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Oscillator strengths for the outer shells of the beryllium isoelectronic sequence are obtained using the

relativistic random phase approximation in which the relativistic effects are included nonperturbatively. The
results agree well with other accurate calculations that have been carried out for low-Z elements. For high-Z

elements, our results should be very reliable. Both length and velocity formulas are used to calculate the

oscillator strengths. The velocity formula is very sensitive to the weak inner-shell coupling, whereas the length

formula is not. Inner-shell excitation energies and oscillator strengths are examined and compared with the

helium isoelectronic sequence to show the effect of outer-shell screening.

I. INTRODUCTION

Radiative transition rates of highly ionized atoms
have many important applications in determining
the density and temperature of the soior corona
and of solar flares. ' These data are also required
in studying the energy loss in control. led thermo-
nuclear plasmas. ' Of these ions, the beryllium-
like species are particularly important.

Accurate experimental determinations of tran-
sition rates are difficult. ' Many theoretical meth-
ods have been designed to obtain accurate tran-
sition rates (or osciliator strengths) for the Be
sequence. For low-Z ions, nonrelativistic theory
is adequate. Large-scale configuration mixing
has been employed' to obtain accurate wave func-
tions for the initial and final states, from which
oscil. lator strengths can be obtained. To achieve
good convergence, variants of the configuration
mixing methods have been used also. For ex-
ample, a variational. perturbation method using
basis functions consisting of Hylleraas-type co-
ordinates has been used recently. ' The accuracy
of the various methods depends upon the type and
the number of configurations included and there-
fore is difficult to assess. Furthermore, these
multiconfiguration calculations are very time
consuming and not suitable for calculations along
the entire isoelectronic sequence.

Other nonrelativistic methods which can be
easily extended along the isoelectronic sequence
are the Z-expansion method and the random phase
approximation. ' This latter method is useful be-
cause of its computationa, l simplicity and the ac-
curacy with which it predicts oscillator strengths.
However, al. l these nonrelativistic theories have
inher ent limitations. The r elativistic eff ects
which become more important with increasing
Z are not included or are included only pertur-

batively.
Recently, several. authors have developed con-

figuration mixing methods" using relativistic
wave functions to calculate oscillator strengths
along the Be sequence up to very high Z. Since
the number of configurations included in these
relativistic calculations is small, the quality of
the values obtained is uncertain and the length
and velocity results show substantial disagree-
ment. g

In recent papers, "we have presented a rela-
tivistic version of the random phase approxima-
tion (R&A) for the study of allowed and forbidden
transition rates. Application of the m ethod to the
helium isoelectronic sequence indicates that it
is very accurate in calculating the transition
ra, tes. The extension of the method to calculate
Be-sequence oscillator strengths is straight-
forward.

For electric dipole transitions, both length
and velocity formulas are used to evaluate the
oscillator strengths. As in the nonrelativistic
RPA, the two forms give identical results if the
RPA equations are solved exactly. " In investigating
the outer 2s-shel. l excitation, the RPA equations
contain small coupling terms involving the virtual
excitations from the inner 1s shell. . Despite the
large energy separations between the two shells,
we have found that the weak coupling terms are
important in bringing the velocity result, which
is changed substantially by the coupling, into
agreement with the l.ength result.

The relativistic RPA theory is summarized in
Sec. II and the results of our calculations are
discussed arid compared with others in Sec. III.
Inner-shell excitations of the 1s orbitals are ex-
amined and compared with the corresponding ex-
citation in the He sequence to show the effect of
outer-shell screening, in Sec. IV.
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II. RELATIVISTIC RPA

(2,. —e,. +~)S',. =0', ,

where

(2)

is the radial wave function. Equation (2) is a set
of coupled integro-differential equations. Their
explicit form is given in the Appendix.

For the &I transition of the Be sequence, Eq.
(2), explicitly given in the Appendix, defines a
set of eight coupled radial differential equations.
We solve these equations iteratively, treating
the positive-frequency components separately
from the negative-frequency components at each
iteration. This reduces the number of coupled
equations to four. The problem can be further
simplified by recognizing that the couplings be-
tween the Is and 2s shells are smal. l and that these
weak couplings can be treated perturbatively.
Thus, the set of four coupled equation is reduced
to two, representing the excitation from the Is
shell or the 2s shell, and may be treated inde-
pendently in the first approximation. The de-
coupled equations are similar to the equations
encountered in the helium problem of I and can
be solved by analogous methods.

