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Nonadiabatic spin transitions in an inhomogeneous magnetic field
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Model calculations are presented for nonadiabatic passage of an oriented spin through a reversing solenoidal
magnetic field; these are useful for comparison with experiments described elsewhere. The model corresponds
closely to the well-known Landau-Zener-Stueckelberg model of a two-state curve crossing in molecular
collision theory; various modifications appropriate to the Majorana problem are considered. The resulting
transition amplitudes are discussed for the F = 1 hyperfine component of the 2 S,&, metastable state of atomic
hydrogen as an example.

I. INTRODUCTION

Nonadiabatic passage of a beam of atoms with
oriented spin through an inhomogeneous magnetic
field was studied in the 1930's for its potential
relevance to measurement of the sign and magni-
tude of nuclear magnetic moments. ' " Early
theoretical work by Majorana4 considered passage
of a spin through the neighborhood of a point of
zero field and established general concepts of such
processes, now commonly called Majorana transi-
tions. Early experiments and their interpretations
were limited by experimental techniques then
available, but Kellogg, Rabi, and Zacharias' were
able to determine the sign of the nuclear magnetic
moment in the hydrogen atom by this method.
Further work of this sort was then overshadowed
by the rapid development of beam magnetic res-
onance methods, which provide a more direct and
simpler approach to the nuclear moment proper-
ties.

The explicit study of Majorana transitions has
since been neglected, and frequently they are men-
tioned only as something to avoid experimentally
because of their possible depolarization of a beam
of oriented spins. "'" However, as shown experi-
mentally in work presented elsewhere"' "a pro-
perly designed nonadiabatic passage device can be
used to preserve the polarization of an oriented
spin while reversing the field direction. This has
an important possible application in the case of the
I' =1 hyperfine component of the 2'Si/2 state of
metasable atomic hydrogen (cf. Sec. IV). Calcula-
tions presented in this paper were done with this
problem in mind.

In this paper we consider Majorana transitions
for a model inhomogeneous field which reverses

direction; the model field is a reasonabj. e approxi-
mation to that actually present in relevant experi-
mental work. " '4

According to the theory of angular momentum,
transitions among the 2 j+1 magnetic sublevels of
a system of fixed angular momentum j, produced
by a time-dependent magnetic field H(t), are com-
pletely characterized by a rotation of the angular
momentum vector i in three-dimensional (physical)
space, and the Eulerian angles prescribing that
rotation depend only upon H(t) and the effective
magnetic moment, not on the value of j. This fact
is implicit in Majorana's paper4 but was more
fully developed in later work on the precession of
angular momentum in time-dependent fields (see
the review by Bloch and Rabi"). This means that
the (2 j+1)-dimensional unitary evolution matrix
for such a system, U(t, t, }, is just the jth irre-
ducible representation matrix for a finite rotation,
with Eulerian angles n(t, to), P(t, t,}, y(t, to), and
the equations of motion for these angles are j in-
dependent. But for the case j = —,

' the resulting two-
state problem is often familiar in some other phy-
sical context. This is the case for our model,
which is just the well-known Landau- Zener-
Stueckelberg' ' model for potential curve cros-
sings in molecular collisions. We can therefore
turn the existing analysis of that problem to use-
ful account in the present context of Majorana
tr ans itions.

In Sec. II we briefly develop the theory and its
application to our model problem. Section III con-
siders possible modifications and improvements to
the model, and in Sec. IV we discuss the specific
application of the results to the passage of a pol-
arized beam of metastable (2'S,~, ) hydrogen atoms
in the I' =1 hyperfine state through a reversing
solenoidal field.
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II. THEORY AND MODEL PROBLEM
V

Consider a neutral atomic particle of fixed spin
j moving classically in a spatially inhomogeneous
magnetic field. We assume the field is weak
enough that internal vector couplings of the angular
momenta forming I are unaffected (for example,
the hyperfine couplings, if I = F =I+8), and j is
constant. Since the field seen in the rest frame of
the particle is time varying, transitions can occur
among the magnetic sublevels. Adiabatic passage
occurs if the field changes slowly with respect to
the Larmor frequency (d =gq psH/k: then a system
in state

