' =P'

I PI (35)

By using the rules of the algebra of the quater-
nions, one gets the four-dimensional version of
the propagator

x2
[x„'.+(p, -k, )'] '=

I P I2IA. I, I pn,.xn,. —4;I
ni

(38)

where

P; =(x, p(), I P(I =P;P; =x +pg~,

P, =(x, -p;); K„,. =(x+x„,, k, ),

p„~„,=2xZ„,IZ„.I-'-f

i

x' —xn'; —kf" 2x k;
(*-.)* ~.*)

the modulus of which being

x . =(-2Z )'~'=—1
ni ni

xn, —(p; -k;)' 2xn;(p,. -fc, )
ii (ijOI Of) xm + (p k )2 & x2 ~ (~p k )2i i ni i i

In order to perform the integration over the
hypersphere 8', we have to express the propa-
gator [x„', + (p,. —k, )'] ' and the four-vector q,. in
terms of the integration variable P, . As pointed
out by Qazeau, this task may be conveniently
achieved by using a quaternionian formalismn As
a matter of fact, the pair P = (x, p) may be con-
sidered as an element of the noncommutative field
Q of the quaternions with real coefficients. The
Fock transformation corresponds to a stereo-
graphic projection -+ of the elements of Q on the
multiplicative subgroup 0 of the quaternions of
unit modulus, homeomorphic to 8 ' in g'.
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(x x )2+P2 1/2

(x ix .) +y'
ni i

Then, the amplitude reads

T„",'g„, ((o„(u,) =C„,„, Jl d$, dg, Y„... , (q, ) &, ~ e,s3xs3

~
I p„,.„,- &, I-'1(&„&,) I p„,.„,-&, I-'g, Z, Y„...„,(q, ), (37)

with

C =2'x'IK K
~ (x x )'~'

nyn2 ng n2 ny

On the other hand, the expression of the vari-
able q, in terms of $, can be obtained by noting
that

'

n( = ,(x„-, 5&
-k;) =:-,(K., -&(),

which gives

q, =2(n,.x)-'I p„, ~„, -(,I-'
x 1+,. p 1+P

[1+(p„.z„) ] (1+$,.)) —I ($8)

This result shows that g, is expressed as a linear
combination of the following functions of the inte-
gration variable $, :

I p„.~„,. -(;I ' and (;I p., ~„,. -(;I '
~

Since the hyperspherical surface harmonics
Y„, .(q, ) contained in Eq. (37) are merely finite
polynomial expansions in terms of

~ p„z„.—&;~

and $, ~ p„, z„, —$, ~
", q ~ 2; it follows that we can

consider these expressions as the result of the
action of a differential operator with respect to
p„.z„., on the quantity

~ p„.z„. —g, ~

~. Thus the tran-
sition amplitude may be written

, d( dg (, ~ ~, l p„,~„,-(, l

' r(g„g, ) ~ p„~„—(, ( 'g, e„ (39)

where

s =(s v - ).
~ng "ng ~ ~n ng~p ~n. "n.

The calculation is then reduced to the evaluation of the remaining integral, to the determination of
the explicit form of the operators 'JJ, and of their action on the result. Now, the integral has been
calculated by Gazeau, "who obtained

J|J(, , dg, dg, g, e, ) p„,K„,—$ I 'r((„&,) I p„,~„,—g, ~
'(, E,

(40)

Here, the functions P, are given by p„., ='inf(p„, , 1);
) 1~ cos&d (K» K» )o

(41)

g', =(p„,p„&) ' (1/b)F, (b, a, a, 5+1;Re',Re ' ),
(41')

and F,(n, P, P', y;x, y) is an Appell hypergeometric
function of two variables. " The operators 'g which
enter Eq. (39) are obtained from the explicit form
of the corresponding functions Y„,„(q,). For in-
stance we have, respectively,

where

R =(p„,,p„,,/p„,,p„,)),

p„., =sup(p„, , 1);

Y„,(q, ) =(2n') '~',

Y„,(q, ) =(2m')-'~'2q. ..
and thus

(42)
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ry (2+2 )- 1/2

J200( Pg & P2 K 2 )

=(2~')-'~'2(x', IIf, I

'

(43) T~)~ (N ~q R2) =C
g 2

xlei "~ 2+ (pi~i e2)(p2 2 ei)~.],

x[s(p K ) + (2+x )xp2 sp p2] —1] .
(43')

The last result is obtained by using the following
derivation formulas:

where

o'm 2mpx( io 2o ) ~m+i

2+v 2
/PPg V

28

I p~ —(I"=p' '(q —1) '(1 —p') 'sp

x[p' 'Ip~-(I ""],
(I p~-(I "=p~l p~-(I "

+2-'(q —1) 'B,„l p~-]I "-"

(44)
with

+ +P2 I(2O 1-R~,W2

X2-X2 — 2

(46')

(44')

From the above we can get easily the desired
explicit expressions for transition amplitudes re-
lated to the following.

A. Elastic scattering on a hydrogenic atom
in the fundamentaI state

TI)~ (0), (d)

2 —v

4x2
+

[( 1)a l, 2]a ( x'~2)(

x l,(3 —v, 3, 3, 4 —v;z, Z)
1

V

where

z = » exp I i arccos [(K,~, ),]],(x —1)'+k'

(46)

v = Z/x .
This result coincides exactly with Gavrila's. '

We can add, however, that here the structure of
the variable z permits us to display the angle be-
tween two four-dimensional vectors ~, and ~2.

B. Two-photon transition between 1Sand 2S states (Ref. 30)

The formal result is slightly more complicated
than the preceding one, owing to the structure of
the operator 'JJ~«[Eq. (43')]. One eventually gets

By specializing the general formula (40) with
the help of the transformation relations previously
given, one gets

(x -x.;)'+u,'.
(x+x„,)'+0,'

A =PjP2.

