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Accurate and compact integral-transform wave functions are constructed for the 1'S state of the helium-like

ions from H through Mg' +. The variational ansatz is of the form %(r„r„r») = (4m) 'X„",ck(1+ P»)
exp( —al, r, —P„r, —y„r») where the c„are found by solving the secular equation and the exponents al„P„, and

yl, are chosen to be the abscissas of Monte Carlo and number-theoretic quadrature formulas for a variationally

optimized parallelotope in a-P-y space. A 66-term function of this type for the helium atom yields an energy
of —2.903724363 a.u. as compared with the 1078-term function of Pekeris which yields an energy of
—2.903724376 a.u. In order to test the accuracy of the wave functions a number of properties including ( r" )
and (r») with n = —2, —1, 1,..., 4, (r, r, ), (cos8»), (8(r,)), and (8(F,',)) are computed and

compared with the best available results. The electric dipole polarizability is computed from a simple formula

due to Thorhallsson, Fisk, and Fraga. Comments on the limiting accuracy of this formula are made. Electron-
nuclear and electron-electron cusp condition tests are made for the functions. Detailed convergence studies are
presented for H and He in the form of a sequence of functions with increasing ¹ The functions are found

to be rather accurate and more compact than any other functions available in the literature with the exception
of those containing logarithmic terms. Possible refinements to the basis set used are discussed.

I. INTRODUCTION

The problem of determining variational approxi-
mations to the eigenfunctions of the nonrelativistic
Hamiltonian for two-electron atoms with infinite-
mass nuclei has been extensively studied since the
inception of quantum theory. ' A result of this vast
amount of research has been the computation of
wave functions and expectation values of various
operators for the low-lying states of the helium
isoelectronic series to a rather high degree of ac-
curacy. '

Nevertheless, our knowledge of the nature of
electron correlation' in two-electron atoms is far
from complete. Much physical insight into the
correlation effects contained in an accurate wave
function can be obtained by systematic analysis of
the wave function. Density matrix analysis, ' ana-
lysis by successive partial orthogonalizations, '
and analysis of the probability density function for
the interelectronic distance' are among the tech-
niques available for this purpose. Such analyses
have not yet been carried out systematically for
the most accurate wave functions available for the
two-electron ions. This is due primarily to the
persisting unavailability of a systematic collection
of compact and highly acct'ate wave functions ex-
pressed in a relativel'y single basis set for which
the necessary manipulations could be carried out
without the expenditure of prodigious amounts of
man-hours and computer time.

Most of the conventional techniques for construct-

ing accurate wave functions are inadequate for the
purpose of building wave functions which satisfy
the above criteria. The method of superposition
of configurations converges much too slowly' to
be of use and the explicit introduction of the inter-
electronic distance r» into the wave function is
essential. However, even the Hylleraas' type of
wave functions obtained- by Pekeris' contain
several hundred, and in some cases more than
2000 terms. The use of negative" and fractional"
powers of r» and of logarithmic terms" "has led
to more compact and equally accurate wave func-
tions. However, the presence of these unconven-
tional terms creates formidable difficulties in the
computation of quantities required for the analysis
of the wave functions.

In this paper we demonstrate that this gap can be
filled by suitably constructed integral- transform
wave functions, and we present a set of such func-
tions for the ground states of the heliumlike ions.

An outline of the integral-transform method upon
which our computations are based, our ansatz,
and a discussion of various multidimensional quad-
rature techniques that we use to select nonlinear
parameters are presented in Sec. II. The accuracy
of a wave function cannot be gauged from its en-
ergy alone, and hence various properties have to
be examined. Various moments of the one- and
two- electron probability density functions, values
of these densities at the origin, cusp conditions,
and the static dipole polarizability 0,'„are among
the properties considered in this study. A new
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form of the electron-electron cusp condition that
we have found convenient to work with, an ap-
proximate formula for n„given by Thorhallsson
et al. ,

"and definitions of the other properties
considered are all reported in Sec. II. Detailed
convergence studies for the 1'S ground states of
H and He which show that our wave functions yield
both energies and other properties to a high degree
of accuracy are presented in Sec. III. An estimate
is made of the maximum accuracy attainable with
the approximate formula for n„. Wave functions
and properties for 1'S states of the two-electron
ions from Li' through Mg'" are also presented in
Sec. III. Section IV contains a discussion of the
quality of the functions obtained and possibilities
of refining the basis sets used.

where

1()„;t ') = f d%„[e(x„;t„)4 (x„;t„') ]„

In the above [fOg],„=[fOg-+ g0f ] and hence it is
clear that the Hamiltonian kernel K and the over-
lap kernel I are Hermitian,

A common procedure" has been to proceed from
Eq. (3) using parametrized trial weight functions S.
Alternatively, one may vary Eq. (3) with respect to
S(t~) to obtain the Fredholm-type integral equation

E dt~I t~;t~ S t~ = dt~K t~;t~ S t~ 6

II. THEORETICAL AND PRACTICAL DETAILS

OF THE MFTHODS USED

A. Integral-transform method

The generator- coordinate method was originally
developed by Wheeler and co-workers" to study
the effect of collective nuclear motion upon nuclear
properties. Somorjai" has adapted and generalized
this method for use in atomic and molecular prob-
lems. ' This is known as the integral-transform
method.

Given the problem of finding the eigenfunctiops
of an N-particle system with Hamiltonian H, the
basic idea of the integral-transform method is to
systematically generate trial functions 4 by the
prescription

4'(x„x„.. . , x~) =- )I)'(x])[)

S t~ 4 x~;t~ dt~. 1

In the above equation D~ is an M-dimensional in-
tegration domain for the parameter space (t space),
C is some known function (and can be thought of as
an exact eigenfunction for some model Hamilton-
ian), and the weight or shape function S(t~) is to
be determined. We shall assume that 0, 4, and S
are real.

Inserting the ansatz of Eq. (1) into the variational
principle yields

for the unknown S(t~). Equation (6) may now be
solved by approximate numerical integration. This
produces the familiar secular equations

for j=1,2, . . . , L. The ~, and t& are weights and
abscissas, respectively, for the numerical in-
tegration. If the sets (t,j and (t~ ) are different,
as in Galerkin-type methods, then one obtains
an unbounded estimate of E which converges" to
the true energy as L-. On the other hand, if the
sets Pt,.] and (t,'} are chosen to coincide, one then
obtains a convergent sequence of upper bounds to
the true energy. This latter procedure has been
used previously ~ and is the one we shall adopt.

In order to apply this method to a specific prob-
lem one must choose (i) a functional form for
4(x„;t„)in Eq. (1), (ii) an appropriate integration
domain D„ in Eq. (1), and (iii) a quadrature
scheme. The choice of these quantities forms the
subject of Sec. IIB.

