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in the limit of well-separated spectral lines
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Resonant scattering of intense light is analyzed in the limit in which the separation of the spectral lines is

large compared to their widths. The effect on the line intensities and widths of elastic and inelastic collisions

in the impact approximation and of radiative damping is found. The limit of well-separated spectral lines

allows simple solutions in a wide class of cases not easily treated outside this limit, in particular the case in

which the upper laser-coupled state decays through a complicated cascade sequence to the lower laser-coupled

ground state, or suffers collisional reorientation (depolarization} during the emission process.
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The resonant scattering of intense light has
been the subject of numerous experimental'~ and
theoretical' "studies. Recent experiments util-
izing atomic-beam techniques' ' have effectively
eliminated Doppler and collisional broadening,
and have provided a convincing verification' of
theoretical predictions of the emission line shape
for the case of a two-level system governed by
purely radiative relaxation. '

The case in which collisional relaxation may
exceed radiative relaxation by an order of mag-
nitude has recently been investigated in an inter-
esting series of experiments by Carlsten and
Szoke, ' who have observed the expected Rabi
splitting of the (Doppler-broadened) spectrum
into three components by a high-power laser
with detuning much greater than the (homogeneous
and inhomogeneous) widths of the lines. Under
such circumstances the form of the spectral den-
sity at frequency v of the light scattered from an
incident field E, cosset by a two-level system with
resonant frequency e» may be approximated as
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where Q'=(Q2+&2)'~2 &=(0- &0», Q= Ip E0!/5,
and p.» is the electric dipole matrix element con-
necting the two laser-coupled states !0) and !1).
The widths of the lines are approximated as zero
in Eq. (1), and are understood to be much smaller
than the Rabi splitting frequency 0'.

The spectrum of the light scattered by an atomic
system described by a density operator governed
by equations of the general form
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in which the widths are
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and the intensity coefficients are given by the
relations
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can be evaluated exactly by means of the quantum
fluctuation- regression theorem. ' Equations of
the form (2) describe both radiative relaxation
and collisional relaxation in the impact regime.
For a two-level system, for example, which is
deexcited and dephased by radiative decay with
Einstein A-coefficient ~» = I', and by inelastic
and elastic collisions occurring at mean rate QI
and Qs, respectively, the inverse longitudinal
and transverse relaxation times K»=K, and Kyp
are272 28

v, =I'»+QI,

g,' = —,'(I, +Ql+QS).

The emission spectrum as given by Eqs. (4.9),
(2.11), and (2.16) of Ref. 10(c) is well approxi-
mated in the limit of well-separated spectral lines
(Q'» ((„((,'0) by the relation
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-', n'(n' t )[q(n' ~)+~]
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the driven atom in state
Ij) at time t if it was in

state Ih) initially,
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If one approximates as zero all of the widths in

Eq. (4) (and accordingly combines the coherent
and incoherent terms at line center into a single
term), one obtains a spectrum of the form given
by Eg. (1), with
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are the atomic raising and lowering operators,
respectively, and p is the steady-state atomic
density operator.

The integrated line intensities discussed above
can be obtained simply by ignoring the effect of
atomic relaxation on the time evolution of a(t) in
Etl. (8), i.e., by putting

a(t) e i' t(efxta-e &Ãt)- (lo)

where K is the Hamiltonian for the la,ser-driven
but undamped atom, evaluated in the rotating-
wave representation,

K=- &ata ——,'n(at+a).

