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%e briefiy discuss four of the principal energy-apportionment techniques currently used in energy-deposition

calculations —the Fowler equation, the Monte Carlo approach, the discrete-energy-bin method, and the

Peterson-Green integral equation in the context of the continuous-slowing-down approximation (CSDA}.
Using a complete set of analytic inelastic cross sections for molecular hydrogen, we calculate, by each of these

four methods, the energy per ion pair 8' associated with the degradation in H, of incident electrons with

initial energies ranging between the ionization threshold and 1000 eV. %'e find that the results obtained from

the first three of these methods are in very good agreement with one another, while the values of W obtained

by the last method in the CSDA are consistently larger than the corresponding values obtained from any of
the discrete-energy-loss approaches. Lastly, we isolate the cause of the CSDA discrepancies and propose two

techniques for modifying the low-energy predictions of the CSDA so that they are in much better agreement

with those of the three discrete energy-apportionment methods for all incident-electron energies.

I. INTRODUCTION

It is now generally agreed that the key to the
solution of energy-deposition problems is the
assembling of a complete set of cross sections
which accurately describe the relevant inelastic
processes that a particle traversing a medium can
bring about as it transfers its energy to that medi-
um. However, once such a set of cross sections
has been assembled, a variety of methods of en-
ergy apportionment or "bookkeeping" have been
used to calculate the number of excitations of a
given state of a medium that are produced as the
incident particle is degraded in energy. In addi-
tion to the traditional Boltzmann and Fokker-
Planck equations, six other methods, each em-
ploying a detaiied-atomic-cross-section (DACS)
approach, may be identified. They are the Fowler
equation, ' the Spencer-Fano degradation-spectra
method, ' the Green-Barth successive-generation
method, ' the Peterson-Green integral equation, '
the Peterson discrete-energy-bin method, ' and
the Monte Carlo collision-simulation method. '

A comparison of the predictions of these various
apportionment methods, based on the same set of
cross sections, would be of interest in assessing
the relative reliability and utility of each method.
One simple test consists of a comparison of the
values of 5, the number of eV per ion pair, ob-
tained from each method. Molecular hydrogen is
an excellent candidate as the medium or gas in
such a calculation, since it has been subjected to
considerable experimental study and, as the sim-
plest molecular gas, it is the most amenable to
theoretical investigation. Furthermore, it is of
aeronomical interest as the principal constituent
of the Jovian atmosphere and also of interest in
connection with the fusion program.

We have chosen to compare four of these energy-
apportionment methods. We have not explicitly
considered the successive-generation approach of
Green and Barth, since these generations are, in
effect, summed by the Peterson-Green integral
equation. However, we should note that the Green-
Barth method is a practical one, since the avex-
age energy of successive generations of electrons
declines very rapidly, and this technique has re-
cently been used by Khare. ' We have also not con-
sidered the Spencer -Fano method, since it has
been recently shown, ' using var iational techniques,
that the degradation spectrum obtained in that
method is the universal adjoint of the state pop-
ulations obtained in the Fowler method. Thus the
four approaches we do examine here actually in-
clude the six principal energy-apportionment meth-
ods used in electron-energy-deposition work.

II. METHODS OF ENERGY APPORTIONMENT

The oldest discrete ener gy-apportionment
method is that of Fowler, ' which determines the
mean total number Zl, (E) of excitations of the state
k produced in the entire degradation process ac-
cording to the equation

& [J,(E —(I, + T))+J,(T)], (1)

where P, (8)= o, (F)/o, (E) is the pr. o. bability that in

an inelastic collision an electron of energy E mill
excite the state k; pi, (E, T) =S,(&, T)/o, (E. ) is the
probability per unit energy that in an inelastic
collision an electron of energy E will produce an
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ion in the i th ionization continuum and a secondar y
electron with energy between T and T+dT. Here
cr,.(E) is the cross section for an electron with en-
ergy E exciting the state j in the medium through
which the electron is passing, S;(E, T) is the dif-
ferential ionization cross section for an electron
with energy E producing a secondary electron with

energy in the xange T to T+dT via the ith ioniza-
tion continuum, and o, (E} is the total inelastic
cross section. The energies E,. and I, are the
thresholds of the jth discrete state and the ith ion-
ization continuum, respectively. If we iterate the
Fowler equation several times we see it records
the increase in the population of the state k by
following an idealized, deterministic degradation
scheme.