B. Choice of 4, D~, and a quadrature scheme for the S
states of the twowlectron ions

For the S states of the two-electron ions we
chose 4(x„;t„)to be

E + x~ 4'xN dxN =. 0 x„H4 x~ dx~,

that ls,

dt's dtNI tN'tN S tN S tN

x exp(- o.r, —Pr, yr„), —

(8)

where P» is the permutation operator defined by

P»f (r„r„r»)=f (r„r„r»)
and the plus and minus signs correspond to the
singlet and triplet states, respectively. This
choice of C corresponds to the variational ansatz
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e(r„r„r„)= (4~) ' Q C,(1+l'l2)

x exp[- nl, r, —p~r, —4r»].

minn~ &0, minP„) 0,
where the minimum is to be taken over all k
c {1,2, . . . , N]. Some previous researchers" "have
also restricted the y~'s to be positive. This, how-
ever, is an artificial restriction, as shown by the
following pair of arguments. (a) Consider a wave
function of the type given by Eq. (9), with N = 1.
Such a wave function can satisfy the Kato' elec-
tron-electron cusp condition if and only if y, =-&.
(b) A wave function of the type f(r, )f(r, )y(r») has
been considered by Baber and Hassle, "who showed
that y(r») asymptoticallybehavesase ~», withk &0,
as x»- ~. Hence we allow the y, 's to take on neg-
ative values. However, in order to ensure that all
of the integrals required for the computation of the
energy and other properties exist, we impose the
following constraints:

mill(n p+ n( + yp + yg) & 0,
min(P~ + P, + y„+y, ))0,
min(n ~+ P, + y„+ y, ) & 0,

(12)

where the minimum in all of the above cases is to
be taken over all k c{1,2, . . . , N) a,nd all I
c{1,2, . . . ,N).

In effect the nonlinear parameters are chosen to be
the lattice points of a three-dimensional quadra-
ture formula, and the linear coefficients are found

by solving the secular equation. This ansatz is
uncommon but not new. It was first used by Hyl-
leraas""' with N = 1, and later by Rosenthal, "
Somorjai and Power, ""and Winkler and Porter. "
However, other types of functions containing ex-
ponential correlation factors are quite common in
the literature" and date back to Slater' and Hyl-
leraas. ""'

Note that for the ansatz of Eq. (9) all integrals
required for the calculation of the energy and
various other expectation values, probability den-
sity functions, and lower bounds can be done ana-
lytically

Next the integration domain D, must be chosen.
It is evident that we may restrict attention to finite
values of n„P„, and y„and so D, can be chosen
to be a parallelotope in three- space. Thus we may
write

ps &[Bl B2] ya & [G Gl.] (10)

for k = 1,2, . . . , N. The parallelotope is not corn
pletely arbitrary. Since we are considering bound
states we must have

n~ = l) [(A, —A, )(2 k(k+1)v 2)+A, ],
P, = l)[(B,—B,)(-.'k(k+1)V 3 )+B,],
y& ——ll[(G2 —Gl)(q k(k+ 1)u 5 )+ Gl],

(13)

for all k = 1, 2, . . . , N. In the above (x ) is defined
to be the fractional part of x. A» A» B» B„G»
and G, are the variational parameters that define
the parallelotope of Eq. (10). In principle ll= 1.
Note that if A„A„B„B„G„andG, were truly
variationally optimized our wave function would
satisfy the virial theorem. However, the optimiza-
tion algorithm we use is not perfect, and hence
we scale the wave function so that it satisfies the
virial theorem. " g serves this purpose, and as
will be seen in later sections of this paper q
rarely differs from unity by more than 10 ' for

Thus D, is chosen to be a parallelotope defined
by Eq. (10), with A„A„B„B„G„andG, being
variational parameters subject to the constraints of
Eqs. (11) and (12).

Finally, it is necessary to choose a quadrature
scheme. The classical method of performing
three-dimensional numerical integration is to
use the tensor product of three one-dimensional
Gaussian quadrature formulas. " In this method
the total number of quadrature points is N
=~,n,n„where n, is the number of quadrature
points in the ith dimension. Consider the usual
case n, =n, =n, =n, so that N=n . Clearly the
major drawback of this scheme is that N grows
too rapidly with n for it to be practicable to use
even a moderately sized n. Winkler and Porter
used Gaussian quadratures and found it expedient
to use only a selected subset of —', n(n+ l)(n+ 2) points
out of the total set of n points. Even with their
scheme N already reaches 165 for n= 9. More-
over, their complicated selection procedure suf-
fers from a high degree of arbitrariness, "and
hence we will not consider it further.

In recent years various other multidimensional
schemes have become available. "'" Of these, we
rej ect interpolatory nonproduct formulas because
in the present context their symmetry properties
invariably lead to linear dependencies" among the
various terms in Eq. (9). Monte Carlo methods"'"
are popular because the number of quadrature
points required for satisfactory accuracy is
smaller than in traditional methods. We use one
particular method' that seems to be quite suc-
cessful. In this method the quadrature points are
pseudorandom numbers in the unit cube which may
be mapped into the required parallelotope by an
affine transformation. In this scheme, which we
refer to as scheme P in the rest of this paper, the
N nonlinear parameters in Eq. (9) a,re generated
by the following equations:
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TABLE I. a; ~constants for scheme Z.

21
35
44
66

3
11
14
9

8
16
20
23

our wave functions. Somorjai and Power" used
a similar scheme.

Number- theoretical multidimensional integra-
tion formulas which have been shown to be ex-
tremely economical and accurate are also avail-
able. ""Hence we also use the method of "good
lattice points. " '" In this method the quadrature
points for the unit cube are found by a complicated
procedure which utilizes concepts from number
theory and from the theory of multiply periodic
functions. In this scheme, which we refer to as
scheme Z in the rest of this paper, the N nonlinear
parameters in Eq. (9) are generated by the follow-
ing equations:

D. Approximate formula for the static dipole polarizability

If an atom is in a uniform static electric field
Ez its energy E and dipole moment nzz may be
written as power series in I'z,

E= Eo+ E.S'2z+ E~I"z4+

BE yFz= ~,~z+, '+ ~ ~ . ,
z

(16)

been computed. Two expectation values that re-
flect the angul3, r correlation contained in the wave
function, (r, ~ r,) and (cos8»), have also been com-
puted. 6I» is the angle subtended at the nucleus by
the position vectors of the two electrons.

The sensitive "point" properties (6(r,)) and
(6(r»)) which play a role in the relativistic'"'
and radiative" corrections to the ground-state
energy are two other properties that have been
computed. Cusp conditions and the static dipole
polarizability provide other probes and are dis-
cussed below.

o.~
= ri[(A, —A, )(ka, v/N)+A, ],

Pq = r/[(B2 —B~)(ka, ~/N) + B,],
y~= q[(G, —G,)(ka, „/N)+ G,],

(14)

where the dipole polarizability e„=—2E„and y
= —24E4 is the "second hyperpolarizability. "
%hen a weak field is under consideration the per-
turbed function C may be approximated as

for all k=1, 2, . . . ¹ In the above (x) is defined
to be the fractional part of x, and the a,. ~ are
listed in Table I. All of the other quantities ap-
pearing in Eq. (14) have the same meanings as in
Eq. (13). Note that in the remainder of this paper
we use (x) to denote the quantum-mechanical ex-
pect3tion value of x. Empedocles" has used other
number-theoretic quadrature schemes in the con-
struction of radial limit integral- transform wave
functions for He, Li, and Be.