By substituting Ecl. (10) into Eq. (Bb) and making
use of Eqs. (9), one finds that'0 d'

z.(t}=
I p,.I"-'"'[n,tl "(t)+p.,t,"'(t)]tl"*(t), (12)

where (',.~'(t) is the pure-state amplitude for finding

and with A., and A given by Egs. (6c) and (Bd).
The central line in the spectrum in this limit

is thus completely independent of the tyPe of re-
laxation mechanism, as conjectured by Carlsten
and Szoke. ' The sideband strengths as given
by Eqs. (6c) and (6d), on the other hand, depend
critically upon the decay-constant ratio rt = x,', /x„
and hence axe importantly dependent upon the type
of relaxation mechanism even in the limit in tvhich
the spectral widths are ignored [Ca.rlsten and

Szoke have recently obtained improved agreement
with theory by making use of Eqs. (6c), (6d), and

(7) 29]

As a means of understanding this result and of
generalizing it to a somewhat wider class of cases,
it is convenient to consider a simple way of de-
riving Eqs. (6c), (6d), and (7). The spectral den-
sity g, (v) is the Fourier transform of the atomic
correlation function

a, = (n, —p„&/n)-,'n'/n", (15a)

4„=-.'[n, (n'~ ~)' ~ p„n(n' ~ t )]/n' '-. (15b)

Hence one finds a solution dependent only upon the
atomic populations 8, and n, ,

4, = (n, + n, )-.'n'/n"-, (15c)

4, =-.'(n'~n)'[n, +n, ~(n, —n, )n'/~]/n", (15d)

as a consequence of the steady-state relation

p„=——,'(n, —n, )n/&, (16)

which follows from Egs. (2). When the steady-state
solution

n, n, = ~'—/(qn2+ ~') (17a)

[which also follows from Eqs. (2)] is used along
with the relation

Rp + Sy (17b)

in Egs. (15), one finds exactly the line intensities
given by Eqs. (6c), (6d), and (7), and hence, on
taking the Fourier transform of Eg. (14), one ob-
tains the previously noted three-component sharp-
line spectrum.

When energy-increasing transitions take place
at rate n, v„ from the state Io) to the state

I 1), the
zero-field population difference

no —ni = (Kia —Koi)/(Kio + Koi) —= d

appears as a, factor in Eg. (1Va),""and the solu-
tion for 2, is then

&, =-,'(n'+&)'(n')~[lsd'n'&/(qn'+6')], (18}

where q =g,'o/(g„+ z„). [Note that g» in Ref. 10(c)
corresponds to w„, in this paper. ]

The procedure of ignoring the effect of damping
on the time evolution of a(t) in Eg. (8) must yield
good values for the integrated line intensities A,
and 4, as long as many Habi oscillations take
place within the homogeneous atomic lifetime
(n'» v„v,',). This is true simply because the
resolution of g(t) into its Fourier components
then takes place before damping begins to have
an effect.

These amplitudes are easily evaluated with the
aid of Egs. (11) and (9), and when substituted in-
to Etl. (12}lead to the relation

g (t) =
I

p,
I

[g e '"tyg e"'& "~'&'qg e-«~o'&~]

(14)

with the coefficients Po and P, given as
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1-(r~, +~,)= P m,. =~&„
j(jAOg 1)

where the parameter x is characteristic of the
atom but independent of the laser field. Another
case that can be similarly described is that of

(19)

Where damping cannot be ignored is in the ex-
pressions for the steady-state atomic density
matrix elements .The solution in Eq. (17a) inpar-
ticula, r depends importantly upon the damping ratio
q =x,',/x„no matter how small the damping con-
stants are compared to the other frequency param-
eters (0 and &) of the problem. [The assumption
of steady-state conditions, on the other hand, re-
quires the atomic lifetime to be short compared
to the length of time the atom spends in the field.
The correlation function (p,

' '(t') p, "(f'+ f)) in the
presently considered approximation is thus in
effect evaluated in the short-time limit for t, but
in the long-time limit for f'. ]