The Fowler equation can be solved by first con-
sidering 8&8„,.„+8„,where E„,

„

is the lowest
excitation energy. For such a value of E, Z, (E)
=P„(E).By steadily increasing E in small incre-
ments, higher-energy solutions can be obtained
from the lower-energy solutions, since the argu-
ments of the two J~ terms in the integrand on the
right-hand side of Eq. (1) are always less than E
and therefore are already known from earlier cal-
culations at lower values of E. Recently, varia-
tional techniques have been employed to solve Eq.
(l) '

A second discrete method of energy apportion-
ment based upon DACS, developed by Peterson'
and others, ""utilizes a deterministic, discrete-
energy-bin method. In this discrete-energy-cell
method, the energy range between some initial
value and the threshold of the state of interest is
divided into bins. The bin centered at the initial
energy value is assumed to contain one electron,
while the other bins are initially empty. An ideal-
ized degradation process is then assumed to com-
mence which is very similar to the content of the
Fowler equation after many iterations but which
is rather different from the low-energy-to-high-
energy approach used to solve the Fowler equa-
tion. In this idealized degradation scheme the in-
itial electron is fractionally redistx ibuted into
lower-energy bins. In this idealized process the
population of each state k is increased by the frac-
tion f~(E) =a~(E)/o, (E }, and that fraction of the
electron is deposited in a new bin defined by its
new energy E -E~. The ionization continuum is
divided into a group of quasidiscrete states, and
the fraction of the electron producing the same
fraction of a secondary with energy between T
——,&T and T+-,' 4T is f,(E, T) =S&(E, T)&T/c, (E},
where 4Tis determined by the size of the energy
bins. That fraction of the primary is deposited in
the bin defined by E - I& —T, and the same fraction
of the secondary in the bin defined by T. In this

manner the highest-energy bin is emptied and
lower energy bins are populated with appropriate
fractions of electrons. The above process is then
repeated for the second-highest-energy bin, and
the fraction of an electron exciting a state k and
the amount by which the population of the state k
is increased is now the product of f,(E') times the
initial fraction of an electron in that bin, where
E' is the energy at the center of the bin in ques-
tion. Each energy bin is emptied in turn until all
the bins above and including the bin containing the
lowest threshold have been emptied. In this way
the mean total number of excitations of each state
which are produced in the complete degx adation of
an electron from a given incident energy is ob-
tained.

In the Monte Carlo approach, the degradation
process is simulated in a collision-by-collision
manner. The choice of which state of the medium
is excited by an electron at a particular energy is
made by choosing a random number R between 0
and l and determining which state s fA sf satisfies
the inequality

where the summation is over possible excited
states j, including ionization.

If the state s corresponds to an ionization con-
tinuum, the energy of the secondary is determined
by selecting a second random numbex R' between
0 and 1 and solving the equation

S,(E, T)dT
o,(E)

for T. With the expression for S;(E, T} that we

have used [see Eq. (9)], T can be obtained analy-
tically.

After a given state s has been selected, the in-
cident electron loses an energy E„if s corre-
sponds to a discrete excitation, or I, +T, if s
corresponds to excitation of an ionization contin-
uum. The population of the state s is increased
by unity and the above selection process is re-
peated until the electron has degraded below the
lowest threshold energy. Each of the secondary
electrons produced in the degradation process is
then allowed to degrade in exactly the same man-
ner, as are all members of subsequent genera-
tions of electrons.

The fourth method of energy apportionment we
have considered, which was developed in the
course of DACS degradation work carried out by
Green and co-workers, """is the Peterson-
Green integral equation,
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' &a(E')
(E) = (5)

(6)

The quantity L(E) appearing in Eqs. (5) and (6)
is the loss function or stopping power of the medi-
um and is the fundamental quantity in the CSDA.
The loss function is defined as —n ' dE/dx, where
x is distance into the medium, and may be evalu-
ated in the CSDA using

L(E) = Q o)(E)E)+ Q &~(E)E~

(E-I;)l2
+ Q S](E, T)(I]+T) dT,

0
(7)

where o~(E) is the total cross section for the dth
dissociative excitation and E~ is the average en-
ergy loss associated with that dissociation.