C. Properties other than energy

It is well known that the accuracy of a wave func-
tion cannot be assessed solely from the energy.
Hence we have computed a variety of other ex-
pectation values which can help indicate the ac-
curacy of our wave functions.

Since our wave functions are scaled to satisfy the
virial theorem, the latter cannot be used to test
the accuracy of the functions. A set of expectation
values which can be used to probe the details of
the charge density are its moments defined by

(r" ) -=(r,"+r,") .
Values of (r") for n = —2, —1, 1, 2, 3, and 4 have
been computed. Similarly, the moments of the
probability density function for r» serve as useful
probes of the accuracy of the wave functions. Val-
ues of (r») for n= —2, —1, 1, 2, 3, and 4 have

e = 4'(I+ (u), (18)

where 4 represents the unperturbed function or a
variational approximation to it, and denotes a
symmetric function to be determined by a varia- .

tional treatment. Thorhallsson, Fisk, and Fraga"
(TFF) have proposed the use of

(o= Q u(r,.), (19)

where the summation extends over all the elec-
trons in the system and

u(r) = F~(ijr+ vr') cos 8. (20)

where

p, = (4M, N, —6M, NO)/(9M M, —8M', ),
v= (4M,N —3M N, )/(9M M, 8M,).

In the above,

(22)

(23)

(24)

Q r', (r, ~ r,)..
j

They then minimize the energy with respect to p,

and v to obtain E, and hence obtain

o.,= —[M,p'+2M, v'+ ~4(N. , iJ. +2M, pv+N, v)], ,

(21)
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TFF proposed this ansatz for & for use with a re-
stricted Hartree-Fock O'. Clearly the use of such
an unperturbed function together with the TFF
ansatz for cu amounts to an approximate uncoupled
Hartree-Fock scheme. In view of the relative
success" of the TFF scheme for many atoms other
than the transition metals" we feel that it is of
some interest to assess the limiting accuracy of
the TFF ansatz for ~.

It has been known for some time4' that n„ is ex-
tremely sensitive to the choice of the field-free
wave function 4 but relatively insensitive to the
correction %co. Formally the leading errors in a
variational-perturbation calculation of n„are
first order in the error of the unperturbed wave
function but only second order with respect to the
error in the perturbative correction. "' ' Hence
one may attempt to assess the limiting accuracy
of the TFF ansatz for co by using their formulas
to compute n„with a sequence of increasingly ac-
curate unperturbed wave functions and comparing
the results with the best available values. "~'

We have used our wave functions for the helium-
like ions for this purpose. It should be emphasized
that our calculations of n„do not serve as a probe
of the accuracy of our wave functions, because
we have restricted ourselves to the use of the TFF
ansatz for ~.

E. Cusp conditions

Cusp conditions which an exact wave function
must satisfy arise from a consideration of the
singularities of the Hamiltonian. They constitute
rather sensitive tests of an approximate wave func-
tion.

It has been shown" that the Kato electron-nu-
clear (Coulomb) cusp condition for S states of any
N-elect~on system implies that

1 k'(r„)
(29)

where k' = Ck/Ch», and k(r») is defined by

k(r») = (4z) ' ( Z(r„, r„)C(6 sino. Cc(.
o &o

(30)

In the above r» = (x», n, P) and J(r», r,„,) is the in-
tracul. e matrix" which is obtained from the spin-
traced two- electron reduced-density matrix 1 "'
as follows:
Define

R=-,'(r, + r,),
r~2 = r~ —r2

(31)

(32)

and similarly for R' and r,„,. Then change co-
ordinates to obtain

I'("(R, r„~R', r,„.) = r"'(r„r,
~
r'„r,'), (33)

and, finally, integrate over the extracular co-
ordinates to obtain the intracule matrix

Z(r„, r,„.)=J R"'(R, r„~R, r,...)RR. (34)

Note that J, as defined above, is normalized to(,"),
while Coleman ' normalizes Jto unity. Note also
that k(x») is related to the electron-electron dis-
tribution' function P(x») by

where x,. = (r, , f,).is a combined space-spin co-
ordinate, (Cs) indicates a, trace operation over the
spin coordinates of all electrons, and (CV,.) in-
dicates integration over the spatial coordinates of
all but the first P electrons.

We have recently shown'"" that the Kato elec-
tron-electron (correlation) cusp condition for sing-
let S states of any N elec-tron sy'stem implies that

(26) P,(r») = 4m~'„k(~„) . (35)

where Z is the nuclear charge, p'(r) =Cp/Ch, and p
is the electron density defined by

A discussion of other properties of k(r») and a der-
ivation of Eq. (29) may be found elsewhere. "' '

We have computed the quantities
r 21r

p(r) =(4m) ' I'"(r ~r) Cp sin8C8,
~o o

(27) (36)

where r=(v, 8, P) and I'"'(r
~

r') is the spin-traced
one- electron reduced- density matrix. Recall that
the spin-traced p- electron reduced-density matrix
is defined by'"'

~I /(rj r2 ~ ~ ~ rp [ rg I2 ~ ~ ~ rp)

N 4'(x„x,r. . . , x„)
p

T +i' 1R' '(Xy r XR ~, , r Xpr X) ) r, , r X))()

&& (Cs)(C V;), (26)

CEE —limo 2 I
(37)

for all of our wave functions as a check on how well
they satisfy the cusp conditions (26) and (29).

It is important to realize that the cusp conditions
(26) and (29) are ba, sed on derivations which in-
volve a number of averaging procedures. ""'
Therefore as far as approximate wave functions
for 'S states of two-electron atoms are concerned
a check of these cusp conditions is less stringent
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than a, test based on the Fock expansion. "'" The
latter test consists of expanding an approximate
wave function in a Fock-like expansion and com-
paring the coefficients thus obtained with the exact
ones.

An examination of the coefficients of the Fock
expansion of our wave functions for the '9 states
of the two-electron atoms has been initiated and

it is hoped that results will become available in the
near future.

F. Computational methods

All integrals required for the energy, overlap,
and most other expectation values were computed
with the recursion relations given by Sack et al."
The computation of certain integrals required for
(r ') and (r„') is described in the Appendix. The
formulas for (6(r,)), (6(r»)), Czz, and Czz are
special cases of formulas for p(x), p'(x), h(r»),
and h'(x»), which are given elsewhere. "

The optimization of the variational parameters
A„A„B„B„G„andG, [cf. Eqs. (10), (13),
and (14)] was carried out using Powell's algorithm"
modified by the inclusion of a barrier function to
handle the constraints given by Eqs. (11) and (12).
All of the algorithms used for solution of the
secular equation were taken from Wilkinson and
Heinsch. " During the preliminary optimization
cycles the sequential combination of xeduc1, txed1
and ~atqx was used. In the final cycle the se-
quential combination of xeduc1, txed2, tql2, and
xebaka was used.