It is clear from the method of their derivation
that the Eqs. (15) are quite general. Their validity
depends only upon the sharp-line assumption 0'

xo and. upon the assumption that the two states
~0) and 1) are the only states directly coupled by

the laser field. Thus ~0) need not be the ground
state of the atom, while decay out of and incoher-
ent repopulation back into the 0) —~1) subspace
may take place via arbitrarily complicated se-
quences involving the other states of the atom.
The Eqs. (15) for the integrated line intensities
remain valid, though of course the density matrix
elements in them must be determined from Eqs. (2)
rather than from Eqs. (17). The solution so ob-
tained naturally depends upon the steady-state re-
population rates into the states ~0) and ~1). but
is otherwise independent of the details of the deca, y-
repopulation sequence, even when the repopulation
rates are appreciable compared to the other decay
constants of the problem. [The sharp-line solution
under discussion is in this respect more general
than the exact solution found in Ref. 10(f). That
solution was not limited by a sharp-line assump-
tion, but did require vanishingly small repopula-
tion rates, and hence was valid only for no+n,
«1.]

An important case which can easily be treated
in this way occurs when ~0) is the ground state
of the atom and ~1) is an upper excited state which
can decay to other excited states

~
j) of lower en-

ergy. A complicated cascade process then takes
place, ultimately returning the atom to its ground
state ~0). In steady state, the populations n,
(where j=1,2, . . . ) of all of the states in the cas-
cade sequence except 0) bear fixed ratios to one
another, dependent only upon the lifetime ratios
of the states involved. Hence one may put

col/isional reorientation, in which collisions in-
duce transitions back and forth between the upper
laser-coupled state ~1) and other members of the
same Zeeman multiplicity (with the latter assumed
uncoupled to the laser). Here too the ratios be-
tween ~7, and the populations of the other excited
levels are dependent only upon the (collisional
and radiative) relaxation rates, and are thus in-
dependent of the laser field. [The fundamental
assumption necessary for Eq. (19}is simply that
no relaxation-induced transition take place from
the atomic ground state ~0) to any other atomic
state. ]

By making use of Eq. (19) in Eqs. (2) to evaluate
the density matrix elements which appear in Eqs.
(15), one finds that the spectral line intensities
corresponding to the ~1) — 0) transition may be
expressed in terms of the single pa.rameter x by
ineans of the relations

—,'n'(fan'+ ~2)
n" [(1+',x)fan'+ ~'] (20a)

A
,'n'(n' —~~)[q(n' ~ ~) ~ ~]

n" [(1+-'x)qn'+ a'] (20b)

where q =v,', /v„with z, the full width of the state
~1). The coherent contribution to the central term
in the spectrum ls

(20c)

In ageneral two-level problem with decay and re-
population of the kind under discussion, thedetailed
structure of the incoherent contribution to Ao can-
not be evaluated, even in the presently considered
limit of well-separated spectral lines, if the re-
population rate is appreciable (i.e., if n, +n, is
not small compared to unity} except by means of
a detailed solution in which all of the participating
states play an important role. The solution in
question is not in general expressible simply as a
Lorentzian function, nor would it be expressible
in the example discussed above in terms of the
single parameter x.

The sidebands, on the other hand, are simply
Lorentzian functions in the general case under dis-
cussion, and their widths can be accurately eval-
uated by means of relations which make no refer-
ence whatever to states of the atom other than
~0) and ~1). Here it is useful to adapt to the case
of general relaxation coefficients a procedure
which Cohen- Tannoudji and Reynaud" have de-
veloped to treat the case of purely radiative re-
laxation in the limit of well-separated resonance
lines when many levels are coupled by the laser
field, particularly when (Zeeman or hyperfine)
degeneracy or near-degeneracy exists within the
optically separated levels. It is a simple matter
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to show (by using operator radiation-reaction
theory, """"for example) that even when de-
generacy is present, the radiative damping of
the atomic density operator is governed by the
general equation

(2 la)

where the optical energy-lowering operator B is
defined by the relation

d,.~= p, ,» (&u', ,/3mhe')' ' (21b)

in rationalized units.
Following Cohen- Tannoudji and Reynaud, one

may find the eigenstates
~

o.& of the rotating-wave
Hamiltonian K,

respectively, the radiative transition rates are

I'. = —,'I', (n'+ a)'/0"