Although one would expect the three discrete
energy-apportionment methods described to be in
close, if not exact, agreement with one another,
to the best of our knowledge no rigorous proof ex-
ists linking these three approaches, and no com-
parison of the predictions of these three approaches
using a common, realistic set of cross sections
has been made to determine how closely these
three discrete methods can be made to agree in

~a(E) =~»(E)
(& -I;)/2

+ P J],(T)n;(E, T) dT.
i 0

Here, J»(E) is the number of excitations of the
state k due directly to the incident particle as its
energy is degraded from E to E„andn, (E, T) is
the total number of secondary electrons in the ith
ionization continuum with energies in the range T
to T+dT produced directly by an electron as its
energy degrades from 8 to 2T+ I&.

For exact values of J» and n;(E, T), Eq. (4) is
exact. Upon iterating Eq. (4) several times, we
see that this equation compiles the total number
of excitations of the state k by counting the num-
ber of excitations of that state produced by each
generation of electrons arising in the degradation
process. We can solve Eq. (4) by the same pro-
cedure described above to solve the Fowler equa-
tion, since the argument of J~ in the integrand on

the right-hand side of Eq. (4) is always less than

E, the argument of J~ on the left-hand side of the
equation.

The quantities J»(E) and n, (E, T) are most readi-
ly calculated in the continuous-slowing-down ap-
proximation" (CSDA). In the form of CSDA used
by Green and associates,

practice. In addition, although Peterson' previ-
ously compared the predictions of his discrete-
energy-bin approach with those of CSDA for He
and N„no thorough comparison has been made
using any other gas, nor has the source of the
difficulties with CSDA been identified as exactly
as in this present work.

(8)

where q, =4va', (8,)' =6.514x10 "cm'eV' (a, being
the Bohr radius and N, the Rydberg constant), and
where A. , 5, 0, y, and v are parameters to be
adjusted for each state. In Table I, we present
only those parameters which differ from those
found in MTG."

We consider only one ionization continuum and
represent the differential ionization cross section
S(E, T) by the Brett-Wigner form introduced by
Green and Sawada. " We have fitted this form to
the total ionization cross-section data of Happ and
Englander-Golden, "after subtracting the contri-
bution to that cross section due to dissociative
ionization, which we treat separately. The cross
section for dissociative ionization was obtai. ned
from data of Rapp and Englander-Golden, "which
we adjusted to take into account the fact that their
data excluded ions with kinetic energies below 2.5
eV. To make this correction, we used the ion
spectra for H, given by Crowe and McConkey. "
In this way we obtain

(9)

with

A(E) = (2.871/E)a, ln(E/0. 5114),

To(E) = 1.870 —1000/(E + 3I ),
I'(E) = 7 070E/(E —7.700).,

I =16.0 eV;

(10)

(12)

(13)

00=10 ' cm', and E is assumed to be given in eV.
Since there is little experimental information

concerning S(E, T) for dissociative ionization, we

III. CROSS SECTIONS FOR H2

For the discrete excitations of H„we have used
the cross sections obtained by Miles, Thompson,
and Green (MTG),"with some alterations. These
alterations involve a change suggested by Olivero,
Bass, and Green" in the C'lI„cross section and
a slight change in the MTG parameters character-
izing the analytic fits to the B'Z„'and E'Z,' cross
sections which significantly improves those fits.
The functional form" used here and in Ref. 15 to
fit the discrete cross sections is
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TABLE I. New parameters to be used with Eq. (8) for
the four states discussed in the text. DI stands for dis-
sociative ionization.

State W (ev) 0

@fg+

c ~a„

DI

0.3674 11.370 0.7163 1.000 3.427

0.1002 12.400 0.7134 1.000 3.410

1.3200 12.290 0.7500 0.300 1.000

2.0704 21.026 1.4520 0.786 4.774

will treat dissociative ionization as a discrete pro-
cess and will fit the corrected Rapp and Englander-
Golden dissociative-ionization cross sections with
the analytic form of E|1. (8) for discrete excita-
tions. The parameters characterizing the total
cross section for dissociative ionization are pre-
sented in the last row of Table I. The average en-
ergy loss E, associated with such ionizations is
given by E&; (+K.E.) where Z„is the average
threshold for dissociative ionization and (K.E.)
is the average kinetic energy of the ion plus atom
and is equal approximately to twice that of the ion.
We neglect the energy of the secondary electron. "
The average kinetic energy of the ions can be ob-
tained from the ion-energy spectra of Crowe and
McConkey. 20 We find that E„+(K.E.) is approxi-
mately 18+14=32 eV.

