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Upper and lower stationary bounds on ( r, + r2 )/2 for the ground state of helium
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A number of previously derived rigorous upper and lower stationary bound formulas are tested using as an
example the expectation value of the operator (r", + r2)/2 for the ground state of helium.

In a recent paper, ' hereafter referred to as I,
methods were derived for calculating rigorous
stationary upper and lower bounds on matrix ele-
ments of quantum-mechanical operators, for al-
most all such operators of physical interest. It is
the main purpose of the present paper to present
the results of tests of these and similar stationary
bound formulas and to suggest that, despite the
complicated appearance of these formulas, the cal-
culation —for a given number of parameters in the
trial functions —is of comparable difficulty to that
involved in various nonstationary (linear) bound

formulas that have been available for some time. '
The results similarly suggest that the stationary
bounds so obtained are of at least comparable qual-
ity to the corresponding linear bounds. However,
a definitive comparison of the various techniques
currently available is beyond the scope of this
paper; we are primarily concerned with prelim-
inary numerical explorations of some new results
and, in particular, with showing that both lower
and upper rigorous stationary bounds can readily
be obtained.

We have also a secondary purpose which may be
explained as follows: Stationary bounds require,
in addition to a trial wave function g, , the calcu-
lation of a trial auxiliary function L&.'" As ex-
plained in I, it is generally desirable to determine
L& from a subsidiary minimum principle derived
in connection with variational principles. ' (This
subsidiary minimum principle is in the form of a
functional to be minimized, and so determination
of an M-parameter g, and an N-parameter L& is no
more difficult than the determination of a P-pa-
rameter g, alone, with P =M+ X In fact, in some
ways it is easier: first, the round-off error will
be less of a problem for the case where P is
large —it is easier to invert two smaller matrices
than one larger one. Second, the M-parameter
g, will frequently be available from previous atom-
ic calculations, in which case the problem is es-
sentially reduced from a P-parameter to an N-
parameter one. ) This secondary purpose is then
to test the adequacy of L, 's derived via the sub-
sidiary minimum principle for use in stationary
bounds.

We choose, as our matrix element tobe bounded,
the diagonal element of the operator W=-,'(r', +r', )
for the ground state of helium. This matrix ele-
ment has been extensively studied before; in par-
ticular, very accurate lower bound results of the
linear type have been obtained using split-shell-
type Hylleraas wave functions with 135-140 linear
parameters. ' However, no uPPer bound results of
any kind have been published before for this oper-
ator, so that the upper (stationary) bound results
given below in Table I are all new."

We begin by noting that the requirement that the
trial auxiliary function I., be orthogonal to the
trial wave function g&, a requirement which was
imposed' as a matter of notational convenience,
does not really introduce any significant computa-
tional complication. If L, is a function determined
as in Ref. 5, then it can readily be verified that
the function L, —(g„L,) g, comprises a suitable
trial auxiliary function for use in I. It can also
readily be verified that the result of such a pro-
cedure will be exactly the same as dropping the
requirement that L, be orthogonal to P„replacing
Eq. (2.9) of I by

A A

g =z-uP~/e,

and Eq. (2.12) by

Pt gt'= gt'Pt =(1 n) Pt/&

where

& =1 —e(4t, Lt)/(0t ~'),

(la)

(lb)

(2)

I
&I" =

II J II x
II (I —e,) o~ II /(e. —e,) (4}

with

and carrying through the analysis as in l. (The
notation in the present paper, where otherwise
undefined, is, identical to that given in I.) The first
step in the analysis is the derivation of stationary
bounds on (g, 4), where C is known. The modified
result, using Eqs. (Ia), (Ib), and (2), is now found
to be

(g, 4)"=N{n(f g/&g) [(&„4)+(Lg, hfdf)] +
I &I"},

(3)
where
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II~II'= II(h-e)~&ll'- ', (&& h'I-)+, '(O& h~&)'+2[c, (h-e)1 ]+2«(+, q )(O, & )
2(g&, hL&), 2e,

t

, (4» hL &)'(6 h'0&) 2(0» h~&) (@,h4&), )~ @ )(.„,2
yt yt

In order to apply Eq. (3) to the determination of
upper and lower stationary bounds on (P, W(l&), we
choose

4 =W'qt . (6)

An upper stationary bound on (II&, Wg) is then given
by Eq. (3.3) of I:

(&)', Wg)
+ = [2$(g, 4) - ((I', Wg ) +S (W)] /S

where X)~'(W) is an upper bound on the quantity

a(w) =-(qg„wqq, ), (8)

and where Q is the operator which projects off the
ground state. Techniques for calculating 5)"(W)
have been given previously. ' ' "

If W ~ 0, then a stationary lower bound on (il&, Wg)
is given by

((l', W(j&) = [(g, 4') '] '/( P„Wg,), {9)

provided (g, C&)I ~ =(g, Wg, )i ~ ~ 0.
To test the foregoing formulas, stationary bounds

on —,'(r', +r', ) for the ground state of helium were
calculated using Hylleraas-type wave functions,
and the results compared with the "true" value
of this quantity, as determined by the very ac-
curate calculation of Pekeris. " For each of these

wave functions, a number of trial auxiliary func-
tions were calculated" using a subsidiary min-
imum principle previously derived for use in vari-
ational principles. " The form of the trial auxil-
iary function was chosen to be the same as that of
the wave functions, that is, a polynomial in Hyl-
leraas coordinates with linear parameters, multi-
plied by e "', where y is a (nonlinear) parameter-
the number of linear parameters being progress-
ively increased in each case in order to study con-
vergence.