The preliminary optimization cycles were car-
ried out on an IBM 360/91 computer using a 56-bit
( 16 significant figure) mantissa. All final cal-
culations were carried out on a Burroughs 86700
computer using a 78-bit (-23 significant figure)
mantissa.

III. WAVEFUNCTIONS AND PROPERTIES

A. 1 'S state of the helium atom

The ground state of the helium atom is the natural
one to consider first, because it is the most ex-
tensively studied of the two-electron ions.

Sequences of wave functions with increasing
numbers of terms (N) were constructed using both
the Z and P schemes [cf. Eqs. (14) and (13), re-
spectively] for choosing the nonlinear pa, rameters.
The parameters defining the parallelotope [ cf.
Eq. (10)] were separately optimized for each value
of N.

Table II lists values of N, A„A2, Bj, B, G~,
G„1—q (instead of q, for convenience), and the
energy for ea,ch of these functions. Not surprising-
ly, the intuitively appealing inequa, lities

A, & Z&A, ,

B &Z&B

(38)

(39)

where Z=2 is the nuclear charge, are seen to be
satisfied in all cases. The values of G, are all
negative, and negative y~'s do occur, confirming
our arguments in Sec. II 8 that negative values
of the y, 's are necessary. The small magnitudes
of 1 —g show that our optimization scheme was
rather effective at finding at least local minima in
the pa, rameter space. Finally, note that the energy
values are converging smoothly toward the "exact"
value of Frankowski and Pekeris". With roughly
45 terms the wave functions are already energeti-
cally accurate to 10 ' a.u. , and the 60- and 66-term
wave functions yield energies- that have errors of
only 27& 10 ' and 14&10 ' a.u. , respectively.

Table III lists values of (r") (n = - 2, —1, 1. . . , 4)
for each of the wave functions. Here the con-
vergence patterns are not monotonic. This is to

TABLE II. Parallelotope parameters and energies for He. The "exact" energy is from
Ref. 13. Note that in this table, as in Tables III-VIII, all quantities are in atomic units and

the format A-B stands for A x10

Scheme N A, A& B
&

21
35
44
66

1.8060 2.5120
1.9900 2.4600
1,8 960 2.1690
1.4612 4.1453

1.3260 2.4190
1.4180 2.2730
1.3970 2.7280
1.2897 3.55 14

-0.0740
-0.0390
-0.0160
-0.2894

1.4290
1.1920
2.5520
1.0938

-2.942—8
-1.717—8
-1.089—8

9.308—9

2.903 723 415
2.903 724 053
2.903 724 280
2.903 724 363

Exact

10
20
30
35
40
45
50
60

1.0420
1,7130
l.7280
1,6630
1.4160
1.4230
1,4 130
0.9950

2.0250
2.5790
2.7650
2.7170
2.9510
2.9300
2.9520
3.8860

1.2110
1.4050
1.3110
1.4530
1.4300
1.4350
1.4790
1.5460

2.2800
2.2840
2.3950
2.2820
2.3830
2.8630
2.3400
2.7610

-0.1670
-0.2400
-0.1900
-0.2550
-0.2420
-0.2080
-0..2110
-0.2890

0.9590
1.5610
1.1750
1.6210
2.0330
2.0100
1.9610
1.8440

2.581—7
-2.505—8
-5.069—9
3.427—8

-2.705—9
-2.209—8
-3.128—8

2.070—8

2.903 713 181
2.903 722 730
2.903 724 019
2.908 724 168
2.903 724 279
2.903 V24 301
2.903 724 316
2.903 724 350

2.903 V24 377
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TABLE III. (r") values for He. The "exact" values are from Ref. 2.

Scheme N /ry 2& (x& (y 2&

21 12.035 182 0 3.376 634 072 1.858 929361 2.38684983 3.S35 148 01 7.942 673 1
35 12.034 480 0 3.376 633 352 1.858 945 772 2.386 977 16 3.935 962 39 7.947 508 6
44 12.034 672 3 3.376 633 567 1.858 944 772 2.386 966 96 3.935 88948 7.947 0192
66 12.034 829 9 3.376 633 603 1.858 944 392 2.386 964 34 3.935 883 22 7.947 026 3

10
20
30
35
40
45
50
60

12.036 697 4
12.035 416 0
12.034 630 5
12.034 779 4
12.034 717 7
12.034 764 3
12.034 782 3
12.034 818 1

3.376 635 708
3.376 634 334
3.376 633 440
3.376 633 431
3.376 633 540
3.376 633 556
3.376 633 589
3.376 633 583

1.858 896 030
1.858 941289
1.858 943 277
1.858 944 728
1.858 944 508
1.858 944 776
1.858 944425
1.858 944 438

2.386 614 42
2.386 955 31
2.386 956 10
2.386 964 66
2.386 966 02
2.386 966 03
2.386 963 24
2.386 964 75

3.934 19239
3.935 910 94
3.935 820 29
3.935 882 13
3.935 890 24
3.935 879 83
3.935 86246
3.935 886 68

7.938 420 3
7.947415 6
7.946 575 0
7.947 028 9
7.947 067 6
7.946 922 3
7.946809 5
7.947 065 9

Exact 12.034 8 14 2 3.376 633 592 1.858 944 594 2.386 966 02

be expected, since no bounding principle for these
properties is being used. (r ') shows the most
rapid convergence. This is not surprising, since
(r ') occurs in the expression for the energy. In
increasing order of n, the (r") values seem to have
converged to accuracies of roughly 3 x 10 ', 1
x 10 ', 2 x 10 ', 2 x 10 ', 2 x 10-', and 1 x 10 '
a.u. , respectively. The slow convergence of (r ')
is not unexpected. It could have been predicted on
the basis of the weII-documented'" observation
that lower bounds to the energy that depend on (H')
converge relatively slowly.

Table IV lists values of (r») (n = —2, —1, . . . , 4)
for each of the wave functions. Trends similar to
those observed for (r") can be seen here as well.
None of the convergence patterns are monotonic,
(r»), which is a part of (H), converges rapidly,
and (r,,'), which is a. part of (H'), converges
slowly. In increasing order of n, the (r",,) values
seem to have converged to a,ccuracies of roughly
1x 10 ', 3x 10 ', 3 x 10 ', 1 x 10 ' 1x 10 ', and
3 x 10 ' a.u. , respectively. The relatively consis-

tent valises of (r») for most of the functions with
40 or more terms could lead one to the conclusion
that the true value of (r,",) is closer to 1.464783
a.u. than it is to the Pekeris'"' value of 1.464 773
a,.u. However, the 44-term scheme- Z function,
for which (r,,') = 1.464 777 a.u. , warns one that this
conclusion could be erroneous. It will be seen
shortly that this warning is worth heeding.

