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The noncrossing rule and spurious avoided crossings*

Gregory J. Hatton
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The proofs of the noncrossing rule and the problems inherent in the application of the rule are discussed. It is
shown that avoided crossings cannot be rigorously predicted by the noncrossing rule. The determination of
spurious avoided crossings by variational calculations is discussed. A rule is developed which establishes when
variational calculations will necessarily predict avoided crossings regardless of whether the exact states cross
or avoid crossing.

I. INTRODUCTION

The noncrossing rule is applicable to many
eigenvalue problems, and consequently plays an
important role in many fields of the sciences.
The noncrossing rule' ' specifies the minimum
number of independent parameters of a system
which must be determined in order that eigen-
values of eigenstates of the same symmetry may
be degenerate. (For example, in diatomic mole-
cules, the rule predicts that energy curves of
states of the same symmetry will not cross as
the internuclear separation is varied. ) The ap-
plicability of the noncrossing rule was first ques-
tioned by this author. ' Two of the important points
made in Ref. 6 were that (1) the noncrossing rule
is applicable only if all symmetries of a, system
are known and the system does not have any "acci-
dental" degeneracies, and (2) if symmetry is
defined in a way which eliminates the possibility
of "accidental*' degeneracies, then all states are
of different symmetry and the noncrossing rule
is not applicable. These points and others con-
cerning the noncrossing rule are briefly discussed
in this section, and in detail in Secs. II-V.

The noncrossing rule is applicable only if all
the symmetries of a system are known. ' The
rule adds to our knowledge only in systems which
have not been solved exactly; in such systems it
has not been shown that all the symmetries are
known. In systems which have been solved ex-
actly —and consequently provide an unambiguous
test of the noncrossing rule —dynamical' a.s well
as spatial and spin symmetries are present.
Dynamical symmetries —which are generally more
difficult to determine than spatial and spin sym-
metries —must be included in the analysis of these
systems via the noncrossing rule, or spurious
avoided crossings will be predicted (for example,
see Fig. 1). In systems which have not been solved
exactly, typically only simple spatial and spin
symmetries are known. The assumption that other
symmetries are not present is not rigorously cor-
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FIG. 1. Some of the lower 0~ electronic exact energy
curves of the one-electron system H&'. All. the states
shown are of the same "simple" spatial symInetry, and
are distinguished by dynamical symmetries (see the
Appendix). None of these states avoid crossing; however,
variational calculations similar to those used on many-
electron systems will produce energy curves which will
avoid crossing where the exact curves cross. This
figure is from the work of Rosenthal (Ref. 16).

rect, and consequently the application of the non-
crossing rule to these systems may produce erron-
eous results. "

The noncrossing rule does not directly concern
states of different symmetry. However, the usual
proofs of the rule' ' imply that eigenvalue curves
of states of different symmetry are entirely inde-
pendent and will not avoid crossing. This is not
the case. Many counterexamples occur in exactly
solvable systems' (for example, see Fig. 2). The
fact that states of different symmetry can exhibit
avoided crossings raises questions as to the role
of symmetry in the proofs of the noncrossing
rule. ' '

Over the years, variational calculations have
been performed on many systems. The crossings
and avoided crossings of eigenvalue curves in
these calculations are in agreement with the pre-
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exactly solvable in the Born-Oppenheimer approxi-
mation, the predictions of the noncrossing rule
for these systems may be unambiguously checked.
Often it is assumed that symmetry operators
can represent only "simple" spin or spatial opera-
tions such as rotations, reflections, and inver-
sions. If this "simplified" definition of symmetry
operator is assumed, then the noncrossing rule
is violated in one-electron diatomic molecules.
For example, in the H, ' system the "simple"
spatial symmetries are inversion with respect
to the nuclear center of mass and rotation about
the internuclear axis. If these were the only sym-
metries of the system, then the 2sa, and the 3da,
states —which cross (see Fig. 1)—would be of the
same symmetry (as would many other pairs of
crossing states of this and other one-electron di-
atomic molecules). It is well known, however,
that these crossings are not violations of the non-
crossing rule. Additional operators (see the
Appendix) satisfying the formal definition of sym-
metry operators exist in these systems. These
additional operators —sometimes called dynamical
symmetry operators because of their dependence
on the potential (for example, see Schiff') —togeth-
er with the "simple" spatial symmetry operators
distinguish all states of the one-electron diatomic
molecules. Consequently, since all the states are
of different symmetry, the noncrossing rule is
not applicable tc these systems. Dynamical sym-
metries —which are also present in the one-elec-
tron atom' and the three-dimensional harmonic
oscillator, ' and are necessary to "explain" the
degeneracies in these systems —are often non-
trivial, and were found in the cases mentioned
here only when the systems were solved exactly.