The required upper bound on Q(r';) was obtained
from the relationship'

(1 —S')
+(

I- S)'~'llr';( h—e, ) P, ~l

(10)

Values of X)'(r';) for the 3-, 10-, and 20-param-
eter wave functions were found to be 0.008 26aQ,
0.001 12a'„and 0.000 120a'„respectively (a, is the
Bohr radius). The stationary bounds on S for the
3- and 10-parameter wave functions were obtained
in the identical manner as described in Sec. V of
Ref. 3. The stationary bounds on S for the 20-
parameter wave function were obtained in the same
manner as for the 10-parameter wave function.

The stationary bounds obtained from Eqs. (I) and

TABLE I. Upper and lower stationary bounds on (g, y& g) for the ground state of helium as a
function of the number of parameters in the trial functions, in units of ao. The true value
is 1.193483.

Number of
linear parameters

First way
Upper Lower
bound bound

Second way ~

Upp~~ Lower
bound bound

3d

1pf

2pR

pe
3
7

13
22

pe
13
22
34

p C

22

1.78
1.91
1.56
1.42
1.24

1.44
1.30
1.22
1.208

1.27
1.198

0.66
0.59
0.86
0.98
1.15

0.96
1.09
1.17
1.180

1.12
1.189

1.24
1.26
1.23
1.22
1.205

1.22
1.21
1.197
1.1963

1.200
1.193 95

1.13
1.13
1.16
1.17
1.187

1.17
1.18
1.1914
1.1921

1.187
1.193 14

~ Reference 11.
Using Eq. (3) in Eqs. (7) and (9).
Using Eq. (11) in Eqs. (7) and (9).
Reference 15.

'r. =0.t
Reference 16.

& Reference 17.
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(9), using (3), are given in Table I. For compar-
ison, an alternative method' of bounding (g, 4) was
also used, viz. ,

(g, C )I' =$o. +[(I —$') (P- a')] '~' (ll)
(12)

P= /f4 /f'+2(4, (h —e,) Lg)+ //(h —e,) L, /f' . (13)

These alternate stationary bounds were then used
in (7} and (9}, and constitute the "second way" re-
ferred to in Table I. [The "first way" uses Eq. (3)
in lieu of Eq. (11)].

A notable feature of the results is that the upper
and lower stationary bounds are of comparable
quality, a feature which considerably enhances
their usefulness. It is also to be noted, however,
that although the results appear to be quite good,
the stationary bound on the error term, that is, on
the difference between the true value and the vari-
ational estimate, is considerably larger than the
error term itself, even though both are formally
second-order quantities. In other words, the
second-order terms in the stationary bounds must
have large numerical factors associated with them.
For example, when the variational estimate of
(g, r';P) is calculated for the case of the 20-param-
eter wave function and the 22-parameter L& accord-
ing to the procedure given in Ref. 5, the value

(g, v ', g) „„=1.193492a'

is obtained" which implies an error of about one
part in 10'. The error in the stationary bound in
the best case given in Table I is 30 times as large.
This is perhaps to be expected, and is the price
one pays for rigorous bounds.

It is also to be noted that the "second-way" re-
sults using Eq. (11) are considerably better than
the "first-way" results which use Eq. (3) to bound

(g, 4). The difficulty with regard to "near singu-
larities, "which may or may not be present when

L, is determined by extremizing Eq. (11) (see
Appendix A of I), does not arise here since L& is
determined from an independent subsidiary min-
imum principle. The reason for the difference in
the two methods may be understood as follows: In
both cases the stationary bound on the error is
proportional to two factors, one of which (in some
sense) measures the accuracy of L&, and the other
that of g&. In the "first way" the latter quantity is
j((h —e, ) g, ()' while the comparable "second way"
quantity is 1-S'. Since energy-optimized $, 's are
used, and since the former involves (P„h'4, )
while lower stationary bounds on S involve only
(g, , hg, ), it is not surprising that the former is

considerably larger than the latter, even though
both are formally second-order quantities.

It should be noted that the L, =0 entries repre-
sent bounds that are linear in the error of the
trial wave function since the terms which cancel
the linear error terms then vanish. These L& =0
bounds are therefore equivalent in many respects
to earlier work in which nonstationary bound form-
ulas were derived. "' In particular, the lower
bound "second-way" results with L, =0 correspond
exactly to a linear lower bound formula obtained
previously. " A question of importance for workers
in this area is whether one is better off using an
M-parameter g& and an N-parameter L&, or using
a P-parameter g, (P =M+N) and no L, . As men-
tioned earlier, an attempt to answer this question
is really beyond the scope of the present paper.
There are indeed some a Priori reasons for ex-
pecting advantages to accrue from the use of an L, .
Two of them have already been mentioned, viz. ,
the round-off error considerations and the avail-
ability of atomic g&'s. There is also the fact that
the L, 's determined are sensitive to the particular
operator W, whereas the P, 's are generally energy-
optimized and are independent of W. Thus the
advantage of using an L, may be more apparent
for some operators than for others.

There is some suggestion from Table I that the
advantage of using an L, is more apparent for the
more accurate calculations. Thus, the best lower
bound value of Table I (1.193 14a', with a total of 42
linear parameters) would seem to compare fav-
orably with best linear lower bound result of
1.193 24a', using 135-140 parameter s.' On the
other hand, for the less accurate calculations, it
is the linear bound result which has the edge.
Thus, somewhat better results are obtained using
a 10-parameter g, and no L& than using a three-
parameter g, and seven-parameter L, . Similarly
the 20-parameter g& alone is somewhat superior
to a 10-parameter p& and a 13-parameter Lg.

We conclude that the stationary bound formulas
previously derived give good results with an amount
of calculational effort that is comparable to other
methods. The question of the relative merits of
the various available methods is one which would
seem to be well deserving of further study.
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