By taking the limiting values k,. -0, which cor-
respond to the dipole approximation, the ampli-
tude reduces to

[Typal (&u ~2)lap

= ~2 —,",v'(v+1) '(4 —v') '

x [-,'(1+v) —,F,(l, -1 —v; 3 —v;Jl„p)], (47)

which is the known result given previously by
Klarsfeld' "and Bapoport and Zon. "

By working out the calculation in the four-
dimensional space introduced by the Fock trans-
formation, we have encountered several advan-
tages. First, we think that after a simple assi-
milation of the quaternionian formalism, calcula-
tions are easier and more compact than in the
ordinary momentum space. Second, it appears
that this method is quite general and can be ap-
plied, in theory, to any second-order bound-bound
transition.

However, in spite of the generality of this tech-
nique its application to problems concerning higher
excited states becomes difficult on account of the
increasing complexity of the differential operators
'g involved. This fact has induced us to explore
the possibilities of other representations of the
CGF.

IV. BETHE SUMS FOR LAMB-SHIFT CALCULATIONS

(Ref. 33)

The Lamb-shif t of an energy level (n, l, j) in a
hydrogenic atom reads, to the first order in &,'

4 rnaZ„, , = 3, Q Q A, ,(Zn)'ln'(Zn) '.
i~4 k~0
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If we assume a pointlike nucleus, with a charge
Z and an infinite mass, the first terms of the ex-
pansion are, respectively, "

+41 ~7,0 ~

11 y 3 C7 j+4o= a4 o 5,o+ 8 2l 1
Inko(n l)

(48 )

where

Ci
~ i (l+1) '5g

~ i+i/2 l 5, , i-
corresponds to the contribution of the anomalous
magnetic moment of the electron; ——, comes from
the vacuum polarization [see Fig. 2(a)] and

Inko(n, l), corresponding to the nonrelativistic con-
tribution of the self-energy [see Fig. 2(b)] is the
so-called Bethe logarithm or logarithmic average
excitation energy of the level (n, l)."

To date, the calculation of higher-order terms
of this expansion was partially completed by
Erickson in 1971,"and many authors are cur-
rently carrying on the calculation of the terms in
Q

It is intereSting to recall that the lowest-order
terms A«and A„contribute 99.3% to the total
shift E» -E» in hydrogen and that the theory
gives a fairly good account of the higher-order
terms from which the global contribution amounts
to 0.7%. Now, the components of the coefficients
A.40 and A4, are all exactly known with the exception
of the Bethe logarithm, the evaluation of which in-
volves the calculation of a second-order amplitude.
Note that the contribution of the Bethe logarithm
amounts to about -369.8 MHz as compared with
a total positive shift E»

y
Q z y

+1057 9 MHz.
This led us to perform a new accurate calculation
which will permit a better comparison with the ex-
perimental results. We shall show below the in-
terest in using the CGF in such a computation for
the states 1S to 4P.

The Bethe logarithm corresponds to the finite
part of the nonrelativistic contribution of the self-
energy [see Fig. 2(b)] to the Lamb shift. It is
usually defined either as"

lnko(n, l)

g„,, I &n, 1 I p I
n', 1')I'(E„.-E„)I I E„-E„ I

g„, , I &~, 0
I p I

n', I') I'(Z„, -Z„)
(49)

or as'

Ink (n, 1o) =lim [&n'A„~, (K) ——,'nÃ+5, olney], (50)

.with

where P denotes Cauchy's principal value of
the integral. Note that the calculation is made
within the dipole approximation. Bethe" has
demonstrated that the retardation effect may be
neglected. to a very good approximation. For a
more recent discussion of this point, . see the
paper by Au and Feinberg. "

Calculations of Inko(n, l) were first performed,
for the low-lying states, by Bethe, Brown, and
Stehn" and improved later on by Harriman, "who
extended the calculations up to the 4p state. These
calculations were based on the direct evaluation of
the definition formula [Eq. (49)] using term-by-
term summation for the contribution of intermedi-
ate discrete states and numerical integration for
that of intermediate continuum states.

More accurate values wer'e obtained later on,
with the help of methods which permit the exact
implicit evaluation of the infinite sum appearing
in the equivalent definition [Eq. (50)]. We must
recall here the works by Schwartz and Tiemann, '
who used Da1garno's method, by Lieber, "who
used the Schwinger's representation of the CGF
[Eq. (13)], and by Huff, "who used Fronsdal's"
algebraic approach.

These very accurate calculations were restricted
to the lowest-lying states owing to the difficulty of
the analytical computation. Now several recent
experiments have been performed for many
higher excited states. Thus it seemed interesting
to provide accurate theoretical values for these
states. In order to achieve this purpose, we used
Hostler's integral representation [Eq. (18)], which
is well adapted for obtaining analytical expressions.

The main part of the calculation deals with the
evaluation of the integral A„,(K) [Eq. (51)], the
computation of which may be split into two steps.
First we have to obtain an analytical expression
of the second-order matrix element &nil pG(E„
—&o) p I nl); then we must perform the integration
over the photon energy z

K

A„,, (K) =P ed&@&nil pG(E„-&u)plnl&,
0

(51) FIG. 2. Lowest-order contributions to the Lamb shift:
(a) vacuum polarization; (b) self-energy.
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A. Analytical expression of &nl I p 6 (E„-u) p Inl&

It is easily shown that after performing the angular calculation, the matrix element can be reduced
as follows:

(nl I pG(E„-(d) pI nl) =
2l 1

&'dh ~"dh'a(~)G„, ()",)";E„—(o)a(~')
+

Q 0

+ ~'dr ~"d) 'b(t) G, ,()',~';E„—&u) b(r'),
+ p 0

(52)

where

a() ) = ———R„,(r),d l

l(r)= ( + )R„,(~)

(52'}

Z,"",(W) =2(v'-x')-'

-
(2)). + 1)!