For the remainder of this paper, operators which
satisfy the formal definition of symmetry given in
the second paragraph of this section will be called
symmetry operators. Operators which correspond
to "simple" spatial and spin symmetries will be
called "simple" symmetry operators. The set of
"simple" symmetry operators is a subset of the
set of symmetry operators of a system.

Symmetry operators 8,. may be related to con-
stant-of-motion operators C,. by the following
mapping:

$=e''
C,. is Hermitian if and only if S, is unitary, and C,
commutes with the Hamiltonian if and only if S,.
does. This mapping is commonly used to describe
the symmetry of a state. For example, in diatom-
ic molecules the symmetry corresponding to a
rotation about the internuclear axis, h~ =e'~~, is
usually characterized by the corresponding con-
stant of motion, the angular momentum about the

axis, L, =-is/sp. The mapping is one to one ex-
cept for the constant-of-motion operators, which
may be expressed as simple functions of the Ham-
iltonian; often the corresponding trivial operators
[defined by Eq. (1)J, which are unitary and com-
mute with the Hamiltonian, are excluded from the
set of symmetry operators. Since the analysis
which follows does not require these operators,
the more restrictive definition of symmetry opera-
tor (which excludes these operators) will be used
in this work.

In summary, symmetry operators (as defined
in the second paragraph of this section) describe
not only simple spatial and spin properties, but
also more complicated properties (including those
which depend on the interactions) of a system
The assumption that systems which have not been
solved exactly have only simple spatial and spin
symmetries is unjustified.

E,(Z„)=E,(Z„), (2)

(~,(~.) I,, I (,(~.)& = o,

where E, and E, are the energies of the exact
eigenfunctions g, and g„and A„ is the crossing
point. In their work, the following equivalences
were deduced when E1(p) E2(Q):

III. PROOFS OF THE NONCROSSING RULE

The first proof of the noncrossing rule was
presented by Von Neumann and Wigner' in 1929.
Several years later, their work was specialized to
a two-state analysis by Teller. ' This two-state
proof, with or without minor changes, is currently
the most commonly cited explanation of the non-
crossing rule. ' Recently, additional proofs have
been proposed by Naqvi and Brown'(using a two-
state analysis), and by Longuet-Higgins' (using,
as did Von Neumann and Wigner, a finite-state
analysis). All these works deduce the basic non-
crossing rule: The crossing of two energy curves
of states of the same symmetry requires the
specification of at least two (three) independent
real parameters of the real (complex) Hamiltonian
of the system. This basic rule was extended to
include manyfold crossings by Longuet-Higgins, '
and to include sets of manyfold crossings by Von
Neumann and Wigner. ' The proofs will be dis-
cussed in three groups: (a) the work of Naqvi and
Brown, (2) works using truncated basis sets, and

(2) works using finite complete basis sets.
Naqvi and Brown4 have argued that two states

cross if and only if they are degenerate at some
point, and are nondegenerate at neighboring points.
This has led them to propose that the following
two conditions are necessary for a crossing:
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(4)

Naqvi and Brown's proof is based on the assump-
tion that (g, ~(,& is not necessarily zero when E,
and E2 are equal. This is incorrect. At a later
point in this paper, it will be shown that if two
states are eigenstates of a complete set of sym-
metry operators, then the two states are nec-
essarily orthogonal. Naqvi and Brown's second
condition [Eq. (3)J therefore follows directly from
their first condition [Eq. (2)J. This point has been
argued previously in a different way by Longuet-
Higgins. '