As in the nonrelativistic RPA, the oscillator
strengths calculated using length and velocity
formulas are identical. provided that the RPA
equations are solved exactly. Previous nonrel-
ativistic RPA calculations either solve the RPA
equations only approximately by expanding the
solution over a finite basis set or use only the
length formula. '

We have used both length and velocity formulas
in the equivalent relativistic versions to calculate

Details of the relativistic method have been
given by Johnson and Lin, Ref. 10 (henceforth
referred to as I). Briefly, we start with a set
of Dirac-Hartree-Fock (DHF) orbitals u; (r) for
the occupied electrons. The perturbation te«(r)
introduced by the external fieldA+e ' '+A. e" '

with frequency u satisfies the relativistic equa-
tions

(h, + V —e,. v &u) w, , = (A, —V ~,")u,

For Be-like systems, i = 1, 2, 3, 4. In Eq. (1), h,
is the one-electron Dirac operator, V is the DHF
potential, &, is the orbital energy, and V,' rep-
resents the approximate correlation effect in-
cluded in the RPA. The zeroth-order solution
of (1) is the DHF equation for the excited orbital.

By separating the angular part from the radial
part, Eq. (1) reduces to a set of coupled equations
of the form

oscillator strengths in the relativistic equations.
In I, these formulas served as a check on the
accuracy of the numerical calculation and agree-
ment to better than seven figures was achieved.
Here we use the two forms to evaluate the oscil-
lator strengths in the truncated and the full rel-
ativistic RPA calculations for the Be sequence.
The results of these calculations are discussed
bel.ow.

III, RESULTS

In Table I, we present the DHF, truncated, and
full relativistic calculational results for the outer
2s-shell excitations for several Be-like ions.
The truncated relativistic RPA cal.culation is done
by negl. ecting the coupling terms which represent
the virtual excitations from the Is' shell. In the
full relativistic RPA calculation this weak cou-
pling has been included by a perturbation pro-
cedure. More details of the calculations are given
in the Appendix.

The length and vel. ocity results for low-Z ele-
ments differ substantially in the DHF calculation.
In the truncated relativistic RPA calculation,
these differences decrease but remain significant.
By introducing the small couplings with the Is'
shell in the full relativistic RPA, the length and
velocity results then agree to better than four
figures, the differences arising from the nu-
merical accuracy of our iterative solution. The
velocity results for the oscillator strengths are
altered substantially by the inclusion of the weak
coupling with the Is shell. , whereas the length
results are modified only slightly. Hibbert et al. 4

found a similar behavior in configuration-inter-
action calculations in which the inclusion of inner-
shell. virtual excitations is important in bringing
the two forms into harmony. The velocity form
is sensitive to the wave functions at small dis-
tances where the coupling with Is orbitals is sig-
nificant. Similar conclusions hold for the tran-
sition to higher states and to the higher members
of the Be sequence, though the effects are small. er.
If the inner-shel. l couplings are completely ne-
glected, the length form should be used.

We also list the results of our relativistic cal.-
culations for the intercombination oscillator
strengths of the 2'S0-2'P, transitions in Table
I. The difference in the length and velocity re-
sults are very large in the truncated relativistic
RPA amounting to a factor' of more than 2. By
including the Is' coupling, the two results are
brought into agreement, and the length results
are only slightly changed. The agreement be-
tween l.ength and velocity results in the full rel-
ativistic RPA calculations for the intercombina-
tion transition is not as good as for the al.lowed
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TABLE I. Comparisons for Be-like ions of DHF, truncated, and full RRPA results for the oscillator strengths, ob-
tained using length form (L) and velocity form (V} of the &1 transition operator.