Values of (6(r,)), (6(r»)), (r, ~ r,), (cos0»),
CE„, C«, and n~ for each of the wave functions
are listed in Table V. (6(r,)), (r, ~ r,), and (cos8»)
seem to have converged to accuracies of roughly
5x 10 ', 2x 10 ', a.nd 1x10 ' a.u. , respectively.

The n„values are very interesting. They seem
to have converged to a value of 1.37936+0.00001
a..u. There is no question however that the Buck-
ingham-Hibbard" (BH) value of 1.383 19 a.u. is
much more accurate. The latter was computed
with a 180-term Kinoshita- type" unperturbed func-
tion and an 84-term perturbing function (&u in the
notation of Sec. II D). Moreover, Weinhold" has
obtained a, rigorous lower bound of 1.3817 a,.u. and

TABLE 1V. (r"&2) values for He. The "exact" values are from Ref. 2.

Scheme (& 72'& (& 72'& (& ~2&

21 1.464 842 0.945 821315 1.422 053 25 2.516320 66
35 1.464 824 0.945818 598 1.422 070 51 2.516438 16
44 1.464 777 0.945 818 574 1.422 069 66 2.516432 99
66 1.464 784 0.945 818481 1.422 070 08 2.51643783

&r 12&

5.307 327 1 12.977 396 2
5.307 984 2 12.981022 7
5.307 956 8 12.980 868 0
5.307 998 1 12.981178 3

10 1.465 456 0.945 845 053 1.421 981 60
20 1.464 971 0.945 823 210 1.422 051 61
30 1.464 835 0.945818 843 1.422 068 27
35 1.464 793 0.945 818 527 1.422 070 62
40 1.464 786 0.945 818 523 1.422 070 76
45 1.464 787 0.945 818 511 1.422 070 10
50 1.464 786 0.945818 545 1.422 070 08
60 1.464 783 0.945 818 466 1.422 070 20

2.515909 24
2.516353 68
2.51641402
2.516438 69
2.516443 12
2.51643584
2.516436 59
2.516438 54

5.304 878 9 12.962 039 0
5.307 748 8 12.980 864 1
5.307 771 5 12.979 3010
5.307 983 1 12.980 974 0
5.308 029 5 12.981347 5
5.307 967 6 12.980 862 0
5.307 976 0 12.S80 922 1
5.308 003 5 12.9812363

Exact 1.464 773 0.945 8 18 451 1.422 070 26 2.51643934
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TABLE V. Various properties for He. The "exact" value for (r& ' r2 ) is ' from Ref. 2, the
exact values of CEN and CEE are from E qs . (26)-(29), and the rest of the "exact" values are
from Ref. 46.

Scheme N (6 (r&) ) (6 (r&2)) (r( r2 ) (cose „& CEN CEE

21 1.8 10 897 0.106495 -0.064 735 4 14 -0.064 200 775 1.378 96 2.001 8 12 0.489 54
35 1.8 10 023 0.106466 -0.0 64 730 502 -0.064 202 403 1.379 42 1.998 526 0.49138
44 1.8 10 252 0.106365 -0.064 733 012 -0.064 202 196 1.379 37 1.999306 0.497 83
66 1.8 10456 0 ~ 106387 -0.064 736 747 -0.064 202 62 1 1.379 36 2.000 183 0.495 90

10 1.8 11787 0 ~ 107 172
20 1.8 1I037 0.106 728
30 1.8 10 199 0.106482
35 1.8 10383 0.106397
40 1.8 10 336 0 ~ 106389
45 1.8 10 380 0 ~ 106397
50 1.8 10384 0 ~ 106393
60 1.8 10424 0 ~ 106385

-0.0,64 64 7 414
-0.0 64 699 188
-0.064 728 956
-0.0 64 737 0 14
-0.0 64 738 553
-0.064 734 902
-0 ~ 064 736 675
-0.0 64 736 893

-0.064 173033
-0.064 199783
-0.064 202 765
-0.064 202 0 10
-0.064 202 491
-0 064 202435
-0.064 202 576
-0.064 202 638

1.378 84
1.37947
1.37936
1.379 35
1.379 35
1.37936
1.379 35
1.37936

2.002 980
2.002 003
1.999 152
1.999 88 6
1.999 753
1.999 888
1.999 8 15
1.999 945

0.466 26
0.476 03
0.490 65
0.496 14
0.495 8 6
0.494 88
0.495 40
0.496 00

Exact 1.8 10433 0.106352 -0.064 736 665 1.383 19 2 0.5

a variation perturbation estimate of 1~ 383 16 a.u.
Weinhold's unperturbed wave function yields an
energy of —2.903 724 333 a.u. and has an overlap
parameter & = 2 x 10 ', where & is defined by

(1 S2)l/2 (40)

in which S is the Weinberger" lower bound for the
overlap between an app roxima te and the exa ct
wave function. By compa, rison our scheme- Z 66-
term unperturbed wave function yields an energy of

2.903 724 363 a.u. and has' an overlap parameter
1 x 10 '. In view of the above comparison it

seems that the discrepancy between our value of
a„and the BH and Weinhold va, lues must be as-
cribed to our choice of &u [cf. Eqs. (19) and (20)].
This enables us to conclude that the limiting erro r
inherent in the TFF ansatz for + is roughly 4 && 10
a.u. for the ground state of the helium atom.

The (5(r»)) values have certainly converged to an
accuracy of roughly 5 x 10 ' a.u. However, the
relative consistency of these values could lead one
to the conclusion that the true value of (5(r»)) lies
between 0.106 38 and 0.106 40 a.u. , as opposed to the
BH value of 0.106 35 a.u. A warning that this ~ay
be a false conclusion is once again sounded by the
44- term scheme- Z function. Turning to the cusp-
condition checks for our wave functions, we see
that our suspicions about the appa, rent convergence
of (x,,') and (5(r»)) to values slightly different from
the best values available in the literature were
indeed well founded. This is evident from the fact
that the 44- term scheme- Z function which prevented
us from jumping to false conclusions satisfies the
electron- electron cusp condition more closely than
any of the other functions. Since (x,,'), (5(r»)),
and C«are all sensitive to the behavior of the
wave function at small values of Yy2 it is obvious

that the 44- term function is the most reliable one
a.s fa r as these properties are concerned. Hence
the apparent convergence of (x„') and (5(r»)) to
values different from the Pekeris' and BH" values,
respectively, is illusory.

Deviations from the electron- nuclear cusp con-
dition do not exceed 0.003 for any of the functions.
The 60- and 66- te rm functions show deviations of
0.000 05 and 0.000 18, respectively. None of the
functions with 30 or more terms deviates from the
electron- electron cusp condition by more than 0.01,
and the 60- and 66- term functions show deviations
of 0.004. Finally, note that there is essentially no
difference between the scheme- Z and scheme- P
functions when all of the properties are consid-
ered.

B. Ground state of the hydride ion

Next we consider the 'S ground state of the H

ion, which is of interest because of its astrophys-
ical significance and because the restricted Har-
tree- Fock model predicts that it is unbound.