(v + v t )2 k+2

and R„,(~) is the radial hydrogenic function

R„,()') =C„,e " ")",E,(-n+1+ 1;21+2; 2)'/n),

(52")

with

1 ( +l)!
(2( + 1)l (m —( —()( )

Given the structure of the functions R„,()')
one sees that the desired amplitude [E(l. (52)]
may be expressed as a linear combination of in-
tegrals

d)((~g()+)) e- (&(+)('r')G
(y ~P. W)

(56)

Note that this last formula shows that the ampli-
tude can be expressed in terms of the particular
integral J'~'", (W), i.e. , of the corresponding Gauss
hypergeometric function [E(l. (54)]. Expressions
of the amplitudes (nl I p G (E„—(()) p I nl ) for all the
states 1$ to 4P obtained in this way are listed in
Table I. It should be noted that these expressions
also may be used for the calculation of the amp-
litudes related to various other second-order pro-
cesses such as, for instance, the elastic scatter-
ing of photons or the so-called "light shift" of the
considered level of an atom irradiated by an in-
tense laser light.

(53)

where p is an integer &1.
Integrals of this type are easily evaluated in the

particular case P= 1, by using Hostler s integral
representation [Eq. (18)] of Gq(W)." One has

B. Calculation of the integrals A, &(E)

The second part of the calculation deals with the
evaluation of the finite part of the integral g„,(Z)
[E(l. (51)], which can be written, by introducing
the integration variable y = (nx) ' = (1+n'(d) '~'.

2k+2 (2) + 1))x2x+1 1 1 2
dyy '(1-y')

x 2F,()(. + 1 —1/x, 2)(. + 2; X + 2 —1/x z ) &&(nl I p Gp I nl& . (57)

(54)

where z = (v -x) (v' -x)/(v+x) (v'+x).
General integrals J ~'~ (W) are obtained from this

result by noting that

~(u-i) &(u- i)

»()-n &
() n-

which is symmetrical with respect to v and v' and

by using repeatedly the derivation formula

As a first step we have to extract from the in-
tegrand, the diverging terms corresponding to the
factors (- —,'nIf +5,~, lnK) contained in Eq. (50} and
which behave like y

' or y
' for y-0 (i.e., K ~).

It is thus necessary to study the corresponding
asymptotic behavior of the Gauss hypergeometric
functions involved in the expression of
(nl I p G(E„—u)p I nl). This may be conveniently
achieved by using the known expansion of these func-
tions4'
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b '2F, (m, b; b+1;z)

(1- )' + ( ) (I- )' + ~ ~ ~

m —1 (m —1) (m —2)

(m -1-b) ~ ~ ~ (2-b)
+

( 1), (1-z) '

(m —1 —b) (1 —b) ~
(m —1)! ~ q+b

'

=2' '(P+1 q)
' P(P-+1-q-) '&(P —l, q)

(59)

with

~(~,l +1) =-2 '~ '+~(p-l, f),
J(0, q) =(1—2' ') (q —1) ', Z(0, 1) =ln2.

The only term which requires a numerical com-
putation comes from the infinite sum included in
the expansion [Eq. (58)] of the hypergeometric
function. This sum may be written as follows:

Qz'(q+b) '=b '+Qz'(q+b) ', (60
Q=O q=l

where z =(1-y)~(1+y) ', ze [0, 1[, and b =!(.+1
-gy. The last sum clearly diverges at the limit
z-1 (i.e. , y-0). However, this difficulty is only

apparent, since
oo gC oo gO oo gC~ „b=~

q
-b ~ q(q, 1)

oo gif-b b-1)
q(q+ 1) (q+b)

=-ln(1-z)-5 (1+ - —In(1-z))

00

~ q(q + 1)(q +b)

(60')

(60(()

Since (1-z)=4y(1+y), it may be verified that
we have separated in this way all the divergirig
terms containing negative powers of y. Then by
replacing y by its value in terms of K at the lower
limit of the integration range we have to verify
that the factors ——,'nK+5, olney, contained in the defi-
nition [Eq. (50)] of Bethe's logarithm, are exactly
cancelled. Furthermore, it is interesting to note
that this procedure provides a very good test
a posteriori of the validity of the expressions of
(nl I pG(Z„—&u) pl nl) listed in Table I.

The remaining integration over the interval
y~ ] 0, 1] can be performed almost entirely
analytically since the integrand reduces essentially
to a linear combination of algebraic terms which
are of the following general form:

1

~(P, q) = dy ~'(1+7) '
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and that the integration reduces, in fact, to the
calculation of elementary integrals of the follow-
ing type:

p & -1, (61)

where g (z) is the logarithmic derivative of the
gamma function, and to the numerical quadrature
of an integral containing the remaining sum Eq.
(60"), which converges at least as

g q
3 = g (3) = 1.202 0 56 908 1 .

q=l

The routine used was a double-precision-arithme-
tic 24-point Gaussian quadrature which ensured a
very good precision.

The numerical results obtained by this method
are listed in Table II. As an independent check of
our analytical calculations we also performed an
entirely numerical integration of the finite part of
the integral A„,(K). The results obtained by these
two methods coincide up to 12 significant digits.

The comparison of our results with those pre-
viously obtained by the above-mentioned authors
shows an excellent agreement with the most pre-
cise results of Huff" for the lowest-lying states.
Note that the very recent calculation by Shima-
mura" agrees equally well with our results. On

the other hand one observes some discrepancies
with Harriman's results, "the most important one
being for the 3p state. However, even such dif-
ferences remain hardly significant from the ex-
perimental point of view.

As a comment on this part of our work, we nqte
that the use of Hostler's integral representation
[Eq. (18)j of the CGF has proven to be very useful
in the analytical calculation of the second-order
a.mplitudes considered here. The method is quite
general and can be applied successfully to the
study of any second-order radiative process with-
in the limits of Validity of the dipole approxima-
tion. However, we encounter some limitations in
its application when highly excited atomic states
are involved. As a matter of fact, the analytic
derivation of the expressions of the transition
amplitudes becomes very intricate since these
expressions are more and more complicated as
may be seen in Table I. This circumstance has
induced us to use a somewhat different approach
in order to compute the Bethe logarithm in higher
excited states 4& n (8. The entirely numerical
technique used is analogous to Harriman's, and
the results we obtained in this way are given in
Ref. 33.