~
jm) of the initial field evolves into a

system in the corresjonding state (}jm))of the
local field at any later time. If on the other hand
the field changes rapidly compared to e, "diabatic
passage" bccurs: a system in state

~
jm) of the

initia, l field remains in t; at same (fi. xed) state,
which is a superposition of many states (}jm'))
with respect to subsequent local fields. One then
speaks of "nonadiabatic spin flips" or "Majorana
transitions. " For situations intermediate between
adiabatic and diabatic limits, the equations of mo-
tion for the system must be solved.

The time-dependent Schrodinger equation for the
spin system is ih(a(l)/Bt) =X), with K= t( ~ H(t),
where H(t) is the magnetic field in the particle's
rest frame and p, is the magnetic moment associa-
ted with the spin j; here we consider atomic sys-
tems" with

I =g(f)u 1

For our problem the field is assumed cylindrically,
symmetrical about the z axis, and the particle
moves parallel to this axis at fixed distance ~ from
it(azimuth') takentobezero) asshownin Fig. 1. The
field can be expressed in terms of its parallel com-
ponent H, and perpendicular (radial) component
H„(=H„), or in terms of the local field magnitude H(t)
and direction 8(t); these depend parametrically on the
off-axis distance r (from cylindrical symmetry,
H„=O for r =0). We assume that initially the
particle is moving in a homogeneous solenoidal
field, with H, constant, H„=O; then it crosses an
inhomogeneous region, over which H, reverses
direction and H„0; finally it emerges into a
second (reversed) homogeneous field region. Al-
though the magnetic fields experiences in the
remote past and future (beyond the outer ends of
the homogeneous field regions) play an important
role in any real physical setting, our study here
is not directly concerned with their effects„we
calculate the time evolution of. the system only
through this particular field region. Specif ic
prescription of the model field is given later.
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I IG. 1. Particle in a cylindrically symmetric but
spatially inhomogeneous magnetic field; the particle
moves at constant velocity v, parallel to the cylinder
axis (a axis) but at distance x from it.

q=P A.(t)(jm), (2)

A(t), the (2j+1)-dimqnsional representative of
obeys the equation

= = ———u)(t) Icoss(t) j,+sin8(t) j„)A(t)
dA. i g

k go

where g= g(j), u&(t) =g,psH(t)/h is the local Lar-
mor frequency, and j„j„arethe matrices for the
z, x components of angular momentum. It is use-
ful to describe this in interaction picture,

A„(t) =a„(t)exp (-i —I
go

yielding the equations

t
~(t')

eased(t')dt )'
(4)

d
—= i(g/go)-(u(t) sinS(t) Za (5)

where the nonzero elements of E are

Ã, , =h '(jm+1(j„~jm)

t
&exp +i (d f, co86} t dt

~o o

(6)

gquations (5) are the equationsof motion in diabatic
xepre senPati an.

It is also useful to describe the motion in terms
of basis vectors rotating adiabatically with the
field, i.e. with a basis set (~ jm') ) quantized on the

A, Equations of motion

1. Explicit representation

Explicit representation of the problem is pro-
vided by expanding II) in terms of (2 j+1) magnetic
sublevel components (jm) defined with respect to
some reference axis. If we choose this to be (say)
the+a axis, and write
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be diagonal at all times. The transformed equa-
tions of motion are then

dQ . g ~ dD~
i —-&u (t)K"B(t) — D B

dt g —— dt ——

where

(8)

(9)

The matrix D achieving this is the (2 j+1}-dimen-
sional unitary representation of a rotation by 8(t)
in the (x, z) plane,

D„=d'."„.(8) =(jml exp[i 8(t)jp/'"] I
jm'& (10)