Typical of the works which use truncated basis
sets is the discussion of the noncrossing rule
given by Landau and Lifshitz. ' They consider a
system which has one parameter, R. The energies
E,(R) and E,(R) of the two eigenstates g, (R) and

g, (R) approach each other as R is varied. At a
point R„ the energies E,(R,) and E,(R,) are arbi-
trarily close. They then ask whether or not the
two energies may be degenerate at some point
R =R, + 5R. This may be determined to first order
in 5R with the basis (,(R,) and g, (R,). If a higher-
order answer is desired, then a more complete
basis is necessary. To first order in 5R the
Hamiltonian at R is

+ 45R' &q, (R,) ~ —, ~ q, (R,)&,
'dH 2 1/2

The standard argument then concludes that since
~ E ' is the square root of the sum of two non-
negative quantities (which are apparently indepen-
dent), at least two parameters (one for each of
the non-negative quantities) must be specified in
order that ~E"~ vanish. However, since this is a
calculation only to first order in 5R in the energy,
the non-negative quantities need only vanish to
first order in 5R in the energy. This may be done
by the specification of one parameter. For ex-
ample, if 5R is chosen such that the first non-
negative quantity vanishes,

E,(R,) —E,(R,) = 5R (7)
Rp

then the second non-negative quantity vanishes to
first order in 5R in AE' . This may be seen ex-

H '(R) = H(RO) + 5R-BH

R Rp

The energy separation of the eigenvalues of the
Hamiltonian matrix defined by H~O(R), g, (R,), and

g, (R,) is
2

6 E~'~ = (E,(RO) + 5R ' E,(R,) —5R-

plicitly by combining Eq. (7) and the exact relation

25R,'e, (R,)
~ —, ) q, (R.)&,

= 25R[E,(R,) —E,(R,)],4,(R,)~
—,„~q, (R,)),,

(8)

The result is

25R&e, (R,) ~ —, ~
q, (R,)&„

= 25R',' ',q, (R,) i-,—„i+,(R,)&,, (9)
Rp

The quantity

—(E, -E,),q, (R.) I —, i q, (R.)&.,

is well behaved, and does not go as an inverse
power of 5R. Consequently, to first order in 6R
in the energy —which is the highest order in 6R
which may be rigorously deduced with the basis
set used —the second non-negative quantity van-
ishes, and only one parameter need be specified
in order to have a degeneracy.

The inclusion of higher orders of 5R in the cal-
culation may be done in several ways; one of the
most direct is the following: the energy separa-
tion between two states deduced in degenerate
perturbation theory,

6 E ' = [(H„-H„)'+ 4
~ H„~ ']' ' (10)

where p„p„E„and E, are the results of the
degenerate perturbation theory treatment, and

E„E4,. . . are the energies of g„g„.. . . Since
the energy separation is no longer the square
root of the sum of two non-negative quantities

(where H, , -=(g,
~ H|),&), may be corrected to give

the exact energy separation by including, through
nondegenerate perturbation theory or some other
means, the contribution due to the states g3 $4, . . . ,

which together with g, and g, completely span the
desired eigenstates. The resulting energy separa-
tion may be expressed in the form

~ = [(H„—H„)'+ 4
~

H„~'J' ' + b. E, —hE, , (11)

where aE, and LE, are the corrections to the
degenerate perturbtion theory treatment due to the
inclusion of („g„.. . . Jf the corrections are
calculated to lowest order in perturbation theory,
the result is

AE~~&= [(H H ) + 4~ H ~2]~~
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[as in Eq. (10)], but is the sum of positive and

negative terms, it appears that the specification
of only one parameter of the Hamiltonian may be
sufficient in order to obtain a crossing.

The inclusion of terms higher than first order
in perturbation theory may be done in other ways.
However, the problems involved in proving that
even higher-order terms will not cause AE to
vanish are nontrivial. Rather than consider per-
turbative proofs with incomplete bases, it is
perhaps more rewarding to consider complete-
basis-set proofs.