With respect to dissociative excitations, the
hydrogen molecule can dissociate into two neu-
tral atoms in several ways. " The vast majority
of excitations of any triplet state will lead by radi-
ative transitions or by predissociation to the re-
pulsive O'Z„' state; when in that state, the mole-
cule dissociates into two ground-state atoms. Ex-
citations of the O'Il„and higher Rydberg members
of the 'Z+ series and the 'Z„'series can predis-
sociate into a ground-state atom and an excited
atom. " Two ground-state atoms can also be pro-
duced by excitation of the 8'Z„',8''Z„', or a'II„
states followed by a radiative transition to the con-
tinuum of the ground state. " Direct excitation to
the continuum of an excited singlet state can also
result in dissociation, and, lastly, excitations of
doubly excited states of the molecule may predis-
sociate. With the exception of these last two mech-
anisms, the cross sections for all the other dis-
sociation mechanisms are contained in the cross
sections for the discrete states, since those
cross sections were obtained from measurements
involving energy losses of the primary electron and
not by measuring final products of excitations. '~

Thus by using the cross sections for discrete ex-
citations as they are, we implicitly include all

types of dissociation except that due to the predis-
sociation of doubly excited states and Frank-Con-
don-forbidden direct dissociations from singlet
states. Since we are interested here only in de-
termining Ni, we have not included separate cross
sections for dissociation.

In calculating g we will be concerned with any
electron until its energy becomes less than ox

equal to the ionization threshold. What happens to
an electron below this energy cannot effect W. For
this reason we have chosen to ignore rotational ex-
citations, as well as the possibility for negative-
ion formation, since both of these processes are
significant energy-loss mechanisms only for elec-
trons with energies well below the ionization
threshold of H„' however, we have included cross
sections for excitation of the first two vibrational
levels of the ground state of H„using the parame-
ters of Ref. 15.

IV. RESULTS

In a, comparison of this type, care must be tak-
en to minimize the discrepancies that arise among
the various approaches from numerical differ-
ences in the various computer programs used,
rather than from differences inherent in the dif-
ferent approaches themselves. In addition to us-
ing the same set of cross sections in all four meth-
ods, we have been careful to ensure that the size
of the energy cells used in each program were
small enough that their finiteness had a negligible
effect on the results.
In Fig. 1 and Table II we present the values of

the energy per ion pair,

W =EjJ((E),
which we obtained by each of the four energy-ap-
portionment methods we examined. As Fig. 1 and
Table II indicate, the three discrete-energy-loss
approaches agree very well, as we would hope, in
their prediction of 8' at any energy. The Fowler
and discrete-energy-bin approaches yield values
of W that agree to within 0.15% or less and the
Monte Carlo results are usually within one stan-
dard deviation and always within two standard de-
viations of the result of the other two discrete
methods. Several factors contribute to the nu-
merical differences that remain. The solutions of
the Fowler equation are obtained in such a wa. y
that the higher-energy results depend on lower-
energy results; on the other hand, in both the dis-
crete-energy-bin approach and the Monte Carlo
method, we begin at high energies and progress-
ively work down to lower energies. Thus numer-
ical errors propagate differently in the Fowler
equation, as it is solved here, then in the other
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FIG. 1. Values of W in eV/(ion pair) plotted vs inci-
dent-electron energy E in eU. See the caption of Table
II for an explanation of the abbreviations. The numbers
in parentheses beside each Monte Carlo data point, mul-
tiplied by 1000, represent the number of simulations
required to obtain that point with an uncertainty charac-
terized by the accompanying error bars of +(one stan-
dard deviation).

two discrete approaches. In addition, its stochas-
tic nature dictates that there be statistical fluctua-
tions in the Monte Carlo results which are absent
from the results of the other two discrete, but
deterministic, approaches. These differences,
plus the fact that the computer programs employed
in conjunction with each of these approaches may
still have some numerical differences inherent in
them, should account for the small discrepancies
in W which we obtained. We feel that the close
agreement we obtained is excellent numerical con-
firmation of the equivalence of these three dis-
crete approaches.

Recently, there have been several calculations
of W for H, .'"" The cross sections used in Ref.
11 were adjusted to yield an asymptotic value of
W which would agree with experiment, "so it is

difficult to make any meaningful statement con-
cerning the relationship between that work and the
work here. With all singlet states grouped togeth-
er as one state and all triplet states grouped to-
gether as a second state, Jones" obtained a value
for W of 37.12 eV (per ion pair) at 1000 eV which,
when extrapolated to 4 keV, is in remarkably good
agreement with experiment. Gerhart, ' using cross
sections which were adjusted to satisfy certain
sum rules, obtained a value of W of 40.12 eV at
1000 eV.