2 1-, 35-, 44-, and 66- term scheme- Z and
10-, 20-, 30-, 40-, 50-, and 60- term scheme- P
wave functions were constructed for the purpose
of a convergence study. The tables listing par-
allelotope parameters, energies, expectation
values, and cusp- condition checks for all of these
wave functions are presented elsewhere. ' These
tables have been omitted from this paper for the
sake of brevity. " Here we present only a dis-
cussion of the convergence studies and a summary
of the expectation values for the two best func-
tions (see Table VI).

Except in the case of the ten- term function, the
nuclear charge Z = 1 lies" between A., and A.„and
Bj and B„as intuitively expected, and the rela-
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TABLE VI. Parallelotope parameters, expectation values, and cusp-condition checks for
H . The "exact" energy is from Ref. 13, the "exact" value of n& is from Ref. 43, the exact
values of CEN and CEE are from Eqs. {26)-(29), and the rest of the "exact" values are from
H.ef. 2.

(Scheme) N

A(
A2
Bg
B2
G(
G~

(& '&

&y -1&

&y 2&

&~ 8&

&r (2

&"n&

&~4&

&cose q2&

Qy

(~(&~))
CEN

&~ (ri2&&

CEE

(Z) 66

0,2180
1.5100
0.8710
1.5000

-0.1000
0.1820

-6.223—8
0.527 750 985
2.233 320
1.366 523 52
5.420 350 83

23.827 222
152.0415

1290.17
0.155 108
0.31102155
4.412 688 50

25.201856
180.601

1590.0
-0.105 147 89

202.629
0.164 547
0.999825
0.002 742
0.494 077

(P) 60

0.1280
1.2460
0.8890
1.2030

-0.1100
0.3420

-2.314—9
0.527 750 940
2.233 315
1.366 523 85
5.420 322 33

23.826 674
152.0387

1290.79
0.155 112
0.311021 97
4.412 66145

25.201 291
180.598

1590.6
-0.105 147 97

202.626
0.164 545
0.999 828
0.002 745
0.491068

"Exact"

0.527 751 016

5.420 356 62
23.827 384

4.412 694 52
25.202 010

206.04
0.164 547
1
0.002 740
0.5

tively small magnitude of 1- g indicates that our
optimization procedure did not fare too badly. The
energies seem to be converging toward the "exa,ct"
value, "and the 60- and 66-term energies are in
error by only 76&& 10 ' and 31&10 ' a.u. , respec-
tively. The G, values are again all negative and
negative y~'s do occur, lending further support to
our claim that negative y~'s are necessary.

Values of (H) and (x») (n = —2, —1, 1, . . . , 4) for
all of these wave functions reveal" nonmonotonic
convergence patterns, and show that (r ') and

(x»'), which form part of (H), converge more
rapidly than (r ) and (r,,), which form part of
(H2). Errors in the 66-term values of (z") and

(r,",) a.re estimated to be no more than 5 x 10 ',
1x10 ', 1&& 10 ', 5&&10 ', 1x 10 ', and 1 a.u. , in
order of increasing n. The 66-term values of
(6(r,)) and (6(r»)) do not differ from those of
Pekeris' by more than 2 x 10 ' a.u. The (cos8»)
value from the 66-term function is estimated to
have a maximum error of 1&& 10 ' a.u.

The dipole polarizability n„seems to have con-
verged to roughly 202.6+ 0.2 a,.u. However, Wein-
hold ' and Chung ' both have obtained accurate
variation-perturbation estimates of 206.0 a.u. , and
Weinhold gives 201.8 a.u. as a rigorous lower

bound. As opposed to the ca,se of He, Weinhold's
bound does not exclude the &„ values obtained by
us from unperturbed wave functions with 40 or
more terms. Weinhold's unperturbed function gave
an energy of —0.527 750 799 a.u. and an overlap
parameter [cf. Eq. (40)] e = 2.8 x 10 '. By com-
parison our scheme- Z 66-term function gives an

energy of —0.527 750 985 a.u. and an overlap pa-
ra,meter & = 1.1 && 10 '. On the basis of the above
facts, we estimate that the limiting error of the
TFF ansatz" for v is roughly 3a.u. for the ground
state of H .

The devia. tions from the cusp conditions are
larger than in the case of He. The best (60 and
66 term) functions deviate from the electron-
nuclea. r and electron-electron cusp conditions by
0.0002 and 0.01, respectively. Once again, the
Z and P schemes fare equally well when all the
properties are taken into account.

C. 1 'S state of the two-electron ions from Li'through Mg'

A set of wave functions for the ground state of all
the two-electron ions from Li' through Mg'" were
constructed using scheme P. The parallelotope
parameters, various expectation values, and the
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cusp checks for these functions are listed in Tables
VII and VIII.

The function for Li' contains 45 terms, while all
of the rest are 25-term functions. Comparison with
with the Frankowski-Pekeris values" shows that
the errors in the energies are 4.1x 10 ', 6.2 x 10-',
1.6x10-', 6.6x10-' 5.1x10-' 5.1x10-' 2.4
x10 ', and 6.5 x10' a.u. for Li' through Ne"
in order of increasing nuclear charge. Com-
parison with the Pekeris values" shows that for
Li" the errors in (r), (r'), (r»), (r»), (5(r,)),
and (5(r»)) are 3x 10 ', 4x 10 ', Bx 10 ', 5x 10 ',
1.5x 40', and 9x10 ' a.u. , respectively. The
electron- nuclear and electron- electron cusp de-
viations for Li' are 0.0001 and 0.002, respectively.
For the other ions the electron-nuclear cusp de-
viations range from 0.0002 to 0.003, while the
electron-electron cusp deviations are -0.02. For
n„, Weinhold's rigorous lower bound" of 0.192 35
a.u. and variation-perturbation estimate of
0.192452 a.u. show that for the ground state of Li'
the limiting accuracy of the TFF ansatz" for +
is roughly 2 x 10 ~ a.u. For Be" and B" Weinhold
gives variation-perturbation estimates of
0.052 268 5 and 0.019 631 4 a.u. , respectively. The
discrepancies between these values of n„and those
in Table VII are 7 x 10 ' and 7 x 10 ' a.u. for Be"

and B", respectively. Discrepancies of the same
order of magnitude exist between the values of n„
in Tables VII and VIII and Weinhold's extrapolated
values for 6 HZ~10.

From the above comparisons and the analogous
ones for H and He it is clear that the error in-
herent in the TFF ansatz for (d decreases as Z
increases. This can easily be understood by not-
ing that the TFF ansatz for e [Eqs. (19) and (20)]
weights regions of space close to the nucleus, and
hence is better suited to describing distortions of
the compact charge distributions of the ions of
higher nuclear charge than distortions of the more
diffuse charge distributions of the ions with
smaller nuclear charges. The above argument
also indicates that the TFF ansatz for ~ should be
poor for excited states. That this is indeed the
case is verified by our calculations on excited
states. "

In the absence of convergence studies and of
values computed from wave functions of Pekeris-
type accuracy we are unable to make quantitative
error estimates for the remaining properties.
They should, however, be useful, since no com-
parable calculations seem to be available in the
literature.