The proofs of Von Neumann and Wigner, '
Teller, ' and Longuet-Higgins' assume finite com-
plete basis sets. (Naqvi and Brown' have criti-
cized Teller's proof. Their discussion, as has
been pointed out by Longuet-Higgins, ' is incorrect.
They contend that Teller's two conditions are in-
dependent only if the eigenstates do not cross,
and therefore he has begged the question. Teller, '
however, chose the two conditions on the grounds
that they are simultaneously satisfied if and only
if the eigenstates are degenerate. The fact that
both conditions are satisfied at a crossing does
not imply that they are dependent. It may be
argued that Teller's conditions are dependent, but
not in the manner of Naqvi and Brown. ') Each of
the complete-basis-set proofs" ' effectively
counts the number of variables required to des-
cribe the nonzero elements of a Hamiltonian ma-
trix with and without degeneracies. The difference
of these two numbers is presumed to be the num-
ber of physical parameters of the system which
must be specified in order that eigencurves may
cross. Critical to these proofs is the choice of
representation in which the analysis is carried
out. These authors use the "symmetry" repre-
sentation in which all eigenstates of the same
symmetry are mixed, and no eigenstates of differ-
ent symmetries are mixed. If the same counting
techniques are used in other representations, dif-
ferent noncrossing rules are obtained.

For example, the noncrossing rule of the repre-
sentation which mixes states of different sym-
metry may be obtained in the following way:
sider two eigenfunctions p, and P, of different
symmetry. From these, two new wave functions

g, and p, may be obtained by a unitary transforma-
tion U,

f cos6 sing )
(- sin6 cosef

In general (i.e., unless 6=-,' nr, or P, and p, are
degenerate), all the elements of the Hamiltonian
matrix defined by the new representation will be
nonzero. The nonzero elements of the Hamilton-

ian matrix may be described by three variables
if the eigenvalues a,re nondegenerate, and by one
variable if the eigenvalues are degenerate, imply-
ing that the crossing of eigeneurves of states of
different symmetry requires the specification of
two parameters of the system. The separation of
the two eigenvalues resulting from diagonalization
of this Hamiltonian matrix is given by Eq. (10),
and leads to the same crossing conditions.

The noncrossing rule of the diagonal representa-
tion may also be easily obtained. In the diagonal
representation, the number of variables of the
Hamiltonian matrix is the number of distinct eigen-
values. Consequently, the crossing of eigen-
curves of states of the same or different symme-
try requires the specification of only one param-
eter of the system.

The fact that different representations have
different noncrossing rules is due to the presence
of variables in the Hamiltonian matrix in some
representations which have no physical signifi-
cance. These variables, as well as physical ones,
may disappear when states of the system become
degenerate. Their disappearance has no physical
significance and should not play a role in deter-
mining the noncrossing rule. To avoid this prob-
lem, it seems most reasonable to determine the
noncrossing rule in a representation in which all
the variables necessary to describe the Hamil-
tonian matrix correspond to physical variables of
the system. Since the Hamiltonian matrix contains
all the physical variables of the system in all rep-
resentations, the representation most likely to
contain only physical variables is the representa-
tion which requires the least number of variables
to describe the Hamiltonian matrix; this is the
diagonal representation. The diagonal representa-
tion leads to a noncrossing rule quite different
from that obtained by Von Neumann and Wigner,
Teller, and Longuet-Higgins.

Although the representation used in the non-
crossing-rule proofs plays a fundamental role in
these proofs, only Von Neumann and Wigner' ex-
plain their choice:

"In the analysis of the structure of the terms of
atomic systems, one can subdivide the eigenvalues
into different groups, for each group there is say
an azimuthal quantum number, the reflexion
character, and the multiplet system character,
and so long as the reference system is not dis-
turbed terms of one group will have no knowledge
of terms of another group. Terms of different
groups (terms having different transformation
properties) ean cross. In addition, terms of most
groups are many-fold degenerate. This is how-
ever no disproof of the above because in this case
the words "in general" do not apply since a suf-
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ficient number of matrix elements always vanish
identically. As in the theory of groups it can be
assumed that no accidental degeneracy of terms
takes place, we can assume here that no relation-
ship exists which does not foQow from the symme-
tries of the system on the basis of grouy theoretic
considerations, and, that within a term group we

always have the general case."
The justification for counting in the "symmetry"

representation is that in this representation all
elements of the Hamiltonian matrix are indepen-
dent. The arguments supporting this choice, as
well as those supporting the choice of the diagonal
representaion, are fundamental in nature.

