Quadrupole antishielding factors for actinide ions

K. D. Sen and P. T. Narasimhan

Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India (Received 5 February 1976)

Perturbation-numerical calculations have been performed using nonrelativistic Hartree-Fock-Slater wave functions to obtain the Sternheimer quadrupole antishielding factor γ_{∞} for all the tetrapositive ions in the actinide series ($90 \le Z \le 103$). For these ions, the nonrelativistic γ_{∞} values seem to be constant at ~ -95 . It is estimated that the relativistic effects would increase the $|\gamma_{\infty}|$ value by $\sim 65\%$.

-

The repercussions of the induced effects in the core electrons, respectively due to the external point charges and the valence electrons on the total electric field gradient q_{total} acting at the nuclear site, were first represented by Sternheimer¹ as

$$q_{\text{total}} = (1 - \gamma_{\infty})q_{\text{ion}} + (1 - R)q_{\text{valence}}, \qquad (1)$$

where $q_{\rm ion}$ and $q_{\rm valence}$ define the electric field gradient due to the external point charges and the valence electrons respectively. The constants γ_{∞} and *R* are commonly known as Sternheimer antishielding (or shielding) factors.

During recent years a few nuclear quadrupole coupling data on actinide nuclei ($90 \le Z \le 103$) have become available, mainly through Mössbauer-effect² and atomic-beam magnetic-resonance³ experiments. In the interpretation of such data it is essential to have a knowledge of reliable theoretical values of Sternheimer antishielding factors, corresponding to the atom or ion under investigation. In this paper we report the results of our perturbation-numerical calculations of γ_{∞} for all tetrapositive actinide ions using nonrelativistic Hartree-Fock-Slater⁴ (HFS) wave functions for the unperturbed state. In view of the fact that the elements in the actinide series occur in several valence states we have also calculated γ_{∞} values for $U^{3+}, U^{5+},\ U^{6+},\ and\ Am^{2+}$ ions.

The perturbed radial functions $u'_1(nl - l')$ were obtained by directly solving the following nuclear moment-perturbed Schrödinger equation¹:

$$\left(-\frac{d^{2}}{dr^{2}}+\frac{l'(l'+1)}{r^{2}}+V_{0}(r)-E\right)u_{1}'(nl+l')$$
$$=u_{0}'(nl)\left(\frac{1}{r^{3}}-\left\langle\frac{1}{r^{3}}\right\rangle_{nl}\delta_{ll'}\right). (2)$$

Excluding the consistency and correlation effects,⁵ the quadrupole antishielding factor γ_{∞} is given to zeroth order by

$$\gamma_{\infty} = \sum_{nl} c(nl + l') \int_{0}^{\infty} u'_{0}(nl) u'_{1}(nl + l') r^{2} dr.$$
 (3)

The constants c(nl + l') involving angular integrals have been tabulated by Sternheimer.⁶ For each ion, the coefficients corresponding to the perturbations of the 5*f* orbital were multiplied by the fraction to which the 5*f* orbital is occupied. All calculations were carried out by a method reported earlier⁷ using the IBM 7044/1401 system at the Indian Institute of Technology, Kanpur.

TABLE I. Nonrelativistic total γ_{∞} values to zeroth order for the ions in actinide series ($90 \le Z \le 103$). The electronic configuration considered in each case is shown in column 2.

Ion	Config. (Rn)-	Present calc.	Other calcs.
₉₀ Th ^{4 +}	5f ⁰	-107.170	-177.5 ^a
₉₁ Pa ^{4 +}	$5f^1$	-105.325	
$_{92}U^{3}$ +	$5f^{3}$	-117.987	
₉₂ U ^{4 +}	$5f^2$	-103.805	
$_{92}U^{5+}$	$5f^1$	-95.530	
₉₂ U ^{6 +}	$5f^0$	-85,155	-143.9 ^a
₉₃ Np ^{4 +}	$5f^3$	-102.170	
$_{94}Pu^{4+}$	$5f^4$	-100.970	
₉₅ Am ²⁺	$5f^{7}$	-132.867	-137.3 ^b
$_{95}$ Am ^{4 +}	$5f^{5}$	-99.786	
₉₆ Cm ^{4 +}	$5f^{6}$	-98.842	
$_{97}{\rm Bk}^{4+}$	$5f^{7}$	-97.985	
$_{98}Cf^{4+}$	$5f^{8}$	-96.890	
₉₉ E ^{4 +}	$5f^{9}$	-96.47	
$_{100} Fm^{4+}$	$5f^{10}$	-96.40	
$_{101}$ Md ^{4 +}	$5f^{11}$	-95.417	
102 No ^{4 +}	$5f^{12}$	-95.210	
$_{103}\mathrm{Lw}^{4}$ +	$5f^{13}$	-94.211	

^a Reference 9.

^bReference 8.

880

Our results are given in Table I along with the earlier available^{8,9} results for purposes of comparison. Sternheimer⁸ calculated $\gamma_{\infty} = -137$ for Am^{2+} by using HFS wave functions corresponding to the neutral atom. He had predicted that the use of actual ionic wave functions for Am^{2+} should reduce $|\gamma_{\infty}|$ by ~5%. The present value of $\gamma_{\infty} = -133$ confirms this prediction. Feiock and Johnson⁹ have performed uncoupled calculations similar to those of ours using relativistic HFS wave functions and obtained γ_{∞} as -177.5 and -143.9 for Th⁴⁺ and

 U^{6^+} ions, respectively. A comparison of these values with the present nonrelativistic values show that the relativistic effects increase $|\gamma_{\infty}|$ by ~65% and ~69% for Th⁴⁺ and U⁶⁺ ions, respectively. The present nonrelativistic γ_{∞} values, however, appear to be constant and ~ - 95 for the tetrapositive ions in the actinide series.

The authors acknowledge with thanks the cooperation of the staff of the computer center, I.I.T., Kanpur.

- ¹R. M. Sternheimer, Phys. Rev. <u>80</u>, 102 (1950); <u>84</u>, 244 (1954); 86, 316 (1952); 146, 140 (1966); 164, 10 (1967).
- ²B. D. Dunlap, G. M. Kalvius, and G. K. Shenoy, Phys. Rev. Lett. <u>26</u>, 1085 (1971); B. D. Dunlap and G. M. Kalvius, in *The Actinides: Electronic Structure and Related Properties*, edited by A. J. Freeman and J. B. Darby, Jr. (Academic, New York, 1974), Chap. IV.
- ³L. S. Goodman, H. Diamond, and H. E. Stanten, Phys. Rev. A 11, 499 (1975).
- ⁴F. Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, N. J., 1963).
- ⁵S. N. Ray, T. Lee, T. P. Das, and R. M. Sternheimer, Phys. Rev. A <u>9</u>, 1108 (1974).
- ⁶R. M. Sternheimer, M. Blume, and R. F. Peierls, Phys. Rev. 173, 376 (1968).
- ⁷K. D. Sen and P. T. Narasimhan, *Advances in Nuclear Quadrupole Resonance*, edited by J. A. S. Smith (Heydon, London, 1974), p. 277; Phys. Rev. A <u>11</u>, 1162 (1975).
- ⁸R. M. Sternheimer, Phys. Rev. <u>159</u>, 226 (1967).
- ⁹F. D. Feiock and W. R. Johnson, Phys. Rev. <u>187</u>, 39 (1969).