On the contrary, the method we used in studying
higher-order multiphoton processes does not suf-
fer from these limitations. We present it in Sec.
V.

State Previous results Ref. This work (Ref. 33)

2S

3S
4S
2P

3P
4p
3D

2.984 149(3)
2.984 128 5(3)
2.984 128 555 9 (3)
2.984 128 555 765 50
2.811798(9)
2.811 769 883(28)
2.S 1 1 769 8(3)
2.811 769 893 2(5)
2.811 769 893 131
2.767 699(8)
2.749 859 (9)
O. O3O O16 37(1)

—0.030 016 697(12)
-0.030 016 75(6)
—0.030 016 708 9(3)
—0.038 188 52(i)
-O.O41 954 O(3)
—0.005 232 1(2)

38
15
39
42
38

2
15
39
42
38
38
38

2
15
39
38
38
38

2.984 128 555 8

2.811 769 893 1

2.767 663 612 5
2.749 811 840 5

—0.030 016 708 6

—0.038 190 229 4
-0.041 954 894 6
-0.005 232 148 1

TABLE II. Numerical values of the Bethe logarithm
for states 1S to 4P. The numbers in parentheses repre-
sent the estimated error for the previous results. The
uncertainty in our values should be less than three units
in the last decimal place. Note that Shimamura's results
(Ref. 42) were published after this calculation was com-
pleted.

V. MULTIPHOTON IONIZATION OF ATOMIC HYDROGEN

Since the advent of powerful laser sources, the
study of multiphoton processes has become an
important subject of experimental and theoretical
investigations. " Most of the theoretical work was
done within the framework of the perturbation the-
ory and thus required the evaluation of higher-
order (&)2) amplitudes. As is well known, "ex-
act" calculations of this type can be achieved for
hydrogenic systems by using either Dalgarno's
method' ' or the CGF method.

As previously mentioned, the calculation of
second-order amplitudes presents no major diffi-
culty within the framework of both methods, but
the generalization to higher orders is not straight-
forward. Gontier and Trahin' have succeeded in
generalizing Dalgarno's method to the calculation
of higher-order amplitudes. On the contrary, ap-
plication of the CGF representations previously
used in this paper to such calculations proved
rather deceptive owing to the increasing com-
plexity of the formalism. However, as we will
show, such difficulties may be overcome by using
the Sturmian representation of the CGF defined
in Sec. IID. The first attempts in this direction
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were done by Karule'. and Mizuno. " We present
here our own computations of cross sections for
multiphoton ionization in hydrogen.

A. Three-photon ionization

For the sake of clarity we shall first outline in
detail the calculation for the three-photon process.
As a matter of fact it represents an immediate
generalization of the two-photon case, and a fur-
ther extension to higher-order calculations can
be carried out without additional difficulty, as we
will show further on.

The differential cross section for three-photon
ionization reads, in atomic units,

(64)xy, „(~)1;* (k),

where q~ = arg I'(I, + 1 i /k) is th—e Coulomb phase

dn(k) 2w 0

where + is the fine-structure constant, ap 5 2917
&&10 ' cm is the radius of the first Bohr orbit, I is
the field strength intensity of the radiation field,
I, =7.019x10"W/cm' is the atomic unit of field-
strength intensity, k is the momentum of the photo-
electron ejected in direction of the unit vector k.
The magnitude of k is given by conservation of en-
ergy:

pk =E ~ +3/)
~

where E; is the energy of the initial atomic bound
state and u is the energy of the incoming photons.

The third-order amplitude Mt&'~, corresponding
to the transition of the atomic system from the
initial bound state

l i) to the final one l f) belonging
to the continuum, reads

~ &fl e ~ r
I s,) &s21 e ~ r I s,) &s, g ~ r

I i)
(E, +2~ E~, ) (Z; +re -E~,)-

(63)

where q is the unit polarization vector of the in-
cident radiation field.

The atomic system is presumed to be initially
in an arbitrary bound state

( r l i) = ( r
l num) =R„,(~) 1; „(P) .

The intermediate (virtual) states
l s,. ) belong to the

complete set of eigenstates of the atomic Hamil-
tonian

(r l s,.) =(rl v,.x,.p, ) =R„„(r)Y„.„,(~)

and the wave function of the photoelectron ( r
l f )

= (r l k) is given as the partial-wave expansion

shift and R~, (x) is the radial wave function.
The calculation is comprised of two steps which

correspond to the evaluation of, respectively, the
angular part and of the radial part, the latter rep-
resenting the main difficulty. It should be noted
that the angular part depends explicitly on the
polarization state of the incident light which in-
duces a "polarization effect" characteristic for
multiphoton processes. ' ' In consequence, it
seemed of interest to display the result of the
calculation for both linear and circular polariza-
tion.

J. Angular calculation

With a convenient choice of the coordinate-
system orientation one shows that the dipole in-
teraction operator assumes the forms":

e ~ r = ( —,
' m)'/'~ Y', ,(r)

for linear polarization, and

c ~ r = —( ', w) '/'~—1', ,(P)

(65)

(65')

(l + 1+m) (A. + 1+m)
2(2l + 1) (2z + 1) ~ '+'

(l+ 1-m) (X+ 1-m)
2(2l + 1) (2A. + 1)

(66')

As a consequence of the selection rule, A. =l+1,
the amplitude Qg&'~, can be split into four compo-
nents, each of which corresponds to one of the
accessible values for the final angular momentum
L'

(67)

Clearly the expressions of the partial amplitudes
M~ differ according to the polarization state of the
light. They are displayed in Table III.