In each of these studies a different philosophy
was employed in obtaining a set of cross sections
to use in the calculations; consequently, in each
study a different set of cross sections was ob-
tained. Thus it is understandable that they should
differ somewhat in their values for W at any given
energy. Nevertheless, our mean value for W of
38.63 eV at 1000 eV, obtained from the three dis-
crete-loss approaches, although below Gerhart's
value, is in qualitative agreement with his finding
that the asymptotic value of W obtained from a
detailed-atomic-cross-section approach is some-
what larger than that obtained from experiment.
Gerhart has proposed that Penning ionization may
play a significant role in producing additional ions
which result in a lower experimental value of W.

From Fig. 1 and Table II we see that the Peter-
son-Green integral equation yields values of W
which are consistently larger than the results of
the discrete-loss calculations. This is consistent
with the findings of Peterson for He and N, ~ This
discrepancy in the prediction of the Peterson-
Green equation must be due to its reliance on the
CSDA to determine J„(E)and n;(E, T). The CSDA
is an approximation which breaks down whenever
the energy lost in an inelastic collision by the ex-
citing electron is appreciable compared to the
electron's energy before the collision. Such a
situation exists when the electron is a low-energy

TABLE II. Values of +' in eV/(ion pair) for various values of incident energy E. In the col-
umn headings, MC stands for Monte Carlo, DEB for discrete energy bin, F for Fowler, PG
for Peterson and Green, H for hybrid, and ES for energy shifted. The Monte Carlo results
contain the value of & and the standard deviation associated with that value for various values
of E.

MC DEB PG- CSDA H ES-CSDA

20.0
40.0
60.0

100.0
250.0
500.0
700.0

1000.0

109.4 +1.55
63.27 + 0.53
52.26 + 0.45
46.51+ 0.28
40.81+ 0.19
39.01+ 0.19
38.70+ 0.17
38.44+ 0.13

107.2
63.50
52.86
46.35
40.75
39.07
38.72
38.60

107.1
63.50
52.87
46.36
40.77
39.10
38.76
38.65

503.3
85.06
61.77
51.50
43 ~ 26
40.88
40.36
40.13

107.1
63 ~ 50
53.00
46.62
40.92
39.13
38.76
38.62

103.4
60.77
52 ~ 60
46.50
40.84
39.06
38.69
38.54
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one to begin with or when a relatively high-energy
secondary is produced. In the former situation, if
E is the same order of magnitude as Er, J„(E)
will be in error as determined by Eq. (5), and in
the latter case n, (E, T) will be in error as deter-
mined by Eq. (6) for large values of T at any E
and for all T when E is the same order of mag-
nitude as I;. Recalling that even for a high-en-
ergy electron a large number of the excitations
produced in the degradation process are due to
low-energy secondaries, which are not handled
correctly by the CSDA, we see that the CSDA
will be in error at all energies.

In addition to this physical difficulty, there is a
mathematical difficulty arising from the fact that
the Peterson-Green equation is solved so that the

high-energy solutions depend on and are built
upon the low-energy solutions. Thus any error
in the low-energy solutions is propagated through
the solutions at higher energies, where we should
expect CSDA to be a rather good approximation.
For instance, even for an incident energy of 1000
eV, we find the CSDA prediction of W to be 4%
above the predictions of the three discrete meth-
Ods.

V. IMPROVING THE CSDA

Recognizing the low-energy error inherent in

any CSDA calculation, we have developed a hybrid
energy-apportionment technique which yields re-
sults which agree with discrete-loss techniques
but is more economical when a large energy range
is being considered. This hybrid technique uses
the Fowler equation to obtain J»(E) for low ener-
gies and also uses these values in the integrand
of the Peterson-Green equation to obtain J,(E) at
higher energies, where the CSDA yields reason-
able values for J»(E) and n, (E, T) We note that.
for E &I; +2E, any secondary electron produced
cannot have enough energy to excite state 0 it-
self, and thus J~(E) obtained from the Fowler
equation is just J„(E).For this reason, in the

hybrid technique we use the Fowler equation for
energies less than or equal to E„=I;+2E,. Above

this energy, we use the Peterson-Green equation
and calculate J»(E) according to

dE'+J, (E„).

