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Effects of correlated collisions on atomic diffusion in a hard-sphere fluid
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The velocity autocorrelation function in a hard-sphere fluid is calculated by including corrections to the
Boltzmann-Enskog theory due to correlated binary (ring) collisions. The memory function describing these
processes is reduced to a form suitable for numerical computation by assuming the dominant contributions are
due to couplings between hydrodynamic modes. A simple approximation is introduced to account for the
effects of nonhydrodynamic modes. Using the interpolation formulas recently suggested by Resibois, we have
computed the memory function„ the velocity autocorrelation function, and the self-diffusion coefficient D. The
diffusion coefficient shows the enhancement effect relative to the Enskog diffusion coefficient that was first
observed by computer molecular-dynamics calculations. Our results also show a rapid decrease in D in the
high-density region. A comparison of the present work with the analysis of Resibois is made, and further
refinements are suggested.

I. INTRODUCTION

In the theory of atomic motions in fluids the
etudy of the velocity autocorrelation function (VCF)
is a problem of particular interest. ' Because the
dynamics is relatively simple to visualize, theo-
retical discussions have focused on this calcula-
tion as a measure of our ability to describe the
molecula, r dynamics of classical fluids. Current
calculations" of VCF inva. riably set out to pre-
dict one or both of the following properties which
were first uncovered by computex molecular-dy-
namics experiments. ' ' At sufficiently high den-
sity VCF decays rapidly to a negative value. This
is regarded as a manifestation of the cage effects
where a, particle is trapped temporarily by its
neighbors. The behavior has been extensively
analyzed; it is now known that it can be obtained
through a memory-function description in which
the memory function has a finite though micro-
scopic decay time. ' The second property is that
the self-diffusion coefficient D in a ha, rd-sphere
fluid shows significant deviations from the values
predicted by the Enskog theory. The reason for
this is that the VCF does not decay like an expo-
nential either asymptotically or over times of
order a few mean collision times. '

The purpose of this paper is to present a calcula-
tion of the velocity autocorrelation function of hard-
sphere fluids using the formalism of renormalized
kinetic theory. ' Our goal is to study the effects of
ring collisions on the VCF over the entire time
domain and to predict the density dependence of the

self-diffusion coefficient. In order to obtain ex-
plicit results, a. number of approximations have to
be introduced. It will be shown that our calcula-
tions reproduce many of the essential features of
the computer results, but refinements and further
work still remain.

The present calculation is essentially an exten-
sion of the analysis of Mazenko. ' In this approach
the VCF is governed by a memory-function equa-
tion in which the kernel has two contributions„an
Enskog term and a contribution from ring, or cor-
related binary, collisions. Since the latter con-
tains the product of two time-correlation functions
one has a nonlinear problem that cannot be solved
in any rigorous manner. The approximation
adopted by Mazenko was to consider only contri-
butions to the ring collision memory function in-
volving hydrodynamic modes and to use simple ex-
pressions for the required time-correlation func-
tion. Recently Resibois has carried out an exten-
sive kinetic theory calculation in which he intro-
duced more realistic approximations for the time-
correlation functions and obtained results which
are in generally good agreement with the com-
puter data. ' Our ca.lculation is similar„ in a num-
ber of respects, to the work of Resibois; we will
discuss the comparison after presenting our re-
sults.

The plan of the paper is as follows. In Sec. II
we define the problem and give the explicit ex-
pression for the ring-collision memory function.
In Sec. III we reduce this expression to an approx-
imate form that is amenable to numerical com-
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putations. The PCF and diffusion coefficient re-
sults are given in Sec. IV, and we conclude with

a number of comments in Sec. V.

II. MEMORY FUNCTIONS WITH RING COLLISIONS

K(t) = az5(t) +5y(t),

where

az = f no'v, Wwg(g) =v,'Dz.

(2.3)

(2.4)

Our calculation of the normalized velocity
autocorrelation function

V(t) =(v(t) ~ v(0))/(v(0) ~ v(0)), (2. 1)

t
dt' K(t t') V—(t')

dt
(2.2)

For a fluid of hard spheres the memory function
K(t) can be written as the sum of two terms, '

where v(t) is the particle velocity at time t, begins
with the integro-differential equation

The first term in (2.3} is the Enskog contribution
and 5$(t) represents collision effects more com-
plicated than uncorrelated binary collisions. In
(2.4), n is the fluid number density, o the hard-
sphere diameter, vo=(mp) ' ' is the thermal speed,
g(o) is the equilibrium pair distribution function at
contact, and D~ is the self-diffusion coefficient in
the Enskog approximation.

In the present calculation we will take 5$(t) to be
the contribution from ring collisions. The explicit
form of 5$(t) then becomes'

5(t)(t) = ——g'(o) d'$d'('d'( d'$"' d k(2v) ' —Q 7"(k($')[S,(k('$" t)S(k)$' t)
n

P 1

—S,'(k]'("t)S (kg)'"t)]T"(-kg $ '), (2.5)

where S, and S are the phase-space single-particle
correlation function and the phase-space density
correlation function, respectively, the superscript
0 denotes the corresponding function for a free
particle, and the function T" is

r"(p((')=-4, Jp "
(p p)'*p'((l I- )& ( p),

(2.6)

with p =z($ —f, '). In (2.6), e (z) is the step func-
tion of negative argument.