After inserting mr/i'/', . [Eq. (67)] in Eq. (62) and
summing over the magnetic quantum number in
the final state, one gets the total cross section by

for right circular polarization.
The angular calculation is thus reduced to the

evaluation of known integrals over a product of
three spherical harmonics. Such integrals may
be expressed in terms of Wigner 3-j symbols, "
and one easily gets

4~ 1/2 [2 m 2 1/2

(21 1) (2~ 1)

l, = sup (l, A.), (66)
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integrating over the propagation direction of the
photoelectron. Eventually, by averaging over the
magnetic quantum number m in the initial state:

1
on ~ I 21+1 P nims

m=-/

one obtains the expressions given in Table IV for
three-photon ionization cross section either for
linear (a) or circular (o') polarization of the in-
cident light.

Incidentally, from these results one can check
that the maximum allowed value of the ratio g'/o
is equal to —,

' as previously derived for s states
by Lambropoulos~4 and independently by Klarsfeld
and Maquet. ' Moreover, one can demonstrate
that this maximum value is independent of the
initial state I n, l) considered by verifying that the
difference —,'o.„,-a„'

/
remains positive. The re-

sult reads

—;o„,-o„,=c „(„,) I(i+ 1) I q,„,l'+1
I q, , l'],

(68)

where

2(l+2) 4I.2+ 8$ + 5
Ql+1 21 + 2 &+& &+2 t+r +

(21 + 1) (2[ + 3) r+1, 1, l+1

2(t

2l 1 /-l, l, /+1~

2(l + 1) 4l'+ 1
l-1 21+ 8 l+l, l, l-l

(21 1) (21~ 1) l-l, l, l-l

2 (1 —1)
2I 1 /-1, l-2, /-1'

Before concluding the angular part of the cal-
culation re1ated to multiphoton ionization, it is
worth noting that we get some interesting sum

TABLE III. Angular dependence of the partial-wave components of the three-photon ionization transition amplitudes.
For each polarization state of the incident light there are four components corresponding, respectively, to the accessi-
ble values of the photoelectron angular rnoxnentum I.=l + 1, l + 3. The quantities denoted T& & & represent the radial
part of the amplitude: T~, ~& I, ——(k,I.

I rG~, (E„+2cu)xG&, (Z„+&O'
I
nl). ,

Linear polar ization

[(l+ 1)' —m']t(l+2)' —m']l(l+3)' —m'] ' '
l+3 = + /+3, m )

(2l + f )(2l + 3)2(2l + 5)2(2l + 7) l+1, l+2, l+3

(l+ 1)2 m2 3/2
~ /+1 iq/+1 y/+1 l+1 (2l+ 1 )(2l ~ 3) /+1, /, /+1

((l + 1 )2 m2] [(l + 2)2 m2]2 1/2 (l2 m2)2((l + f )2 m2] 1/2

(2l + 1 ) (2l + 3)3(2l + 5)2 l+1& l+ 2 ~ l+1 +
(2l 1)2(2l + 1)3(2l + 3) l-1~, l+1

~ l 1 it) ~ (l2 m2) tj(l + 1 )2 m2]2 1/2

1~ ~ (2l f)(2l + f )3(2l + 3)2 l+1 l /-1

+

~

~

2

~

~
2

~ ~
~

2

~

2

~ ~

2

~

~ t

2

~

~i
1~

2

~
»

~ ml2 m2 3/2 (l2 m2) ((l 1 )2 m2]2 1/2

(2l 1)(2l + 1) /-fg l, l-1 +
(2l 3)2 (2l 1 )3(2l + 1 )

/-f~ /-2y

. l 3 ir) ~ (l —m )f(l —1) —m ][(l —2) —m ]
l-3 { ) /-3, m( )

(2l 5)(2l 3)2(2l f )2(2l + 1) l-1 l-2, l-3

Circular polar ization

(l + 1 + m) (l + 2 + m ) (l + 3+ m) (l + 4 + m) (l + 5+ m) (l + 6+ m)
8 (2l + 1 )(2l + 3) (2l + 5)2 (2l + 7) /+f~ l+ 2y l+ 3

i t)
/ f (l —1 —m ) (l —m ) (l + 1 + m ) (l + 2 + m ) (l + 3 + m ) (l + 4 + m )

8(2l + 1)(2l + 3)

T~/-fy/g l+1 Tl+1, /+2g l+1 l+1, /, l+1

(2l —1)(2l+ 1) (2l+ 3)(2l+ 5) (2l+ f){2l+3)

. l 1 in/ f~
" (l — —m)(l —2 —m)(l —1 —m)(l —m)(i+1+m)(i+2+m) '

/-1 ~ 51+3 8(2l 1)(2l f )

~/-1, l, l-1 Tl-f, l-2, l-1 Tl+1, / l-1

~ (2l —1)(2l+ 1) (2l —3)(2l —1) (2l+ f)(2l+ 3)

M' —{ ')' 3 i~/-3Y (k
(l—5 —m)(l —4 —m)(l —3 —m)(l —2 —m)(l —1 —m)(l —m) '

/ 3 ~+3 8(2l 5)(2l 3)2(2l f )2(2l+ f )



USE OF THE COULOMB GREEN'S FUNCTION IN ATOMIC. . . 1101

TABLE IV. Explicit expressions of the total three-photon ionization cross section for an atomic (n, l) state according
to the polarization state of the incident light.