I,= 4I',o(0' —4)2/0'2,

(27)

and the integrated line intensities A, and A at the
frequencies (d —0' and ++0', respectively, are
simply"

A, ~v, t", , A. Ccn 1,. (28)

When collisional as well as radiative damping
is present, an equation of the form (23) is obtained
in the limit of well-separated spectral lines by a
direct expansion of Eqs. (2) in the transformed
basis set f ~

n&]. In the two-level case, one finds
that the (equal) widths of the two sidebands are

36
'
o.&

= (o.
~

o.& (22) 6 = K~o + g(K~ + K~o + Ko~ + Ko —2lc~o)0 /0 (29)

—+24) g+0'
g p g t =0, (23)

where
o„~=a =-,'(I', +I' ) —Be(d d+),
I' =(I'd), .

(24a)

(24b)

The populations n, on the other hand, are coupled
to one another by rate equations involving the tran-
sition rates

(25)

but are effectively decoupled from the off-diagonal
density matrix elements in the limit in question.

That 0 ~ is the width of the spectral line at fre-
quency v+ (d ~ follows at once from an expansion
of the correlation function in Eq. (8a) in the basis
set f ~

o.'&). One also finds in this way the simple .

expression"

&., =n.
~ p,".~2 n.l'., (26)

for the intensity of the line in question.
In the nondegenerate two-level case, where the

transformed basis set {~o.&] consists of the states
~+ & and

~

—
& with eigenfrequencies --,'0' and + —,'0',

[with K defined by a suitable multistate generaliza-
tion of Eq. (11)], and think of the spectral lines at
frequency z+ v 8 as resulting from transitions
from the state n& to the state ~P&. (In the
"dressed-atom" approach adopted in Ref. 30, an
infinite hierachy of states

~
&o„papears, with ener-

gy separation &o between
~
o&„and

~
o'&„,.) ~en

the spectral lines are well separated (as they are,
for example, when an intense laser removes the
initia, l degeneracy of the system), an off-diagonal
density matrix element p 8(t) is effectively de-
coupled in its time evolution from all other den-
sity matrix elements, and consequently by virtue
of Eq. (21a) obeys the equation"

Here decay out of and (possibly appreciable) re-
population into the

~
0& —

~

1& subspace has been al-
lowed, and for the sake of generality the effect of
an upward transition rate Koy has been included.

It should be apparent from the foregoing discus-
sion that the formula (29) for the sideband widths,
like the formulas (15) for the line intensities, is
quite generally valid, provided only that the states
~0& and ~1) are the only atomic states directly
coupled by the laser field.

The method of Cohen- Tannoudji and Reynaud
also provides a way of understanding how the
symmetry of the emission spectrum, which is
present in the case of purely radiative damping,
can be removed by collisions. In steady state,
the populations n obey the relations

(3o)Pl ~ K ~g P2gKg 0t

if "detailed balance" is present, as it of course
must be in the two-level case. If the transition
rates are purely radiative (v ~

=I' ~), then the
steady-state relation (30) together with Eq. (26)
immediately implies symmetry of the spectrum, "
at least in the presently considered limit of'well-
separated spectral lines.

When collisions are present, on the other hand,
the proportionality between the total transitio~
rate x 8 and

~
p, ~&'„' ~' may be lost, and Eqs. (30)

and (26) then imply an asymmetrical spectrum.
This is exactly what happens in the two-level case
when elastic collisions are present. " If there is
no decay out of or repopulation into the ~0& —

~
1)

subspace, one finds with the aid of Eqs. (2) and

(3) the transition rates

g, = —,'[(I'„+Q )(0'+ 6)'+Q 0']/0"
~„=—,'[(I„+q,)(0' —~)'+ q,n']/0",

which are proportional to the xadhative transition
rates given by Eqs. (2V) only if the elastic collision
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rate Q vanishes. Thus the spectrum is asym-E
metrical unless @~=0."