The differences between counting in the diagonal
and symmetry representations may be shown ex-
plicitly by considering the real Harniltonian matrix
determined by two states of the same symmetry in
the symmetry representation. If the eigenvalues
are nondegenerate,

cosg sing E, 0 eosg —sing

sing cosej (0 E,J (sine cose

H11 H12

(H„H22f
If the eigenvalues are degenerate,

( cos8 sin6) /E, 0 ) (cos8 —sing)
H=

—sing cosg 0 k, sing cosg

E, 0

0 E, /

If the symmetry representation is considered fun-
damental, then the nondegenerate Hamiltonian is
described by the three quantities H», H», and

H». In order to obtain a degeneracy, two condi-
tions (H» =H» and H„= 0) are necessary. If the
diagonal representation is considered fundamental,
then the nondegenerate Hamiltonian is described by
the three quantities E„E„and g. In order to
obtain a degeneracy, only one condition (E, =E,)
is necessary. g disappears from the Hamiltonian
not because it has been specified, but because the
Hamiltonian matrix of degenerate states is repre-
sentation independent. Therefore the disappearance
of 0 from the Hamiltonian does not correspond to
the specification of a physical parameter of the
system.

The apparent discrepancy between noncrossing
rules developed in the diagonal and symmetry
representations will be resolved in Sec. IV. Criti-
cal to the analysis is the definition of symmetry.

At this point it is worthwhile to further discuss
the definition given above by Von Neumann and

Wigner.
In order to develop a rigorous noncrossing rule,

the possibility of accidental degeneracies must be
eliminated. Accidental degeneracies are a result
of relationships among the elements of the Hamil-
tonian matrix which are not explained by sym-
metry. Thus if the possibility of accidental de-
generacies is to be eliminated, the definition of
symmetry operator must be general enough to al-
low all relationships among the elements of the
Hamiltonian matrix to be explained by symmetry.
This forces one to adopt a definition similar to
the one given in the second paragraph of Sec. II.

Another basic point, which is not commonly
understood, may be developed from &on Neumann
and Wigner's statement "terms of one group will
have no knowledge of terms of another group. "
This may be interpreted to mean that states of
different symmetry will not avoid crossing. This
is incorrect. Many examples of avoided crossings
between states of different symmetry are known'

(for example, the avoided crossing in BH" at
8- 13 a.u. shown in Fig. 2).

IV. NEVI PROOFS CONCERNING THE NONCROSSING RULE

In this section, several points concerning com-
plete sets of symmetry operators are discussed in
order to answer the questions posed in Secs. II and

III.
(1)What are the roles of symmetry and the

choice of representation in the noncrossing rule'P

(2) How can one determine when all the sym-
metries of a system are known'P

In fundamental developments of quantum mechan-
ics it is usually assumed" or postulated" that a
complete set of constant-of-motion operators
exist, and that this complete set distinguishes al1.

states of the system. The distinguishability of
states is basic to our present understanding of
quantum mechanics. It directly implies [see Ecl.
(1)J that states of the same symmetry cannot be
degenerate. This ean be shown explicitly by as-
suming that two states of the same symmetry are
degenerate, and deducing a contradiction. The
discussion mill be given in terms of constant-of-
motion operators rather than symmetry operators
[see Eg. (1) for a relation between these operators].
Two states of the same symmetry have the same
set of eigenvalues of the set of nontrivial symme-
try operators of the system. Two degenerate
states have the same eigenvalue of the Hamilton-
ian. Therefore two degenerate states of the same

symmetry have the same set of eigenvalues of a
complete set of constant-of-motion operators. If
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the two states are not orthogonal, then an ortho-
normal pair of states may be constructed from
them with all the same constant-of-motion eigen-
values. Let the two orthonormal degenerate
states of the same symmetry be g, and p„and all
the other eigenstates of the representation in which
all the constant-of-motion operators are diagonal
be g„g„.. . . Assign to (, the superscript 2 and
to all the other states the superscript 1. Then
the operator

(16)

is Hermitian, commutes with and is distinct from
all the old constants of motion, and corresponds
to a new nontrivial symmetry operator which
commutes with all the old symmetry operators.
Since this operator distinguishes g, and g„ they
cannot be of the same symmetry. [The form of
the operator in Eq. (16) was chosen to emphasize
the fact that the basic assumption of the proof is
that eigenstates of the system exist. ] When this
operator acts on an eigenstate p'„'& of the system,
the result is the eigenstate multiplied by the super-
script j,:

2l(tt„), if k= 1,

I(t„), if k&1. .