Here d„" .(8) is thequantity so definedby Edmonds"
and j, the y component of the angular momentum
operator. From (10) we obtain

dD~ i d8
dt — 2 dt ~'

again transforming to interaction picture, we put

(12)

and obtain the equations of motion in adiabatic re
Presentation,

dg 1d8—=-—Pb
dt 2 dt ——'

where the nonzero elements of P are

(13)

direction, z' of the local field H(t). This amounts
to a unitary transformation, A(t) =D(t)B(t), where
we require that

h 'D~(t) [cos8(t)j,+sin8(t) j„]D(t)=K"=K 'j, .

U» = [U-, —, ]*= -', [1+cosP] e'"'&i,

U&0=

Uo& =

—[U-„]*=2 '~'sinPe ",
—[U„-]*= - 2 't's inP e'~,

U--[U- ]*--'[1-cosP] e i

(17a)

(17b)

(17c)

(17d)

U„=U* = cos(p/2)e

U+ =- U*,=sin(P/2)e '~ ~

(18a}

(18b}

Appropriate superscripts A or D should be attached
to the Eulerian angles I, P, y. The etluations of
motion for these angles, and their solutions, are
j independent. This permits us to solve our model
problem for all j, including the case of explicit
interest j = 1, by determining the Euler angles
from the solutions for j =-,', which are those of a
familiar two-state problem in molecular collision
theory.

3. Symmetry properties

In addition to cylindrical symmetry the reversing
model fieM considered here has certain symme™
tries about its midpoint z =0 (t ~0):

gion; we need to compute the interaction picture
S matrices

s'=U (t„t ), s"=U"(t„t ).
According to angular momentum theory the sys-

tem's behavior always corresponds to a physical
rotation of the vector ] in three-dimensional space;
hence the matrices UD, U" are just (2 j+1)-di-
mensional representations of finite rotation (cf.
Edmonds" ) and are fully determined by three Euler
angles n, P, y. The forms for j=1 and j=- —,', which
are of explicit interest to us, are
j=l:

Il, (-z) =-ff, (z), e„(-z)=rl„(z}. (19)

2. Unitary time-development matrices

Unitary time-development matrices can be de-
fined for either representation,

Jf we take t = -t+, the unitary development ma-
trices have corresponding symmetries (for brevity,
proof is omitted):

a(t) = U (t, to)a(to),

b(t} = U (t, 4)b(t. ).

(15a)

(15b)

U'„(- t, O) = [U' &(t, 0)]*,

U"„.( t, 0) = [U"„„.-(t, o)]. (20)

U and U" obey E(ls. (5) and (13), respectively,
with initial conditions

U (4, 4) =1= U" (4, 4). (15c)

We assume the system is in a known state at a
time t, somewhere in the initial homogeneous
field region, and we wish to know its state at time
t „somewhere in the final homogeneous field re-

y (t„-t,) =-a (t, -t.)

y (t„-t.)=a (t„—t, ),
and for both adiabatic and diabatic angles

(21)

P(t„ —t, ) = 2P(t„ 0), o((t„—t, ) =o.(t„0). (22)

Since S = U(t„t, ) = U(t„o)U(0, t,—), additional sim-
plifications result; in terms of the Eulerian an-
gles,
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Pg=+jVo, II„=O, z ~ zo;

IIg = —IIo, II„=O, z & —zo;

H, =H, (z/z, ), -z, &z & z„.

(23a)

{23b)

(23c)

B. Model problem solution

The model field assumed is as follows (see Fig.
2):

for our specific model,

q(s) = —s'/2A . (26c)

The equations of motion in adiabatic representa-
tion (13) can also be expressed in terms of T(s),"
or they can be expressed in terms of 0 as in-
dependent variable and a characteristic function
called the adiabaticity, "

in the middle region, II„ is fixed by divH=O,

H„= —(r /2zo)HO = —pHo) -zo & z & zo. (2M)
(27a)

With fields defined by (23), the angle 8
[tan '(H„/H, )] goes from -v to 0. In the inhomo-
geneous region,

A. =— '~(t') dt' = o. (8') d8'
g'o

o -r/2
(27b)

the exponent in Eqs. (13}is the adiabatic phase

(g/g, )(o(t)sin8(t) =gpzH„/8 = —(gpzH, p/5). ,
(24a)

S
[1 +T (st)]x/2ds' .