Here, E„is 48.0 eV.
In Fig. 1 and Table II, we present the results

obtained by this hybrid approach. The improve-
ment over the CSDA results is striking. These
hybrid results show that the effect of any error
in the CSDA determination of n;(E, T) on state
populations obtained from the Peterson-Green

equation are negligible. The error arises because
of the CSDA determination of J»(E) is in error for
very small E ~E„.To further demonstrate this
point we have devised a second way of improving
the CSDA results. Qur earlier results indicate
that for E ~E„the values of J;(E) predicted by the
Fowler equation are roughly equal to the CSDA
predictions of J„evaluated not at E but at a high-
er ener gies near E + &I ~ We modif ied the Peterson-
Green equation to give it the slightly altered form

(16)

The effect of this adjustment of the inhomogene-
ous term in the integral equation is also presented
in Fig. 1 and Table II. The energy shift of the
argument of the J„term brings the low-energy
values of this term into close enough agreement
with the predictions of the discrete methods that
the values of J; at all energies are now in good
agreement with the predictions of the discrete ap-
proaches. This particular energy shift will not be
appropriate for any other state or any other gas,
but the fact that such a fairly rough correction,
which includes none of the low-energy structure
of the exact J«(E), results in substantial improve-
ment of the CSDA predictions is further proof that
it is the errors in the low-energy values of J„(E).
and not errors in n;(E, T) which cause the CSDA
calculations of W to be in error.

VI. CONCLUSIONS

Using a common set of cross sections, we have
obtained values for the e ner gy per ion pair of H,
at energies between threshold and 1 keV by three
different discrete-loss energy-apportionment
methods, and have found the predictions of the
value of W by each of these three methods to be
in very good agreement with one another. The
predictions of the CSDA we obtained with the Peter-
son-Green integral equation are always higher than
those of the discrete techniques. We have demon-
strated by investigations with a hybrid technique
and an energy-shift method that this problem with
the CSDA can be corrected by using better values
for Jp'(E) at low energies.

We summarize below the advantages and disad-
vantages of each of the energy-apportionment tech-
niques we have considered. The Fowler equation,
as it is solved here, besides taking the discrete
nature of the energy-degradation process into ac-
count, gives accurate estimates of the population
of a given state at many energies. It has the dis-
advantages that (a) a relatively fine energy grid
must be employed to obtain these results, and



952 R. H. GARVEY AND A. E. S. GREEN

this increases the cost ot' the calculations, (h) the

high-energy solutions depend on low-energy solu-
tions, which in turn depend on the least reliable
cross-section data, and (c) no spatial information
can be obtained from this method.

The discrete-energy-bin method yields esti-
mates of the population of states at only a few
selected enexgies, but the high-energy results do
not depend so strongly on the low-energy results.
In addition, it has been shown recently" that the

degradation spectrum can be obtained from this
method, but the method cannot give any spatial
information.

The Monte Carlo approach also gives state popu-
lations at only a few selected energies, and is
more costly than either of the other two discrete
methods, but it alone is capable of describing all
the pertinent spatial aspects of the degradation
process.

The unaltered CSDA method is the least expen-
sive of all the methods we considexed, since it
requires the least fine energy grid. However, its
results are only approximate even at high energ-
ies, because the inaccurate low-energy solutions
to the Peterson-Green equation effect the high-
energy solutions. The CSDA can be used to pre-
dict approximate range-energy relationships and
the spatial rate of energy loss. However, the
CSDA does not give information concerning the
locations of excitations occurring at points away
from the primary track.

The hybrid approach we have presented here

would be the most economical way to get accurate
populations of any excited states over a large
range of incident energies, since it requires a
less find grid than does the Fowler equation and

yields values at any intermediate energies de-
sired. However, its high-energy results are de-
pendent on low-energy yields and it can give only
the same limited, approximate spatial information
as does the CSDA.

The energy-shifted CSDA method we presented
in Sec. V could be used in a predictive manner
by comparing J,(E) from the Fowler equation with

J» of the CSDA for 8 ~E„to determine the proper
negative or positive energy shift needed to bring
the CSDA results into good agreement with the
Fowler results at low energies. Once this shift
is determined for the state k, Eq. (16), with the

correct energy-shifted argument in the J„term,
could be used to obtain accurate, low-cost values
for ZI, (E) for large E extending into the relativis-
tic regime, where discrete techniques would be
pr ohibitively cos tly.
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