The steady-state probabilities n, and n of finding
the atomic pseudospin parallel and antiparallel,
respectively, to the equivalent field (Q, O, A) are
found from Egs. (30), (31), (3), and (6e) to have
the values

n, = —,
' v —,

' Q'&/(q Q'+ &'),

which of course depend through the parameter g on
the type of relaxation mechanism which operates,
in particular upon the ratio Qs/(I"„+ Q,). The
steady-state line intensities given by Egs. (6c)
and (6d) of course follow directly upon substituting
Eq. (32) into Egs. (28) and (27).

In the case in which the laser field consists of
a pulse short compared to the (possibly collision-
reduced) atomic lifetime but long compared to
the Rabi period Q' ', it is clear that Eqs. (15) and
(28) are still valid, but with occupation numbers
determined from adiabatic relaxation-free equa-
tions" rather than from relaxation-determined
steady-state equations. For & &0, the atomic pseu-
dospin is then antiparallel to the effective field,
i.e., n, =0 and n =1, and hence one finds

A, =O, A = —Q'/Q" A =«(Q" —&)'/Q" (&&0) (33)

The sideband with frequency nearer to the atomic
resonance frequency is thus entirely absent in
this limit, while the other sideband is correspond-
ingly enhanced. "'""

An analysis of the absorption of a weak probe
field by the pumped atoms can be carried out by
suitably modifying the above discussion of emis-
sion so as to evaluate the absorption line-shape
function, which is the Fourier transform of the
function'"'

(34)

The analysis in the case of absorption is some-
what simpler than for emission, and in the two-

level case leads directly in the limit of well-sep-
arated spectral lines to a steady-state spectrum
with two components"'" —one absorbing and one
amplifying —with collision-modified widths given
by Eq. (29), and with integrated line intensities
B, and B given by the relations

i),, -Rli, ,( )-=08j p„(t) dt (j,k = 1)0
0

(36)

where B is the rate of preparation of systems in
the ~0) —~1) subspace. ]
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Precisely because of the absence of the central
component, the absorption spectrum, unlike the
emission spectrum, is thus accurately and com-
pletely represented, even when decay out of and
appreciable repopulation back into the laser-cou-
pled subspace ~0) —~1) take place, by formulas
which make no detailed reference to the decay-re-
population sequence. Indeed, the precise nature
of the relaxation mechanism in operation has no
effect whatever, in the sharp-line limit (where
widths are ignored), upon the skaPe of the absorp-
tion spectrum, and is important only in its effect
upon the over-all laser-dependent factor n, —n, .

The case in which emissive or absorptive tran-
sitions take place between a Laser-coupled state
and another, uncoupled state of the atom has been
treated in detail in Refs. 12, which contain explicit
and general formulas describing the limit of well-
separated resonance lines. " [If the system decays
completely out of the laser-coupled ~0) —~l) sub-
space, the formulas of Ref. 12 become valid under
the substitution'""
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For finite O'T (where T =pulse length), some excita-
tion may remain in the atom after the pulse passes.
This of course will be radiated at the atomic resonance
frequency.

35The pulse length in Ref. 29 was comparable to the
atomic lifetimes, and hence steady-state conditions
were satisfied only roughly. The regime investigated
was in fact intermediate between the steady-state re-
gime and the undamped-adiabatic regime.

~6Near Q = 0 (for D comparable to or smaller than K), a
more accurate evaluation of the absorption lineshape
function leads to dispersionlike curves rather than to
simple Lorentzian functions. See, for example, Ref.
10(c), Eq. (3.19b) or Fig. 1.

37This case can also be treated in the adiabatic limit,
simply by substituting adiabatic values for the density
matrix elements in Eqs. (4.8) or (5.7) of Ref. 12(b).
See also D. Grischkowsky, Phys. Rev. A 14, 802 (1976),
and A. Flusberg and S. R. Hartmann, Phys. Rev. A

14, 813 (1976).