0
(27c)

s=( gp.sH, p/8)t

and the characteristic variable v(s) given by

v (s) —= cot8(s) = —(v/pz, )t = -A 's,

(25a)

(25b)

where the fundamental parameter A is given by

A = (gp, zHozo/Sv)p —= cKop . (25c)

Equations (5} can then be compactly written with
s as independent variable, "

da/ds = —iK(s)a (s)

where K(s) is given by Eg. (6) with exponent

(26a)

(g/g, )(u(t)cos8(t) =g pzH, /A = (gpzH, p/A)(vt/pz, ),

(24b)

where v is the particle speed. lt is convenient to
define"

Using these parametric descriptions, it is evi-
dent that for j = —,

' our model problem is identical"
to the well known Landau-Zener-Stueckelberg" "
model of a two-state curve crossing, which as-
sumes a constant coupling matrix element (here
due to the transverse field H„) and a linear diagon-
al element difference (here, the Zeeman splitting
due to the parallel field H, )—more generally,
r(s) is linear in s." Discussions and modifications
of the theory of inelastic coupling in the LZS
problem" """ ' are therefore directly applic-
able here.

For the moment let us assume the particle en-
ters the inhomogeneous field region at t (=-t, )
and leaves it at t, (z, = vt }. We wish to compute
the state vector just after exit, A(t, +e), from its
value just before entry, A(-t, —e) (in the limit as
e-0'). Using Eq. (4) we find

z(t') cos8(t') dt' =g t

go n

T(s') ds'; (26b)
A (t, ) =g exp[- i(m-m')q(t, )] S' .A„.(-t, );

m~

(28a)

via the relation B(t) =D (t)A(t) and Eq. (12) we
can also express this as

o

-Zp Zp

~-H r/2zp 0

FIG. 2. Model inhomogeneous magnetic field.

A„(t, ) =+exp[-i(m-m')a(t, )]

&S D~ „( t, e)A~( t, ——e). (28b)

[Note that D(t, +e) =1, while D(—t, —e) represents
a rotation by 8 = —n ]As will be. seen below, Eg.
(28b) is often more convenient to express results.

Since the inhomogeneous region is finite
(z, & z &-z,), the LZS model and the corresponding
equations of motion are really valid only over a
finite domain of the independent variable
(s, & s & —s„-w +8, & 8 & —8„8,=tan 'p). How-
ever, at least for reasonable values of the off-axis
parameter p, velocity v, and field strength H„ it
will turn out that nonadiabatic transitions occur in
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a localized region around z = 0, well inside the
boundaries of the inhomogeneous region. This
means that the matrix elements of S or S~ can
be evaluated (except for phase in the case of S )
by taking the limit t,-~. This hypothesis corre-
sponds exactly to the analogous treatment of the
LZS model problem for curve crossingsi6-i8 an
has the same general conditions of validity. ""
In Sec. III we examine a modified model taking the
finite cut-offs into account.

It can be shown that in the limit t,-~ the param-
eters of S" all remain finite; this isn't true of
S . The results are those of the famous LZS
formula for j = —,', which yields the following re-
sults for the Eulerian angles

P"(+",—e)) ~d '"(+e), —m):

sin'[P "(+,— )/2] =exp[- vA/2],

n "(+~, —~)= Arg I"(iA/4)+(A/4)

—(A/4)ln(A/4)+v/4.