Element DHF
RRPA

Truncated Full Others

Be

2 4

2 —2

2 —2'

L

L
V
L
V

L
V
L
V
L
V
L
V

2.05
1.06
2.31( 4)
8.V5( 5)
1.54(-3)
1.28( 3)

1.104
0.684
0.200
0.193
6.97 (—2)
6.V 6{—2)
2.1o(-v)
2.64( 8)

1.388
1.441
2.584(—2}
2.945(-2)
1.458(—3)
1.991(-3)

0.7604
0.8292
0.2135
0.2040
7.746 (-2)
7.722(—2)
4.35(-8)
1.O1(-V)

1.379
1.378
2.511(-2)
2.507 (—2)
1.348 (-3)
1.345(-3)

0.7528
0.7523
0.2158
0.2159
v.834(-2)
v.s35(—2)
4.28 (—8)
4.66(-s)

1.3VV6,'
2.27 (-2), 2.25 (-2)

1.02(—3),~ 2.0(—4)'

0.764, 0.749, 0.764"
O.V 62'
0 223 c 0.236~

V.V5(—2),' 5.4O(-2)'

1.81(—7), 1.27 (—7)," 3.1(—7) g 1-87 (—7)

O4'

Mo38'

2 3

2 2'

2 2

2 3

2 4

2 2'

2 4

2- 2'

L
V
L
V
L
V
L
V

L
V
L
V
L
V
L

L
V
L
V
L
V
L
V

0.728
0.498
0.362
0.354
0.111
0.109
1.98( 6)
5.46(-7)

0.274
0.220
0.622
0.617
0.162
0.161
3.24( 4)
1.85(-4)

0.164
0.150
0.503
0.502
0.127
0.126
1.O1(-2)
V.49(-3)

0.504
0.562
0.391
0.380
0.120
0.117
5.62(-7)
1.O9( 6)

0.199
0.228
0.643
0.636
0.167
0.162
1.36(-4)
2.26(-4)

0.140
0.151
0.510
0.508
0.128
0.128
5.91(-3)
8.08(—3)

0.4990
0.4987
0.3936
0.3936
0.1212
0.1212
5.55(-v)
5.6o(-v)

0.1976
0.1976
0.6445
0.6445
0.1673
0.1673
1.355(-4)
1.355(-4)

0.1398
0.1398
0.5109
0.5109
0.1286
0.1286
5.89(-3)
5.89 (-3)

0.512, 0.495, 0.513
0.511,
0 400 ' 0 406"

0.]21 ~ 0.0

1.62 (—6),» 1.28 {-6)," 2.4(-6)~

0.209b
0.240b

2.2(-4)b
3.O(-4)b

0.140b
O.1V2'

v.5(-3)"
1.27( 2)b

1.vs(—6)'

2.45(-4)'

6.vs(-3)'

~Semiempirical values obtained from the full RRPA results, corrected by using experimental or other more accurate
theoretical energies. See text.

Armstrong et al. , Ref. 9.
'Stewart, Ref. 7.
Victor and Laugh]. in, Ref. 15.

'Moser et al. , Ref. 4.
Laughlin and Victor, Ref. 12.

~Garstang, Ref. 14.
"Nussbaumer, Ref. 13.

dipole transition because of the greater numerical
difficulty in obtaining the low-lying P, states.
Indeed, our numerical scheme does not converge
for the transition 2'P, -2'S, of Be. The lack of
convergence is caused by the contribution from
S„components to the final-state wave function

which are very large, while our numerical meth-
od treats 8~ as small. quantities.

The oscillator strengths for the allowed tran-
sitions are compared with other available cal-
culations in Table I. For low-Z elements, a more
detailed comparison has been presented recently
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TABLE II. Intercombination line ( S0-3Pi) oscillator strengths for the low-Z beryllium-like ions. Listed quantities

are the experimental energies and the calculated energies of (2s2p)"Pi states, given in atomic units. The oscillator
strengths under fRRPA are obtained from the RRPA calculations. The column under f,~ gives the oscillator strengths
obtained from fRRPA by correcting for experimental energies, which is accomplished by multiplying by a factor

E (exp) [Ei(RPA) —E,(RPA)]'
E3(RPA) tEi (exp) —E3(exp}]2

where Ei and E3 are the singlet and triplet energies from experiment or RRPA calculation.