[A new symmetry operator which distinguishes
and p, is given directly —i.e . , without c onside r-

ing constant-of-motion operators —by Eq. (16) if

g~ is assigned the superscript -1.J Thus two
states of the same symmetry cannot be degenerate.
States of the same symmetry, if they were degen-
erate, would not be distinguishable.

The statement that states of the same symmetry
cannot cross is stronger than the usual noncross-
ing rule. The statement prohibits the crossing
of states of the same symmetry no matter how

many parameters of the system are varied.
The second point is that no two states are of the

same symmetry. This may be shown by assuming
that two states are of the same symmetry and
deducing a contradiction. As was shown in the
discussion above, the constant-of-motion opera-
tors which correspond to a complete set of sym-
metry operators, together with the Hamiltonian,

form a complete set of constant-of-motion opera-
tors. No two states of the representation ((„(„
. . . ) in which this complete set of constant-of-
motion operators is diagonal have the same set
of eigenvalues of these operators. Therefore all
the states of the representation are orthogonal.
Assume that two states g, and g, are of the same
symmetry. The operator defined in Eq. (16) is-
even though the energies of the two states g, and

g, are no longer necessarily equal —a constant
of motion, corresponding to a new nontrivial sym-
metry operator which commutes with all the old
symmetry operators. Since this new symmetry
operator distinguishes tt), and g„ they are of
different symmetry [A. new symmetry operator
which distinguishes g, and g, is given directly-
i.e. , without considering constant-of-motion opera-
tors —by Eq. (16) if (JI, is assigned the super-
script -1.J Thus if a complete set of symmetry
operators has been determined, then all the states
are distinguished by this set. This implies that
the noncrossing rule is applicable to an empty set
of pairs of states, not only in the one-electron
systems discussed in Sec. II, but in all systems.

At this point it is clear that any two eigenstates
of a complete set of symmetry operators of a sys-
tem are of different symmetry and are therefore
orthogonal, as was mentioned in the discussion of
the proof of Naqvi and Brown. It is also clear that
the representation which does not mix states of
different symmetries —the "symmetry" repre-
sentation prescribed by Von Neumann and Wigner,
Teller, and Longuet-Higgins —is necessarily the
diagonal representation.

The above discussions do not imply that states
do not avoid crossing. As was mentioned earlier,
even in one-electron diatomic molecules some
states avoid crossing. Rigorous noncrossing rules
for the one-electron diatomic molecules may be
developed (see the Appendix) if the interactions of
the system are included in the analysis. In gener-
al, each particular system is expected to have its
own set of noncrossing rules. Based on analyses
of one-electron diatomic molecules, one expects
rigorous avoided crossings in many-electron sys-
tems to be most probable when the wave functions
of the two avoiding states emphasize different
regions of space (such as ionic and covalent wave
functions).

V. INTERPRETING THE RESULTS OF
VARIATIONAL CALCULATIONS

It is well known that eigencurves of variational
calculations differ quantitatively from the exact
curves. However, it is not well known that they
may also differ qualitatively, particularly in
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regions where several curves are close. These
differences are due to the inadequacies of the

ba,sis sets used for the calculation. This section
will deal primarily with a qualitative difference
that variational calculations are extremely sus-
ceptible to, namely the calculation of avoided cross-
ings when the exact eigencurves cross.

Practical variational calculations are limited

by the basis-set size. Since the basis set is in-
complete, it cannot reflect all the symmetries of
the system. The symmetries of the system which

are included in the ba,sis set will be called basis-
set symmetries. States which are not distinguished
by any of the basis-set symmetries will, in gen-
eral, cross or avoid crossing in a variational cal-
culation in accordance with the Yon Neumann-

%igner noncrossing rule if symmetry is replaced
by basis-set symmetry, regardless of whether the
exact states cross or avoid crossing. This rule is
developed and discussed below. First, however,
the rule will be applied to a sample system in order
to emphasize the difference between basis-set sym-
metries and the complete set of symmetries of a
system.