(29a)

(29b)

From Eqs. (29) we may compute the matrix ele-
ments for any j value required. Figure 3 depicts
the moduli of elements of S~ as a function of the
parameter A, for j =1, and Fig. 4 shows the angle

P =n "(+~, -~) vs A.
For the evaluation of A(t, ), which appears in Eq.

(28b), extension of the limit t, -~ is inappropriate,
since (27b) then diverges. Instead, we calculate
the integral to the finite cut-off point [or, alter-
natively, use an even more realistic model of the
field to evaluate A(f, }]. Employing our simple
model with the cutoff at az„we obtain

'(t ) =2~.[(I+p')'" —p'»p+ p'»[I+(I+ p')'"]]
(30)

"1.0

-m'/4

$ -o.s

0» i I I

1

A

FIG. 4. Phase P=o. (+00, -00) vs the parameter A.
Note that this only changes by 7(/4 over the entire range.

III. MODIFICATIONS

The solution given in Sec. II assumes a stylized
model field [Eqs. (23)], with discontinuous cut-
offs at az„and it assumes that S" can be ac-
curately computed taking t,-" (which yields the
LZS result}. In reality, the coupling region does
have a finite width and it is smoothly rather than
discontinuously connected with the adjoining homo-
geneous field regions. In this section we examine
two modifications of the theory which take these
assumptions into account and allow us to form
some estimate of their effects. The first treat-
ment explicitly considers the fact that the in-
homogeneous region is finite; the second is a
modified model which rounds off the discon-
tinuities at +z, .

A. Finite cut-off model

I I I 1 ( I l I ~ ( I 1

1.0

C
tD

E

~05

0

A

FIG. 3. Moduli of the matrix elements Sff Sj() and

S&~ vs the parameter A —clpp

The LZS model equations [Eqs. (26a) and (26c)]
have known analytical solutions for j =-,' (parabolic
cylinder functions). Therefore if we evaluate the
solutions at the finite. arguments + s+, we can
evaluate S"= U"(I„,—f, ) exactly. This approach
was originally suggested by Heinrichs for the
potential curve crossing problem, and though it
has been shown to be inappropriate for that con-
text, it is quite applicable here.

The dimensionless argument of the parabolic
cylinder functions in this problem has modulus
(s/A'~'), which is equal to n', ' at s, [Eq. (26c)].
For small n, (high velocity, very weak field), the
extrapolation s,-~ is obviously inappropriate.
However, the I ZS result does correctly predict
the diabatic behavior of the system in the diabatic
passage limit, and is incorrect only in its esti-
mate of the small deviations from that behavior
for small n, . In the applications of interest to us
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(cf. Sec. 1V), these errors are unimportant, the
region of greater interest being that with 0.'o & 1.
Should accurate results be required forgo ++1, ex-
plicit evaluation of the solutions (as confluent
hypergeometric series in n, ) can be performed;
the leading terms can also be obtained using the
perturbation expansion of the usual integral equa-
tion for U . However, this sort of application of
the finite cut-off model does not concern us here.

A more relevant application is to the case where
n, is moderately large (though finite), and we are
concerned with the effects of variation in the off-
axis parameter p, which defines the angle 0 at
cut-off, tan '9(S, ) = —p (we consider p~ 0.5; in
experimental applications, pa 0.25). Under these
circumstances, we find the following results [we
give S"= U"(t„—t, ) for j = —,'; Eqs. (18) then de-
termine the Eulerian angles P", o."]:

[S"], =[e ""~4[[D, (' —(p'/4) (D-, (')+p(1- e ""')' 'Re[(D, D-, ) 4'exp(iC, )]),

[S"],+=e' "[(1-e ""')' '[(D,*)' —(p'/4)(D —, )'exp(-2iC )] —pe '"~4[(D,*D, )e -D]],

where the phases 4 D, C „are given by

C D
= (n, /2) +{A/4) Ino. , —ArgI'(iA/4) —v/4

(31a)

(3lb)

(31c)