Ion
Energy (exp)

Singlet Triplet
Energy (RRPA)

Singlet Triplet fRRPA Others

2+

N3'

F5+

Nee'
Nav'

Mg'
Al'
si"'

0.4663
0.5955
0.7235
0.8513
0.9794
1.1082
1.2379
1.3687
1.5009

0.2385
0.3062
0.3478
0.4413
0.5069
0.5777
0.6468
0.7133
0.7817

0.4282
0.5438
0.6577
0.7711
0.8848
0.9990
1.1145
1.2316
1.3508

0.1106
0.1520
0.2003
0.2472
0.2985
0,3436
0.3981
0.4432
0.5000

4.35(-8)
1.vs(-v)
5.55(-v)
1.38 (-6)
3.04( 6)
5.81(-6)
1.ov(-5)
1.vv(-5)
2.91(-5)

1.82(-V)
6.5s(-v)
1.vs(-6)
4.O2( 6)
7.95(-6)
1.49(-5)
2.55(-5)
4.12(-5)
6.3V(-5)

1.81(-7), 3.1(-7), 1.27 (-7)
6.13(-v)," 9.1(-v),' 4.vs(-v)'
1.62(-6)," 2.4(-6), 1.28 (-6)

All energies are from Moore, Ref. 16, except Ne ' which are from Wiese et a/. , Ref. 17.
"Laughlin and Victor, Ref. 12.
'Garstang and Shamey, Ref. 14.
dNussbaumer, Ref. 13.

by Moser et al. 4 %'e list the values which we be-
lieve are the most accurate. The results demon-
strate the reliability of the relativistic RPA cal-
culations. The good agreement a,t l.ow Z suggests
that relativistic HPA results for higher Z where
comparison data are not available are reliable.
Our values indicate that the length results of Arm-
strong et al. ' at higher Z, are superior to their
vel.ocity results.

For the intercombination line 2'P] 2 Sp our
full relativistic HPA results disagree with the
model potential calculations of Laughlin and Vic-

tor, "of Nussbaumer" and the semiempirical
results of Garstang and Shamey. '4 This disagree-
ment arises from the low accuracy of the energies
calculated in the relativistic HPA. %e can correct
this error by following the approa, ch used in I;
Since we know that the intercombination transition
matrix element is inversely proportional to the

energy difference between the singlet and triplet
states, a semiempirical correction to the oscil. —

lator strength is obtained by multiplying the full
relativistic HPA values by R', where R is the

ratio of the calculated to the experimental energy

TABLE III. Truncated RRPA values of the allowed and forbidden oscillator strengths in the
Be sequence. (2 n) denotes allowed transitions to states with principal quantum number n
and (2-n') designates forbidden transitions. Comparison values are presented under the
headings fL and {fv).

Nee'
Mg8'

Sii0+
S12+

Cai6+

Ti"'
V19+

Fe22'
Ni24'

Cu"
32+

Mo3+
Xe5~

0.378
0.304
0.278
0.256
0.223
0.181
0.167
0.162
0.150
0.144
0.142
0.136
0.140
0.17,3

fr, (fv) '
0.397(0.401)

0.156(0.190)

0.137(0.171)

0.168(0.193}

0.493
0.558
0.581
0.601
0.628
0.648
0.644
0.639
0.620
0.604
0.596
0.545
0.510
0.453

(2-3')

(0.031)

(0.058)

(0.113)

(O.181)

(O.243)

0.143
0.154
0.159
0.162
0.166
0.166
0.163
0.161
0.154
0.150
0.148
0.136
0.128
0.117

(2-4')

(o.o12}

(0.018)

(o.o32)

(0.047)

(o.o59)

~Armstrong et al. , Ref. 9.
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FIG. l. Oscillator strengths for the transition 2 ~SO

2 'P& and 2 So 3 P& are given as functions of nuclear
charge Z.

TABLE IV. Excitation energy difference between the
helium sequence and the beryllium sequence for the
transition (1s ) So —(1s2P)"P,.

Element

difference between the singlet and triplet states.
In the beryll. ium sequence, the excitation energy
is also poorly predicted. By using the experi-
mental energies instead of the relativistic RPA
values, we obtain the modified oscillator
strengths, shown under the column "semiempiri-
cal." These values agree reasonably well with
the model potential values of Laughlin and Victor"
for C' and 0". For higher-Z elements, our
semiempirical values agree with the length results
of Armstrong et al. ' Therefore, for practical.
purposes, we believe our semiempirical values
are adequate for low-Z elements. For higher-Z

elements (say Z~ 18), the methods of Armstrong
et a/. ' may provide adequate accuracy for this
inter combination transition. Table II gives the
s emiempirical rates for the transition 2 'Py 2 Sp
for several elements not listed in Table I. For
higher-Z elements, the rates can be obtained
by interpolating between the length results of
Armstrong et &l.'