Since V(t) has a simple exponential solution in

the absence of 5(t)(t), we will look for the differ-
ence solution,

p(, )
54(z)

(z +iaz)[(z +iaz) —54) (z)]
' (2.11}

Since p(t) is an even function, its Fourier trans-
form is

dt e'" 'p(t)

= -2 lmp(z) Ip=(p+ (0+

50'(~) + f50"(~)
, ((d + taz)[(u —5(t) '((d) +i as —i54)" ((u)]

(2.12)

where

p (t) = V(t) —V (t),

where

(2.7)
5(t)'((d) = dt sin(ut 5p(t),

0
(2.13)

V, (t) =e- z' (2.8)

is the Enskog expression for the velocity autocor-
relation function. Inserting (2.7) into (2.2) gives

dp(t)
dt

+azp(t) = — dt'5(p(t —t'}[ (tp') +e ' ] .

p( )-=—
$ pt "'p(tl, (2.&o)

and similarly for 5$(t). Equation (2.9) then be-
comes

(2.9)
The solution of (2.9) can be carried out using
transform methods. %e define the Laplace trans-
form of p(t),

54)" ((p)) = — dt cos(dt 5$(t).
0

(2.14)

Our approach is to first determine 5$(t), then use
(2.12)-(2.14) to find p(u)) and numerically invert to
obtain p(t).

III. QUASIHYDRODYNAMIC APPROXIMATION

We now develop a method of reducing (2.5) to an
approximate but more tractable expression. Con-
sider the expansion

S(khh't) = Z 0 ($)4z(h)S (k, t)@($)@(5'), (3 I)
a, 8=&

where (g„}is an orthonormal set of momentum
functions which we will choose to be the set of
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Hermite functions, ' and 4 ($) = (22() 'i' exp(-$'/2).
The expansion coefficients S (k, t) are given by (3.3)

2"tk, k)=fd Ed'E 'd.'(E)kk(E )S('EEE El' (3.2)

We also expand in a similar way (note difference
in weight factor)

where

T tk) = Jd'Ed'E'k ( )Ek(kE) k( )Ek( E)T(kEE').

(3 4)
Applying these expansions to (2.5), we find

5Ej)(&) = ——g'(v) Q Q, T"8(k)[S,'(k, f)S"&(k, t) —S ' "(k,t)S ' "(k,t)]T,"r( k). -1 , d'k
3n „, 8 „, (2v)' (3.5)

It is clear that an approximation is needed to
treat the infinite sums. We next introduce the pro-
jection operator'

5

P =g iz&(z[-=I -Q, (3 6)

which projects a function f($) onto the five hydro-
dynamic states ii), i =1, ..., 5. By definition Q pro-
jects the function onto all the other (nonhydrody-
namic) states. Consider now the approximations

relation function. Moreover, by restricting the
+ and y sums to only hydrodynamic states we ob-
tain an approximate expression for the ring-col-
lision memory function

5Etk(t) = ——g'(g) g, T",(k)[S,"(k, t)S &(k, t)
1 2 6 kn, (22()'

—S,'"(k, t)S'"&(k, t)]T",„(-k).

S(k($'t) = (P +Q)S(P+Q) = PSP +QSQ (3.7)
(3.11)

and

QSQ =e 'QS'Q = e "'[S' PS'P). - (3 8)

In (3.7) we assume that couplings between hydro-
dynamic and nonhydrodynamic states through den-
sity fluctuations can be neglected while in (3.8) the
nonhydrodynamic projections are assumed to have
the same wavelength and time dependence as the
projections of free-particle density fluctuations
modulated by the damping factor e "', where A,

'
is a relaxation-time characteristic of nonhydro-
dynamic processes. Combining (3.7) and (3.8) we
have

S(k)$'t) =S'(k$('t)e '+P(S —S'e i']P (3.9)

Using the approximation (3.9) we find, after a
few manipulations described in Appendix A, that
the integrand of (3.5) becomes

T(SsS —Sss ) T = TSss T —T [(PsssPs) (PSP)

—(P,S,P,)(PS P)e "'""1,
(3.10)

where P, = il)(li is the hydrodynamic projection
operator for the single-particle phase-space cor-

T~»(k) = 42tvsv'jk(X)k„, (3.12)

d2
(3.13)

T"„(k)= ~v, v'jk(x)k„,

T"„(k)= i8v m v, a' 'k„-, —, 1 dj, (x)-

(3.14)

(3.15)

where jt(x) is the spherical Bessel function of
order L, x =ko, and k„ is a Cartesian component
of unit vector k. Since only the couplings between
the test-particle density and the longitudinal and
transverse currents, T» and T",4, survive in the
long-wavelength limit, we will assume these are
the most important terms in doing the sums over
o( and y. Keeping only these terms in (3.11) and
doing the angle integrations and the p sum, we
obtain

Comparing (3.11) with (3.5) we see that the effect
of our approximation is to retain the hydrodynam-
ic states and take into account approximately the
effects of nonhydrodynamic states through the
factor e (""".