The H,' one-electron system has the following
symmetries: (a) inversion through the middle of
the internuclear axis, (2) rotation about the inter-
nuclear axis, and (3) dynamical symmetries (see
the Appendix) which in the united-atom limit go to
the symmetry corresponding to the total angular
momentum squared constant of motion. Basis
sets typical of those used in many-electron diatom-
ic molecular calculations (i.e. , Gaussian, atomic,
or elliptical orbitals centered at both nuclei) can-
not reflect all of the symmetries of the system.
Symmetries (1) and (2) are easily included in these
basis sets; however, symmetries (3) are not. If

crossing exact eigenstates are distinguished by
symmetries (1) or (2), then the variationally
calculated energy curves will cross. If crossing ex-
act eigenstates are not distinguished by either sym-
metry (1)or symmetry (2) (for example, the 2s o, and
the 3d o, states), then the variationally calculated
energy curves may cross only if at least two
parameters of the system are specified. If only
the internuclear separation is varied, then the
calculated energy curves wi11, in general, not
cross. At least one other variable —such as a
parameter of the basis set —must be specified in
order to obtain a crossing.

In a variational calculation, avoided crossings
between eigencurves separated from the other
eigencurves of a system may be analyzed in a two-
state framework because of the extremum method of
calculation. The basis for the two-state problem
is the basis of the original problem with the eigen-
vectors of all the lower and higher eigenvalues

projected out. Each of the remaining two elements
of the basis and the eigenvectors g, and g, resulting
from the diagonalization of the remaining 2x 2

Hamiltonian matrix may be described as a linear
combination of the exact eigenstates Q1 Q2 of
the system:

The eigenvalues obtained by dia, gonalization of the
2x 2 Hamiltonian matrix are degenerate if and only

if

(18)

where e,. is the eigenvalue of P, Equation (17}is
trivially satisfied if 4, and g, have no common
element p, ; in this case, however, the basis is
adequate to separate the states by symmetry, and

the eigeneurves may cross with the specification
of only one parameter. If the basis set is not
adequate to distinguish the states by symmetry,
then Egs. (17) and (18) may be satisfied only by
cancellation of terms. These two equations may
be satisfied, in general, only if at least two pa-
rameters of the system are specified. Param-
eters of the basis set, as well as physical param-
eters of the system, may be among those specified.
This analysis may be extended in a straightforward
manner to include sets of manyfold degeneracies
of eigenvalues of real and complex Hamiltonians.
The resulting basis-set noncrossing rule is the
usual nonerossing rule' but with symmetry re-
placed by basis-set symmetry, and with basis-
set parameters as well as physical parameters of
the system among those which may be specified
in order that a crossing may occur.

A variationa) calculation which has been reduced
(as in the preceding para. graph) to two avoiding
states will maximize the eigenvalue separation
between the two calculated eigenvectors. "' This
is done in regions where the exact eigencurves
cross by making one solution as good an ei,gen-
state of the Hamiltonian as possible, and making
the other solution as poor an eigenstate as possible.
This unequal treatment, although undesirable if
the results of the calculation are to be used direct-
ly, allows spurious avoided crossings to be dis-
tinguished from real avoided crossings. This
may be done by determining the quality of the
solutions as eigenvectors of the system. The
details of how this may be done are presented in
another paper. "
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VI. SUMMARY ACKNOWLEDGMENTS

The Von Neumann-Wigner noncrossing rule
specifies the minimum number of independent
parameters of a system which must be determined
in order that eigenvalue curves of states of the
same symmetry may cross. The application of
this rule requires a clear understanding of the
meaning of symmetry. The role of symmetry in
most applications of group theory is to simplify—
rather than to completely solve —a problem, and

only those symmetries which are readily deter-
mined are considered. Typically, these are
simple spatial and spin symmetries. If states
are said to be of the same symmetry when they
have the same simple spatial and spin symmetries,
then the application of the noncrossing rule pre-
dicts spurious avoided crossings in the one-elec-
tron diatomic molecules. If the noncrossing rule is
to be rigorously applicable, then a less restric-
tive definition of symmetry operator must be used.
The general definition of a symmetry operator
(i.e. , a well-behaved nontrivial unitary or anti-
unitary operator which commutes with the Hamil-
tonian) includes dynamical symmetries; conse-
quently, the application of the noncrossing rule
with this definition of symmetry does not predict
spurious avoided crossings in systems which have
been solved exactly. However, if the general de-
finition of symmetry operator is used, then —as
was shown in Sec. IV—all states are of different
symmetry and the noncrossing rule is not appli-
cable. Thus if either of the common definitions
of symmetry —one of which was probably the in-
tended definition of the developers of the non-
crossing rule —is used, then avoided crossings
cannot be predicted rigorously.