Note that for Z ~ 8 G, is negative but for Z & 8 it

TABLE VII. Parallelotope parameters, expectation values, and cusp-condition checks for the ions from Li+ through
N5+

N
A(
A2
B(
B2
G(
G2

1—g

(~ 2}

(x)
(&'}
(g3}
( '}

(&'n)

(cos8 n}
Qy

(~ (r i2»
C'EN

Cpm

Li+

45
2.9840
3.S310
2.0750
3.2710

-0.2570
2.5790

-1.767—8
7.279 91327

29.855 23
5.375 848 77
1.145 548 33
0.892 558 44
0.882 558 7
1.059 22
4.082 25
1.567 7198
0.862 815292
0.927 064 28
1.188 56
1.7660

-0.43632137—1
0.192 25S
6.852 017
0.533 808
3.000 098
0.497 907

Be2+

25
3.7640
4.8840
3.1960
4.4320

-0.4120
3.1840

-6.074—9
13.655 565 0
55.679 17
7.875 500 61
0.828 566 830
0.464 13581
0.328 440 6
0.281 131
8.029 19
2.190872 5
0.618 756 549
0.477 947 16
0.440 530
0.470 69

-0.329412 29—1
0.522424—1

1V.195912
1.524 587
3.998 591
0.483 364

25
4.7670
5.9260
3.4580
5.0240

-0.2810
4.5820

-6.004—9
22.030 970 4
89.506 70
9.375 327 81
0.649 111369
0.283 937 90
0.156 515 7
0.104 168

13.8075
2.814 698 3
0.482 435 504
0,290 79120
0.209 243
0.174 58

-0.264 373 66—1
0.196380—1

34.757 907
3.314 775
4.999 82V

0,486 551

( 4+

25
5.7070
7.1870
4.1870
6.1390

-0.3960
5.6080

-2.903—9
32.40 6 2454

131.3342
11.3V5 230 6
0.533 587 601
0.19147867
0.864 576 1—1
0.470 789—1

19.9186
3.438 883 0
0.395316696
0.19536320
0.115294
0.789 07—1

-0.220 722 07—1
0.896 196—2

61.442 019
6.144 791
5.999730
0.485 833

25
6.6420
8.4460
4.9270
7.2600

-0.5090
6.6110
3.254—9

44.781443 9
181.1622
13.375 170 9
0.452 984 671
0.137 808 77
0.526 970 5—1
0.242 825—1

27.8625
4.063 308 3
0.334 839 523
0.140 219 12
0.701370—1
0.406 90—1

-0.189418 40—1
0.465 47V—2

99.159 910
10.252 929
6.999 632
0.485 292
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TABLE VIII. Parallelotope parameters, expectation values, and cusp checks for the ions from P through Mg 0'.

N
A,
A2
Bi
B2
G(
G2

1~ Q

(r )
&r'&

(+72')

&&y&

&~'u&

(coso g2)
Qg

«~(~~2))
CEN

CEp,

o"
25
7.5800
9.6910
5.6790
8.3820

-0.6180
7.5910
2.348—9

59.156 593 8
238.9905

15,375 1316
0.393 543 432
0.103 910 52
0.344 599 1—1
0.137 632—1

37.1395
4.687 865 0
0.290 406322
0.105 507 51
0.457 941—1
0.230 56—1

-0.165 87984—1
0.265 218—2

149.821 756
15.877 968
7.999 591
0.484 777

F7+

25
8.7940
9.8720
7.3910
9.1490
0.4850
5.9800

-1.033—8
75.531710 8

304.8203
17.375 104 4
0.347 895 504
0.81141063—1
0.237 558 3—1
0.837 257—2

47.7496
5.312 517 9
0.256 381467
0.822 530 18—1
0.315302—1
0.140 21—1

-0.147 538 69—1
0.162 004—2

215.344 766
23.257 758
9.000 658
0.486 389

Ne8+

25
9.8000

10.6000
8.8100

10.0000
0.6260
3.7600

-1.735—7
93.906 802 4

378.6468
19.375 084 9
0.311738 189
0.651 123 43—1
0.170 639 0—1
0.538 149—2

59.6946
5.937 243 8
0.229 491 864-
0.659 174 10—1
0.226 254—1
0.90100—2

-0.132 852 82—I
0.104471—2

297.612 966
32.643 199
9.999 378
0.479460

20
11.0370
11.8600
10.3030
11.4990
0.0904
4.9150

-1.601—7
114.28 1879
460.4830
21.375 070 3
0.282 389885
0.534 036 23—1
0.126 6704—1
0.361464—2

72.9708
6.562 015 1
0.207 706 138
0.540 050 52—1
0.167812—1
0.605 01—2

-0.120 810 25—1
0.703 613—3

398.605 860
44.247 599
11.002 604
0.483 004

20
12.1410
12.9070
11,3090
12.4270
0.4410
7.3430
8.485—8

136.656 944
550.3112
23.375 059 1
0.258 092 574
0.445 91241—1
0.965 993 3—2
0.251 699—2

87.5802
7.186 820 6
0.189 697 482
0,405 523 78—1
0.127 882—1
0.421 18—2

-0.110VV2 94—1
0.491056—3

520.140 668
58.326 082
12.002 086
0.481 670

is positive. In fact, negative y~'s occur only for
Z~ 5. The inequalities of Eqs. (38) and (39) are
invariably satisfied for Z ~9 but not always for
Z&9. These results are slightly surprising, and
probably are artifacts of the optimization pro-
cedure used. The latter claim is supported by the
fact that we encountered convergence problems
with the optimization algorithm for atoms with
nuclear cha.rges greater than 9.

IV. DISCUSSION

In Sec. I it was pointed out that a goal of this
work was to construct compact and accurate wave
functions using a relatively simple basis set. Do
the functions constructed in this work meet these
requirements & We believe that they do. As
pointed out earlier, the basis set used in this work
is indeed simple, since the integrals required to
compute a wide variety of properties [including
lower bounds, p(~) and k(x»), and those properties
presented in Sec. III] can be done analytically.
Furthermore, it was shown in Sec. III that our
wave functions yield rather accurate values for a
host of properties, including the energy. It re-
mains to examine how well our functions sa,tisfy
the criterion of compactness.