C „=—Arg I'(iA/4) + (A/4) ln (A/4) —m/4 —(n 0/2)[(1 +p')' ' —1] —(A/2) ln([1 +(1 + p')' ']/2j & (3ld)

the quantities D, and Dy are closely related to the
relevant parabolic cylinder functions and can be
well represented by asymptotic expansions for
moderate to large no. Over the range of no and p
of interest to us, they differ from unity by less
than 5/o. Equations (31) then give us some idea
of the deviations from the LZS formula, which are
of two sorts: (1) secular deviations proportional
to p', (2) oscillatory deviations mainly proportional
to p. The latter are transients caused by the dis-
continuities in the fields at +z„and will be damped
out if these are smoothed out as is the case in the
real system.

H„= —pHO f ' (z),

and we have

(33)

I

(25b), one obtains 5 = iAm/4 and the LZS result.
However, we can use more general forms for v(s),
provided the integral (32b) can be evaluated using
the appropriate analytic continuations.

In our problem the dependency relation between
H„and H, makes this simpler. Let us write

z =z/z„H, =H, f(z);
then

s=— tu{t') sing/(t') dt' =a,pf (z),
Ro o

(34a)

B. Generalization of model using Stueckelberg's method

Some parameters of ~"can be calculated for
more general models than that of Eqs. (23), using
a partly analytical method originally developed by
Stueckelberg" to discuss the LZS model problem.
Stueckelberg obtained a formula which gives the
modulus of the transition amplitude in terms of a
certain integral in the complex s plane. The con-
ditions for validity of this formula have been dis-
cussed by several a,uthors. ' ' ' The Stueckel-
berg formula is"' '"

sin[ p "(+~, —~)/2] = exp[Re(i5)] (32a)

+4
5 (1+T'2)'i'(dr/ds) 'dT

o+
(32b)

where the integral is on the pure imaginary v
axis. If v(s) is given by the linear form in Eq.

where 5 is a. contour integral defined as follows:
let T(s) be the function defined earlier [Eq. (25b)];
then

([f'(z)] '+ [f(z)/p]') "dzl p, (34b)

where T (Z(+ i )) = + i
As a suitable modification, consider the form

f (7) = tanhz. This function has the same slope at
z =0 as the LZS model, and the same asymptotic
limits of +1 in the homogeneous regions as does
Eqs. (23), but instead of sharp cut-offs at az, the
inhomogeneous region is tapered off gradually
around +z,("rounding" of the cutoffs is probably
overemphasized in this model). We find

5 =i(Av/4)F(p)

where

(35a)

w/2 cos g dp& p)=-
7r 0 (1—4p' sin'y)' '[1+(1-4p' sin'y)]'"

(35b)

from which, given the definition of r(s), it follows
that
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Figure 5 depicts F(p) as a function of p; F(0)=1,
while at the upper limit p =-,', F(-,') =4 —(8/&)
=1.45352. For the range of p values of most in-
terest to us, the value of F differs by at most 5'
from the LZS value I' =1. This tells us that the
L ZS prediction for the modulus angle P (t„-t, )
is not grossly incorrect, and indicates the errors
likely from defects of the model assumed in Eqs.
(23). If we were to use Stueckelberg's formula to
compute transition probabilities for this gener. -
alized model, (1) we should compute A(t, ) differ-
ently for use in Eq. (28b), and (2) the inelastic
phase c2 "(+~, -~) cannot be computed by Stueckel-
berg's method, though we may guess it does not
differ much from the LZS value (29b).

IV. APPLICATIONS

A. General considerations

1.3—

1.2-

1.0
Q.l 0.3 0.4 0.$

FIG. 5. Modifying exponent factor I'{p) as a function
of p [cf. Eqs. {35)].

For any experimental applications, we must keep
in mind that the above results give the evolution
of the system only over the inhomogeneous field
region (from -t, to t, ); the state of the system
was assumed to be fully specified at t =- t, . Sec-
ondly, an experiment involves a beam of particles
of finite width and resolution, i.e. an average over
a distribution of the parameters p, v, etc. is re-
quired.