This is not to imply that avoided crossings do
not occur. Their occurrence, however, may de-
pend on details of the system other than the sim-
ple spatial and spin symmetries. In general,
avoided-crossing rules will be system dependent.

Vari. ational calculations, since they are extrem-
um calculations, tend to maximize the energy
separation of nearly degenerate and degenerate
states. Because of this, curves which avoid cross-
ing by separations comparable to the accuracy of
a calculation may correspond to exact curves which
cross. Furthermore, states which are not distin-
guished by any of the basis-set symmetries will,
in general, cross or avoid crossing in a varia-
tional calculation in accordance with the basis-
set noncrossing rule (see Sec. V) regardless of
whether the exact states cross or avoid crossing.
Procedures for determining whether or not an
avoided crossing is resolved in a calculation are
discussed in another paper. "
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Russek, and Thomas %ik for their suggestions and
help during the preparation of the manuscript.

APPENDIX: ONE-ELECTRON DIATOMIC MOLECULE

The Schrodinger equation for the one-electron
diatomic molecule may be solved by separation
of variables" in spheroidal coordinates, X, p. ,
and f:

&=(r, +r,)/R, p, =(r, -r,)/R.

g is the angle about the internuclear axis, P is the
internuclear separation, and x, is the distance
from the electron to nucleus i. The three separa-
ted equations (P, &, and p equations, respectively)
are

(
82

, +m' M(g) =0,
8 ~

2—(A' —1)—+g +d, d A'E
d~ dX 4

m'
+ R(g, + z, )A. —, N(A) = 0,

(
d z d B'E

(1 ~2) —g +2
4

mz
lt(*, -*Jp —-|,)I (g't= 0,

where z, is the charge of nucleus i, E is the
energy, A is a separation constant, and m' is the
eigenvalue of the p equation. The constant-of-
motion operators corresponding [see Eq. (1)J to a
complete set of symmetry operators are

A, -l 8 z 8
2

—(1 —u') ——(~, -~,)Ru

1 8
—p.

' 8

13=, , —(X' —1)—+ (g, +s,)RX+

8 z 8
+ —(1 —p. ') ——(z -z )Rp,

8 1 2

82
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In the united-atom limit the operators A and B go
to the total angular momentum squared operator.
These operators distinguish all states of the one-
electron diatomic molecule. All states are there-
fore of different symmetry. This does not mean
that all states may cross. For example, the 4fc
and 5go states of BH" (shown in Fig. 2) avoid
crossing at approximately 13 a.u.

Rigorous noncrossing rules for the one-electron
diatomic molecule may be obtained by Sturm-
theory analysis of the separated equations. The
first such rule was given by Power. " The more
extensive rule presented here was developed by
this author. ' For a particular state, the number
of nodes in the solution of each separated equation
i.s a constant for all finite 5'. Consequently, the
united-atom quantum numbers n, $, and m may
be used to determine the number of nodes of state
i in the p equation n& =m ', in the ~ equation,

n&'~ =n~'& —l '~ —1 and in the p, equation, n'„' = l '
-m('). States i and j cannot cross if

z(&) ~ z(~) z(~) z9) ~(~) ~ ~(&)

With this rule, the crossings and avoided cross-
ings of BH" and the other one-electron diatomic
molecules may be explained.

The sharp avoided crossings of the one-electron
diatomic molecules (such as the avoided crossing
between the 4fo and 5gc states of BH" shown in
Fig. 2) were first discussed by Ponomarev and

Puzynia. ' These occur in asymmetric systems
between states p, and p„where the electron of
states p, is fairly well localized near nucleus 1,
and the electron of state fIF), is fairly vrell localized
near nucleus 2. In the crossing region, the elec-
tron of each state jumps from one nucleus to the
other —resulting in a rapid change of the slopes of
the energy curves.
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