In Table III, we present the results of truncated
relativistic RPA calculations using the length
formula, they are probably accurate to within
5/q of the full relativistic RPA. Transitions to
the 2 'P„3 'P„and 4 'P, states are pres ented.
In Table III we give the "forbidden transition"
to the 3'P, and 4'P, states for several elements
al.so, for higher-Z elements they are not small
compared to the allowed transitions. We com-
pare our results for the resonance transition with
those of Armstrong et «.' For large-Z elements,
their length results are almost identical to our
relativistic RPA results. The distribution of
oscillator strengths along the isoelectronic se-
quence is illustrated in Fig. 1 which shows the
os cillator strengths of 2 'Sp —2 'P, and 2 Sp 3 Py
against Z.

IV. INNER-SHELL TRANSITIONS

We have also investigated the inner 1s shell
transitions in the Be sequence. The transition
energies are more reliable than the corresponding
transitions from the outer 2s shel. l. By comparing
the calculated transition energies with the cor-
responding transitions in the He sequence, we
can study the effect of outer-shell. screening.
These inner-shell calculations do not include
outer-shell interactions, and therefore represent
unshifted autoionization energies.

In the Be-sequence calculation, we did not in-
clude the Breit interaction terms. Thus, we com-
pare the values calculated here with the He-se-

Be
C
0
Ne

Mg
Si
S
Ar
Ca
Tl
Fe
Cu

4

8
10
12
14
16
18
20
22
26
29

0.2186
0.4472
0.6625
0.8745
1.0861
1.2976
1.5102
1.7157
1.9401
2.1583
2.6032
2.9458

0.1917
0.4131
0.6254
0.8356
1.0452
1.2552
1.4659
1.6739
1.8902
2.1042
2.5362
2.8644

0.8

0.7—

0.6—

f 0.5-

0.4—

0.3—

~Energy differences are given in atomic units. The
value is the excitation energy of He-like ions subtracted
from the excitation energy of Be-like ions. To obtain
absolute excitation energy for Be-like ions, subtract the
value given above from the corresponding excitation en-
ergy of He-like ions given in Ref. 10.

0.2
0 IO 20

z
40

FIG. 2. Comparison of the (1s ) So —(1s2p)'P& inner-
shell excitation oscar. llator strength in the Be sequence
and the corresponding 'So 'P& strength in the He se-
quence.
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quence values, al.so without the Breit terms. Since
the Breit terms are very complicated and not
modified much by the outer-she1. l screening, the
change in energies due to the Breit terms should
be approximately equal in the two cases for the
transition 1s ' - 2 "I',. In Table IV, we present
the energy difference between the He sequence
and the Be sequence. To obtain more accurate
energies for the inner-shell transitions in the
Be sequence, one can substract the values in
Table IV from the corresponding He-sequence
values. '

Comparisons of the oscillator strengths for the
transition (1s')'S,- (1s2P)'P, between He and Be
sequence are shown in Fig. 2. For each Z, the
Be-like ion oscillator strengths are less than
those of the He-like ions. The difference cannot
be explained by the excitation energy difference
only. The transition matrix elements are also
changed by the outer-shell screening.

V. DISCUSSION

In this paper, we have shown that relativistic
RPA can be easily applied to many electrons sys-
tem along an isoelectronic sequence. The oscil-
1.ator strengths obtained for the allowed transitions
are very accurate. %e can study the highly ionized
systems where experimental data are very scarce.
For the intercombination I.ine, our semiempirical
va1ues a,re probably accurate enough for most
practical. purposes. In Table II, we have supplied
the rates for several elements which have not
been investigated previously.

The relativistic RPA calculations done here
for the Be sequence are not as complete as our
previous calculations for the He sequence because
we have neglected the Breit~ interaction terms
entirely. Our experience in He sequence indicates
that the Breit interactions can change the final
oscillator strengths up to 15% at high Z. In the
outer-shell 2s'- (2s2P)' ' transitions of Be
isoe1ectronic sequence, the effect is probably
smaller because the excitation energy is small. .