First consider the embedding of the evolution
predicted by Eqs. (28) in a real physical situation.
In general, the system state at time t depends on
its evolution from some "state preparation" which
prescribes the state at some still earlier time t„
perhaps in an entirely different apparatus. Fur-
thermore, the result of the experiment will nor-
mally be monitored by measurements at some
time t& still later than t, . Detailed discussion of
system evolution from t, to t and from t, to t~ is
obviously beyond the scope of this paper, but it
may be reasonable to assume that the evolution

over these intervals is simple (to within accept-
able error limits). One might, for instance, as-
sume that the system develops adiabatically,
which is the presumed case in the experimental
work to which this study has direct applica-
tion. ' ' ' ' But measurables can be directly af-
fected by these external regions, even in such
simple cases, if interference effects due to phase
coherence are observed. For example, in our
earlier discussion of the model field (Sec. IIB)
we assumed that immediately before and after the
inhomogeneous field region, the particle passes
through regions of homogeneous solenoidal fields,
+H, in the z direction. Even though no transitions
occur in such homogeneous fields, the relative
phases of (stationary state) components making up
a coherent state of the system are altered. In
principle, these phase changes can be predicted,
given a map of the fields, the trajectory and
velocity, etc.

In this problem the particle beam (assumed con-
centric with the solenoid axis) has a finite width,
with significant density for off-axis parameters
pz 0.25, and for comparison with experiment one
must average over this distribution.

B. Specific example

The experimental problem of direct interest to
us involves hyperfine components of the metast-
able 2'S, y, level of atomic hydrogen. Figure 6
shows the schematic behavior of energy levels
vs magnetic field for this system. In strong
fields (where the electronic Larmor frequency
greatly exceeds the hyperfine splitting) a beam
can be prepared with only the "n" electron spin
levels populated. " If this beam then passes
adiabatically from the strong-field region into the
weak field region considered here, the m =+ 1, 0
sublevels of the I' = 1 hyperfine component are the
states populated. Nonadiabatic reversal of the
weak field, as considered here, can then be used
to selectively populate the I =1, m=-1 sublevel;
this has been done experimentally by Robiscoe. "
In part this paper is an attempt to explain the ob-
served m= —1 population as function of the mag-
netic field H, characterizing the weak field region.

The most significant feature of this population
is its oscillatory behavior vs field. According to
the theory this is the result of a coherent popula-
tion of ttco adiabatic sublevels (m'=+1, 0) at the
"entry time" t . Note that since the diabatic
states are here defined with respect to the final
(reversed) magnetic field, this corresponds to
coherent initial diabatic populations of m = —1, 0.
We are then interested in the probability of oc-
cupation of the diabatic sublevel m= —1, which
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rres onds also to the adiabatic sublevel
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by the coupling region parameters, this is not the
case for the frequency and absolute phase of the
coherent oscillations, which are likely to be dom-
inated by the "external region" characteristics,
even though these depend on the field strength or
Q p in the s arne way as A., does. In the pr esent ex-
ample, even the modest ratio d/z, =I triples the
frequency of oscillations.

The. primary interest in this problem experi-
mentally lies in the possibility of the preparation
of a beam with exclusive populations of the sub-
levels m = -1, 0 of the F = 1 hyperf inc component
by sudden field reversal; if the system can then
be adiabatically returned to strong field, the
m =0 component can readily be defocused, leaving
an atomic system of unique polarization.

The immediate conclusions to be drawn from this
simple theoretical study are that (1) the probability

envelope for the Majorana transitions occurring on
passage through a reversing field system of this
type can certainly be understood by adequate model
study, but we should emphasize that (2) the fre-
quency and phase of the coherent oscillations ob-
served cannot be predicted without taking into ac-
count the field characteristics external to the
field-rever sing r egion.
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