Linear polar ization

I 1 6(l+ f)(l+ 2)(l+ 3) (l + 1) (24l + 96l + 150l + 108l + 35)
2IO f05 (2l+ i)(2l+3)(2l+5) (2l+ f)3(2l+ 3)' I ~leg, l, g.( I

2(l+ 1)(l+ 2)(6l~+ 25l+ 28) 2l(l+ 1)(6l~ —l+ 2)
{2g+i){2l+3)(2g+5) ~ + +2 + ~ (2l —i)(

4l(l+ 1)(6l + 13l+9) ~ 4(l+ f)(l+2)(6l + f 1l+7)
(2l+ f)3(2l+ 3) ( i+is l~ l+1 / -i~ l& I+i)+ (2l + 1)2(2l + 3)2 ( 7+i& l2l+i 1 +1& l+2, I+i)

l(24l +6l +5) p 12l(l+ 1)(l+2)
+

(2g i)2(2g i)2 I l-l, l, 1-1 I
+

(2g ~ i)2(2g ~ 3) l-1, l, l+1 I +1, 1+2, !+1)

2l (l —1 )(6l —13l + 9) , 2l(l+ f)(6l'+ 13l+9)
(2g 3)(2g i) (2g i) ~ ~ ~

(2g i)2(2g 3)

4l(l —f)(6l +l+2) g 4l(l+ 1)(6l —l+ 2)
(2l 1 )2(2l + 1 )2 ( l-i, ls l-1 l-i, l-2) /-1) +

(2l ~ 1)3(2l 1) l-i) l y l-i l+fy 1s l-i

12l(l —1)(l + f) ~ 6l(l —1)(l —2)
+

(2l i)(2l + i)2 g 1 g 2 g 1 le1 leg 1 +
(2l 3)(2l i)(2l+ i) 1 1 l

Circular polarization

g 4 2 2 I 1 (l + 1)(l+ 2)(l+ 3)
2I(, 7 (2l+ i)(2l+3)(2l+5)

l(l+1)(l+2)(2l —f)(2l+5) T)+f $+2 )+i Tg+i ) g+f T$ i g $+f

15(2l+ 1) (2l+ 3)(2l+ 5) (2l+ f)(2l+3) (2l —1)(2l+ 1)

l(l —1)(l+ f)(2l —3)(2l+3) Ti-i, ), t-i Tl-i, l 2 /-i Tl+i, l, l-i
15(2l+ 1) (2l —1)(2l+ 1) (2l —3)(2l —1) (2l+ f)(2l+ 3),

l(l —1)(l —2)
{2g 3)(2g i)(2g i) I g-(kg-2kg-21

rules verified by particular products of signer
3-j coefficients. ~'

2. Radial part calculation

The second part of the calculation deals with
the evaluation of the radial part of the amplitude;

Tg, „z=(R„z ~rGg, (E„+2og)2 G~ (E„+(d)rlR„g)

(69)

where R„( )g2is the hydrogenic radial function for
the initial bound state

~ n, l) [Eq. (62")]; Rg, z cor-
responds to the final continuum state for angular
momentum I. and is given by

R~ z=C» ze ""rz gFg(zgg '+L+ 1;2L+2;2i722'),
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FIG. 3. Three-photon ionization rates from the hydro-.
genic state 1s. Solid line: circularly polarized light;
dashed line: linearly polarized light.
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By replacing in E(I. (69) Gl. ((2)) by its Sturnlian representation (32), one gets
»

(2 )2)». +1

T~ ~ ~ =C„,C, ~2' jg -[,' 1) ], Q &,J(n, l, (1/n)~m„x„x,)
q 1 pql )ql+1

q+

x p IC,g(m„v„x, l m, , z„x,)Z(m„](„x,l
—i/k, L„ik),

m&=X2+z

where

1 -' (m;+][.;)!x. = (n ' —2j (d)'/', K. = m. ——
x, (m,. —A., —1)! '

q(m, », «lm', »', x )=f 2 «-'-'« "'"*',P(»+( —m, 2»+2;2x«), I', (»' 1 —m', 2»'+2;2x'«).
0

(72)

Since the coupling of angular momenta imposes the selection rule A,
' =A, + 1, these integrals turn out to be

of a well-known form, studied by Gordon. " One finally gets

(2g) + 1) [ x) —x(

X,E, (X, + 1 —m, —q, X, + 1 —m, ; 2y„-4x,x, /(x, —x, )'), (73)

where A.,=sup(](. , A. '), A., =inf(A. , A. ')I and m„x, (m, , x, ) are the values of the parameters m, x corresponding
to A., (A. ,).

This is nothing but a generalization of Gordon's formula to the case of a transition between two "Stur-
mian" states. One can verify that by substituting x-1/n, x'-1/n' and m -n, m' n' one recovers Gordon's
formula for the radial transition matrix element between two hydrogenic bound states.

It should be noted that the expression of J(m, A. , x
~
m', A. ', x') [Eq. (73)] is valid also for complex values of

the parameters m (m') or x (x'). However, in this case it is mare convenient, for computational purposes,
to use equivalent forms, given in terms of real variables, for these expressions. With this aim we have
adapted to our problem a method proposed by Karzas and Latter. "' %e obtained in this way the following
results;

Z(m„x„x, i -i/k, X, —I, ia) = (2A., + 1)!exp [0 '(2 tan 'p —]])]

«Q (—1)'( )(1+p )' [x,(m, +1 —q) —1]G» (», +q —1 —m; (/2;p),
q=o

Z( ~ ~
~

— /u ~ .1 n) =-2 ""'"""P"'('"
29 29 2 9 2 9 y2A. +6 t

&& 2 wm +2

xP( )p()(1 p')'[1-x (m, +1 —q)]G», (», q«( —m„1/2;p),
@=0

(74)

(74')

G, (-m; q; p) = (1 - i]o)' "

p=x, k ', o. =Z, +I —m, (q' —q —1),

p =32+2+ (m2+ 1) q2 —(3m2+2) q+m2,

x,E,(-m, l -iq;2l; -4ip(1-ip) ~)

and the real polynomials G, (-m;q; p) are defined
as follows: with

= gf),p', (75)
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In addition we display the
variation of the ratio a'/o
vs wavelength. It appears
that this ratio remains
often near the theore-
tically maximum allowed
value of 2.
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l
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I
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b, = 1, b, =2m@/l,

bz = s'(2l+ —s+1) '

x [4q(s —1-m) b~,
+(2m+2 —s) (2l+2m+ 1:-s)b~ ~].