Our results indicate that the relativistic RPA
is an efficient and effective tool for investigating
radiative transitions in highly ionized atoms. Ex-
tensions of the method to other many-electron
systems are now underway.

APPENDIX

where 0, „(r)are spherical spinors (the sui-
t f

scripts K, and m,. being the usual relativistic
electron angular momentum indices) and where
G,. (r) and F, (r) .are large and small component
radial functions. In a similar way the perturbed
orbitals w,'(r) can be expressed in terms of angu-
Iar momentum states which in turn can be de-
composed in a spherical basis. Suppose w,' (r)K~ my

represents that part of a perturbed orbital with
angular momentum K, , m, ; then in parallel with
(A1) we have

(A2)

where S', (r) and T,'(r) are large component and
small component radial functions. After factoring
the angular parts of the RPA equations (1), we
are left with a set of coupled radial equations.
For simplicity we collect together the unperturbed
radial functions G„(r) and F„(r) in a single two-
component radial function F„(r):

(AS)

(Z, —e, +~)S', =0', , (2)

where & = Eg = &„, & = &g = &28, and where the
linear differential. operator 2, is given by

We define the two-component function P„(r) in
terms of G„(~) and F„(r) by a similar expression.
The two-component perturbed orbital radial func-
tions are denoted by S', (r) and Eq. (3) of the text
gives S',. (r) in terms of large and small component
radial functions S', (r) and T', (x). For an electric
dipole perturbation we must consider excitations
leading to a J =1, negative parity final state.
There are four possible excited orbitals of definite
angular momentum to consider, which we label
by subscripts a, b, c, and d. The subscripts a
and b refer to excitations 1s-P,&, and 1s-p,&„
while c and d refer to excitations 2s-P,&, and

P3/2 thus a and b are cor e ex citations and
c and d are valence excitations.

The radial. RPA equations which govern the
radial excitations S', (r) are written out in Eq. (2)
of the text as

The DHF orbitals u; (r) introduced in the text
and used in Eq (1) can be .decomposed in a spheri-
cal basis as

&;(&)=

K
m+ V. (r)S dJ'

K ~

m —V,.(x)

(A4)

(Al) The potential energy V,. (r) is the Hartree-Fock
ion potential, viz. ,
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2Y,(2s, r) Y,(ls, r)

Z Y,(2s, r) 2Y,(ls, r)
+ +

h h

(A5)

The inhomogeneous coupling terms 0',. in Eqs.
(2) satisfy the symmetry requirement that a com-
pl. ete interchange of orbitals a —c, b —d, 1s—2s
transforms 0', , (r)—0', ~(r). It is therefore
sufficient to write out 0', , (r) only since we can
use the interchange symmetry to determine
0', , (r). We write

C', =(1/r)[ 3Y,(ls, c', r) ——,Y', (2s, a', r)

+ 9 Y, (2s, b', r)],

C ~
= (1/r)[ —,'1', (ls, d', r)+ —,1',(2s, a', r)

+ —,Y, (2s, b', r)].

(A 10)

(Al 1)

In the equations above me have designated the
Hartree screening functions by Y, ; these functions
are defined by

rf
Y,(j,i ', r) = — drr(G„S',. +F„T',).

0', ~(r) =A ', „(r)F„+B,"„(r)6:„+C', ~ (r)S„
+ (1/r) Y,(ls, 2s, r)I,', (r ).

In Eq. (A6) we have

(A6)

and

""
Ch

(A12)

A', =(1/r)[ —', Y,(2s, c', r) ——,'Y, (2s, d', r)

—sl'„(2s, c ', r)], (A7)

Y,(j, l, r) = dr (G, G, + F,F, )

d&—(G, G, +F, F, ). (A13)

A~ =(1/r)[ ——,Y,(2s, c', r) ——', Y, (2s, d', r)
—sY, (2s, d', r)], (A8)

The functions Y,(i, r) occurring in Eq. (A5) are
given by

B', =B~ = (1/r)[ ——,Y,(ls, a ', r) ——,Y,(ls, a ', r)
——,Y,(ls, b ', r) ——', Y,(ls, b', r)],

(A9)

Y (f, r)=Y (1 1, )r (A14)

Our procedures for solving Eq. (2) parallel
that outlined in I for the simpler equations of the
He case.
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