Let us consider the ground state of He. For

4'(s, u, t) = Q (ks, ku, kt),

with

P = e '~' g C(n, I, m, i,j )s"i"u
n, l, m, f, j

x (s'+ t')'~'(lns)'

(41)

(42)

and s =f'~+/2, t = 7'2 —t'j, and u =x», has been em-
ployed by Frankowski and Pekeris. " With 59

lack of sufficient data in the literature we must
restrict our attention to the energy. The 60-term
function presented in Table II yields an energy of
—2.903 724350 a,.u. Functions of the Pekeris type
in perimetric coordinates would require roughly
400 terms to achieve similar accuracy, as in-
dicated by the 252- and 444-term energies of
—2.903 724290 and —2.903 724 356 a.u. , respective-
ly. ' With the scale parameter fully optimized, a
Hylleraa. s-type function would require roughly 115
terms to attain similar accuracy. This is indi-
cated by the recently computed 95- and 125-term
energies of —2.903 724 306 and —2.903 724 371 a,.u. ,
respectively. " If ha.lf-integra. l powers of ~, +x,
a,re used in addition to the usual Hylleraas-type
terms, then a 99-term function" yields an en-
ergy of —2.903 724349 a.u. Finally, the compli-
cated ansatz
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terms they obtained an energy of —2.903 724351
a.u. Clearly the 60-term function of Table II and
the Frankowski-Pekeris function are the two
most compact functions available. For H the 60-
term function of Table VI yields an energy of
—0.529775094 a.u. , which is close to the value of
-0.529775 098 a.u. obtained" with a 101-term func-
tion of the type given by Eqs. (41) and (42).

From the above comparisons it is evident that
our functions are more compact than any others in
the literature, with the exception of the Frankowski-
Pekeris functions. The latter are, however, more
complicated and more difficult to manipulate.

Why has it been possible for the present ansatz
of Eq. (9) to yield such a combination of compact-
ness, simplicity, and accuracy& We believe that
this is chiefly due to the large number (3N) of non-
linear parameters in an N-term function of this
type. The direct optimization of these 3N expo-
nents would be a virtually impossible task. The
generator- coordinate formalism has enabled the
use of quadrature formulas to generate these ex-
ponents while optimizing only six parallelotope
parameters. This latter optimization cannot be
dispensed with. That this is so is evident from the
energy of —2.903 724 111 a.u. for 1'S He obtained"
with a 165-term function of this type, with the
quadrature domain chosen to be the totally positive
octant of n-P-y space. Note, however, that there
seems to be little to choose between the Z and P
schemes of this work. The P scheme is marginal-
ly more convenient because there is no restriction
on the number of terms, N, that can be used. The
Z scheme is, of course, restricted to those N for
which "good lattice points" modulo N exist. "

Not surprisingly there is a price to be paid for
the success of the method used in this paper. The
higher roots of the secular equations provide very
poor upper bounds to excited-state energies.
Separate optimization of the integration domain
seems to be necessary for each state that one
wishes to study. Excited states are dealt with in
detail in the next paper of this series. " Other
problems that can arise during the computational
stage include near- linear dependencies among the
basis functions. These, however, can usually be
overcome by not allowing the edges of the parallel-
otope to become too short.

A computational nuisance is that multiple-pre-
cision arithmetic is required in order to avoid loss
of accuracy due to cancellation. This, however, is
not at all surprising. Accad et al. ' and Aashamar
et al."have also noted that the more flexible the
basis set used, the more severe the loss of ac-
curacy due to cancellation. In order to monitor
these cancellations we calculated separately the
positive and negative contributions to various ex-

pectation values. For the 60-term 1'S He func-
tion it was found that the leading four to six sig-
nificant figures of the positive and negative con-
tributions canceled each other. It appears that if
our calculations were to be extended to 100 or
more terms, arithmetic of higher precision than
that used by us (see Sec. II F) would be neces-
sary. "

A number of avenues for future work seem prom-
ising. It may be worth investigating the possible
use of the techniques described in this paper for
variational-perturbation calculations of the Z '
expansion for two- electron atoms. ' Refinements
of the basis set used in this work are possible. An
interesting approach would be to use an ansatz of
the form

g(r„r„r») = (4w)
' g C~(1 + P») exp(- n,r, —P„r,)

x (1+—,'r„e "&"»). (43)
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The idea behind such an ansatz is to force the cor-
rect behavior of 0 for small x». The correlation
factor in Eq. (43) is given by Hirschfelder. "
Another interesting question is how much improve-
ment would be possible by adding a correction term
to Eq. (9) [or for that matter to Eq. (43)) in an at-
tempt to force the correct asymptotic behavior
when one electron is far away from the nucleus.
Such a correction term could be the Hulthen type:

g„,= C~.,(1+P„)e "r,'(e '" —e '" ), (44)

where 6 = (2 ~I~)'~', with I~ equal to the ionization
potential; Z is the nuclear charge and & is a pa-
rameter. Rotenberg and Stein" obtained a sig-
nificant improvement by adding such a term to a
Hylleraas-type ansatz. Equation (44) is only an
approximation to the asymptotic behavior. A more
sophisticated approach would be to use the com-
plicated but rigorous asymptotic form given by
Slaggie and Wichmann. " Yet another approach
would be to use the scheme suggested by Arm-
strong, ' which is based on a zero-momentum
Fourier analysis.

Finally, it would be useful to analyze the wave
functions constructed in this work by one of the
techniques mentioned in Sec. I. Analysis of the in-
tracule function h(r») is underway in our lab-
oratory.
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APPENDIX

In order to compute (x ') and (x,,') from wave
functions of the type used in this work [cf. Eq. (9)]
certain integrals which require careful handling
are encountered. Their computation is described
below.

Define

I(a, b, c;f, rn, n)

= (4v) ' dv, dv, exp[ —ax, —bx, —cx»]

bearing the Frullanian character" of the integral
in mind, it can be shown that

I(a, b, c;—1, 1, 1)

2 b c
(b' —c')' (a+ c) (a+ b)

ln( ) . (A4)

when
I

(b —c)/(a+c) I= I
~

I
becomes small, fo~m~la

(A4) is numerically unstable and hence we expand
the logarithm to obtain an alternative form,

I(a, b, c;—1, 1, 1)

2 1 b 2bc
(b+ c)' (a+ b) (a+ c) (a+ c)'

yl-ly, m-lan 1
1 2 12 (A1)

4bc
(a+a)' (A5)

I(a, b, c; 1,—1, 1) = I(b, a, c; —1, 1, 1),
I(a, b, c; 1, 1,—1) = I(c, b, a; —1, 1, 1) .

Transforming to perimetric coordinates and

(A2)

(A3)

where a+b&0, a+c&0, and b+c& 0. For ), m, n
«0 these integrals can easily be computed by the
recursion scheme given by Sack et a/. " However,
I(a, b, c;—1, 1, 1), I(a, b, c; 1, —1, 1), and
I(a, b, c;1,1,—1) are also needed. Note that only
I(a, b, c;—1, 1, 1) need be considered, since, by
symmetry arguments, we have

where

k=&

(A6)

The series 8 converges fairly rapidly for small
values of

I
7

I
and, if necessary, can easily be ac-

celer3ted with the Euler transformation. " Equa-
tion (A4) for

I
7

I
& 0.1 and Eqs. (A5) and (A6) for

I
7

I
~0.1 provided satisfactory computational ac-

cess to I(a, b, c;-1,1, 1) for all values of a, b, and
c encountered in this work.
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