As a consequence of these results, one sees that
irrespective of whether the functions
Z(m, A. , x ~

m', X', x') have imaginary or real argu-
ments x (x') or m (m') they can be evaluated to
any desired accuracy owing to their polynomial
character. The reduced amplitude Tz, z I, [Eg.
(71)] is thus given as an infinite double series
each term of which is expressed in terms of the
polynomials J(m, A. , x ~

m', X', x'). We have verified
that such series converge quite rapidly. Thus one
may choose to cutoff the sum when the ratio of the
nth term u„ to the partial sum S„ is lower than an
arbitrarily small parameter e: ~ u„/S„~ &e.

Our calculations have been performed with
& =10 ~, but we have checked that the total value
of the sums were not affected, within an accuracy

6of one part in one thousand, if one chooses e =10
or & =10 '.

In this way we easily get the transition ampli-
tude and then the three-photon ionization cross
section from any given bound state. These re-
sults have allowed us to study in greater detail
the polarization effect for states 1s through Sd.
Our results are summarized by the curves dis-
played in Figs. 3-5.

For the lowest-lying states 1s and 2s our re-
sults coincide with those of Gontier and Trahin. "
For more excited states our results confirm the
overall advantage of circular polarization, since
the ratio o'/o remains greater than unity for large
domains of frequency of the incident light.

%e can mention also that values of the cross
sections at the three-photon ionization threshold
may be obtained easily from the above-given ex-
pressions. As a matter of fact, this task may be
achieved by taking the limiting value of the func-
tion J(m»X»x, ~

-i/k, f,, ik) for 0-0 (correspond-
ing to zero kinetic energy of the photoelectron).
This procedure corresponds to a confluence trans-
formation of the Gauss hypergeometric functions

2 1F involved in the expression of J'(m„X„x,
~

i/k. , I., ik) [Eq. (73)].—One gets eventually

=(-1) 2 ~2 ' ' ' " [x,(m, +1 —q) —1],F,(X +2q- m,
—1;2A.„4x,e 2~"2&2K. +1&I 2 '

g
~~76&2k2+c



A. MAqUEy

.~ (cm8W-2)
$2

g 37

10 38

&0
38

I

I
I
I

I

I

I
I

I
I

I
I

I
I

I

I

I
I
I
I

I

I

I
I

(crn ~-2)
I

10 37

@-38

i038-

(pl

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I

I
I
I

I
1

I

I

I
I
I

I

I

I

I
I
I

I

I

I

I

I
I

I
I

I
I
I

I
I

I

I

I
1

I
I

I

I
I

I

I
I

I

I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I

0 (cm8W-2)

12

)0 37

g)-38

)0-38

I
I

I

I

I
I

I

I
I
I
I
I
I
I
I

I

I
I
I

I

I
I
I

I

t

I

I

I

I

I
1

I

I
I

I

I

I

I
I
I

2,5

I

20000
I

2000024ooo A(A)

l

20000 24000 &(A)

FIG. 5. Polarization effect in three- h t

24000 5(A)

c 3d
in ree- p oton ionization rates from the h d

po arization; dashed line: linear olar'
a e; 3p state;

vs wavelength it may be verified that f
r po arization. From the variation of th

an ular
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»m [/(m„&„x, l
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( 1)~ +1 2e "2(2X2+ 1)! . 2
o.P [ 1 -x &m + 1—-q)]ISI(X +q+1-m 2~ 4x-') (76)

a=0
2 27 2P 2 p

where, E,(a;c;z) denotes the confluent hypergeometric function.
Substitution into EIl. (71) then yields the desired result

through 6d.
i s e esired result. " We list in Table V our values for states 1s

B. Higher-order calculations

The generalization of the above-des 'b d f— escrow e formalism to hi her-ordg - o Q " g
presen expressions of the total cross s

since they are too cumbersome. Inst d
o a cross sections, as in Tables III and IV

e. s ea the angular part of the am litud
cally. On the other hand, the radial art ~c

p i e was computed entirely numeri-

way exactly similar to that we described in S
a ia part corresponding to the reduced amamplitudes T) was evaluated in a

r se ponds to the insertion in the expr
' f

escri e in Sec. VA. The increase in the number of involved photons cor-
express~on of the reduced am litude Tp

th e ionzzatxon by N photons of ener t '
e a om. As a rule, an Nth-order reduce

ergy e con ains N-1 such sums:
d amplitude corresponding to

N-1 (2x,)'
2I 1Ii nl I 2 gI,, &t [(2y + 1)t]2

K,J'(n, l, (1/n) ~ m„X„x,} Q K Z(m X ~I

my=Xg+1
1P 1)l 1 2 191 11 X 1 2&1~2I X

m2=~3+3.

mN ~ Xg ~+1
mg-a~ g-2~&~-a ~m„„„„x„,m, „~„„x„,)Z(m„„~„„x,, l

-2I& I»



USE OF THE COULOMB GREEN'S FUNCTION IN ATOMIC. . .

where the notations are identical to those of Sec.
VA, Eq. ('ll).

The numerical computation of such multiple sums
does not present major difficulties since, as we
have shown, each term of the series may be evalu-
ated to any desired accuracy.

We have tested our results by comparing them
with those previously obtained by Gontier and
Trahin" for 1s and 2s states, and for processes
involving up to N =8 photons. This verification
provides an independent check of the numerical re-
sults obtained within the framework of the pertur-
bation theory.

On the other hand, we have used this formalism
in order to study the role of the initial excited
state on the polarization effect. We present some

of our results for the six-photon ionization of the
states Ss through Sd (Fig. 6). The results con-
firm the generally accepted analysis according to
which the linear polarization becomes more and
more advantageous as the number of photons in-
volved increases. "" Results at the threshold
may be obtained in the same way by generalizing
the formulas (76) (see Table V).

Moreover, it appears that this method may be
used also for even higher-order calculations. So
we have evaluated the 12-photon ionization cross
section from the 1s state by circularly polarized
neodymium laser light (A. =10600A):

I g 4)(gO- 174 cm24 W- ll
&()r=i2)

This result has been obtained independently by

TABLE V. Polarization effect in N-photon ionization transition rates at threshold, i.e. , for a zero kinetic energy of
the photoelectron. We give data for the atomic states 1S to 6D included and transitions involving Ã = 3, 5, 6, 7 photons.
For fourth- and eighth-order transitions the cross sections do not remain finite since the process becomes resonant
(at least with linearly polarized light). The format A. (n) means Q & 10".

Stat

2S

3P

5$

3.5o( 4v)
6.10(—47)

8.tO( 42)
s.eo( 42)= '

1.48( 41)
e.oi( 42)

4.1v( 39)
3.32( 39)

6.22( s9)
a.oo( 39)

6.45( 39)
2.82{ 39)

1.63(—34)
8.10{ s5)

2.oo( s4)
i.os( 34)

2.69( 34)
1.23 (-34)

2.4o( 35)
1.42(-35)

3.40 (-35)
i.v8( s5)

4.86 (-35)
2.29 (-35)

2o98 (~35)
9 95( 1)2.99(—35)

3,89(-35)
s.2o(—s5)

.4O( 35)
s.4v(-35)

1.8s( ve)
e.93(-75)

4.45(—67)
( )e.es( 66)

s.86( 66)
9.20 (-66)

8.65(-60)
(6.80(-59)

1.41(-60)
(

V.69( 59)

1.58 (-59)
6.18(—59)

1.2S( 54)
2.99( 55)

2.9S( 54)
4.8V( 55}

6.43(-54)
8.84(—55)

4.38{ 51)
i.sv( 52)- '

7.89(—51}
1.87(-'51)

1.48(-50)
5 342.76(-51)

436(-50) 332i.si( 5o)

v.52(-5o)
1.78(-50)

1.42( 49)
2.68( 5O)

4'"-'"-1vv( s)2.54(-88)

5.45( V9)
1.16( v5)

2.6o( v8)
9.88( ve)

1.2v( 72)
5.55(-vi)

9.8v( v2)
v.9v( 71)

x.34( vo)
8.75(-71)

v.53( ea)
1.86(-62)

v.95( es)
2.2S( 62)

=' "'-"
s.8o(-es) =1.59( 1)

5.75(-63)
2 38( 2)2.41( 61)

1.42( ea)
2 57( 61)

= '(-')
1.53{ 62)
2 59(-61)

e.sa(-58)
9.5V(-59)

1.15{ 5v)
1.38(-58)

2.51{ 5v)
2.5O( 58)

1.14(-1O5)
( )

v.v4( 91)
2.O4( 89)

f..40(—90)
S.49( 89)

2.80( v9}
4.84 {-77)

7.93(-80)
( )5.ve( vv)

1.51( 8O)
( )

5.38( 75)
4( )

—-9.07(-1)

4.e8( v5)
8.24( 75)

='"'-"
4.32 (-76)
i.o9( v4)

i.vo(-69)
44O( 69)-

2.31( 69) =4.ev(- 1)

2+50( 69) 4 64( 1)5.40(—69)

5.16(-63)
( 1)2.19( 62)

7.13(—63)
)2.35{-62)

-3 66{ 1)
)

3 66{ )
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Karule who used a similar technique.
Before summarizing our results in Sec. VI we

wish to emphasize that the Sturmian represen-
tation of the CGF seems to us the best adapted
for this type of calculation. As a matter of fact,
any amplitude corresponding to a higher-order
transition may be expressed in a form similar
to that given in Eq. (VV), whatever the considered
initial and final hydrogenic states. Moreover, as
we previously pointed out, the numerical calcula-
tion consists of summing up infinite (convergent!)
series of polynomials, which consequently can be
computed to any desired accuracy. These features
are characteristic of the Sturmian analysis and
strongly facilitate the programming work, since it
does not require sophisticated numerical methods.
For instance, we think that the "Sturmian" tech-
nique compares very favorably with Dalgarno's
method. As a last comment, we strongly recom-
mend the use of the Sturmian representation to
future CGF userst

VI. SUMMARY

In this paper we presented some analytical and
numerical results concerning various higher-
order yrocesses occurring when a nonrelativistic
hydrogenic system interacts with an electromag-
netic radiation field. It should be noted, more
yrecisely, that we described these processes with-
in the common framework of the time-dependent
perturbation theory. Our contribution may be con
sidered as twofold.

(i) We derive analytical expressions of some
second-order amplitudes. So we studied the re-
tardation effect in two-photon bound-bound tran-
sitions, and we evaluated the nonrelativistic part
of the self-energy contribution (Bethe logarithm)
to the overall Lamb shift for the levels 1S-4P.
The analytical expressions obtained allowed us to
get very accurate numerical values of the Bethe
logarithm.

We also studied higher-order processes and, in
particular, we have been able to compute tran-
sition rates for multiphoton ionization from any
given hydrogenic state. Our results provide an
independent check of those obtained by Gontier
and Trahin, "who used a different method.

(ii) From a different point of view our work may
be considered as an investigation of the respective
advantages offered by the various CGF represen-
tations. For instance, if we restrict ourselves to
second-order amplitudes and if one needs anal-
ytical expressions which easily lend themselves
to formal manipulations such as analytic continu-
ation, etc. , it seems preferable to use integral
representations of the CGF. Thus for calculations
performed within the dipole approximation Host-
ler's representation [Eq. (18)] is convenient; see
Sec. IV. On the contrary, if one has to include
retardation effects, one may use either Schwinger's
four-dimensional form [Eq. (13), see Sec. III], or
Hostler's expression, see Ref. 20.

On the other hand, it should be noted that with-
out the above-mentioned conditions the Sturmian
representation [Eq. (32)] seems strongly recom-
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mendable in view of its ease of use particularly
for higher-order calculations. As a matter of
fact, higher-order amplitudes are then given in
terms of multiples series, the evaluation of which
does not require sophisticated numerical methods.

Note added in Proof. Very recently Khristenko
and Vetchinkin" used also the Sturmian repre-
sentation of the CGF in two- and three-photon

ionization calculations. The results they obtained
are in good agreement with our own data.
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