The functions TE~ appearing in (3.11) can be ob-
tained from (2.6). It can be shown that"

5dt)(t) = ——,t dx j',(x)[S,(k, t)J, (k, t) —S,'(k, t)J', (k, t)e ( + 2)']
W /TED p

+—' ', '
[S,(k, t)J, (k, t) —S,'(k, t)J, (k, t)e t '~s)'] (3.16)
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where q =~wso', rs'=4&mno'v, g(o). In (3.16),
S,(k, I), J, (k, I), and J', (k, I) denote the van Hove
self-correlation function, the transverse and lon-
gitudinal current correlation functions, respective-
ly. Approximate expressions' for these functions
which are interpolations between the known short-
and long-time behavior are given in Appendix B.
The corresponding free-particle correlation func-
tions offer no difficulty since they can be obtained
from the phase-space correlation function

Wainwright. ' Our results are quite reasonable at
low densities, and although they show a negative
region at high densities the details are not in good
agreement with the computer data. It appears
that the negative region sets in too quickly and too

One finds

S,'(z;, s) =J',g, s) = exp [-—,'(xys) '],

(3.17)

(3.18)

J', (x, s) =[1—(xys)'] exp[--,'(hays)'],
where

(3.19)

y =[4&v no'g(o)]

s =I/vs.

IV. RESULTS AND DISCUSSION

~e have evaluated (3.16) numerically using the
time-correlation function expressions given in
Appendix B. For the parameters A, and A.„which
should play the role of microscopic relaxation
times, we found that a value of 0.87~' gives rea-
sonably good agreement with the computer experi-
ment. Figure 1 shows the ring-collision memory
function at two values of packing fraction@. The
principal behavior of -5$(f) is seen to be a sharp
peak at short times followed by a gradual decay.
One can show that asymptotically'

t r
/

/
I

/—
I

—
I
I

t
1

t

p
I

IQ

(b)

-&p(t) = 27~ ncr'v, g'( )[o( D+svs)I] 'I', (4.1)

where vE is the kinematic viscosity in the Enskog
theory. This behavior assures that the velocity
autocorrelation function will also decay asymp-
totically like t '~'.

The short-time structure in 5Q is a consequence
of the nonhydrodynamic correction factor e (~'"s)'.
When we let A, =A,, =0, we obtain the dashed curves
in Fig. 1. The reversal in the peak structure
comes about because J,(k, I) is greater than J,(k, I)
at short times while S,(k, t)&SO(k, I).

The numerical values of 5$(t) are next used to
generate 5Q'(~) and 5Q" (m) which are then inserted
into (2.12) to yield p(ru). Finally p(s), the differ-
ence velocity autocorrelation function, is obtained
by a numerical Fourier transform. Figure 2 shows
the results at the lowest and highest densities we
have considered. Also shown are the computer
molecular-dynamics results on a 500-particle sys-
tem of hard spheres obtained by Alder, Gass, and

I
VJ

I

/
/

n /
I

/
I I

I
'I I
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I I
\ /
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t

I I I

IQ

FIG. 1. Hing-collision memory function (5$(t ) com-
puted using (3.14) with (solid curves) and without nonhy-
drodynamic corrections (dashed curves), (a) q = 0.0741,
(b) @=0.1481. Dimensionless ti*me s is t jTE .
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15

—IQ

strongly; also the asymptotic decay which occurs
while p(s) is positive begins too early. In Fig. 3
we show the calculated velocity autocorrelation
function at three densities. On this scale the be-
havior of p(s) in Fig. 2 appears as small though
important perturbations. It is interesting to note
tha. t at the highest density V(s) has a negative re-
gion, a behavior that has been called the back-
scattering effect.

The self-diffusion coefficient D, defined by

6 8
S

10 12 D =vQ df V(f)
0

(4.2)

20—

0

Tj = .4628 (b3
is an important quantity in any theory of atomic
motions in fluids. In discussing the deviations
from the Enskog theory it is convenient to con-
sider the ratio D/Dz which can be expressed di-
rectly in terms of the ring-collision memory func-
tion,

O

20
Vl

1+~E dt5$ tE (4.3)

-40—

—60—

IQ 15 20

1.0—

0.8

FIG. 2. Comparison of the calculated difference velo-
city autocorrelation function p (s) (solid curves ) in a
hard-sphere fluid with the results of computer molecu-
lar dynamics (dashed curves) (Ref. 6), (a) q=0.0741,
(b) g= 0.4628.

A comparison of our calculations at five densities
with the computer results is given in Table I as
well as shown in Fig. 4. There is general agree-
ment in the variation of D/DE with density over
the entire range. Referring to Fig. 2 we know
the enhancement in D at low density arises mainly
from the positive structure in p(s) at short times.
At high densities (V/V, &2) D/D~ decreases rapid-
ly because of the strong negative region in p(s).

V. DISCUSSION

We have presented a calculation of the velocity
autocorrelation function in a hard-sphere fluid in
which the effects of correlated sequence of two
binary collisions between two particles are taken
into account. By assuming the dominant con-
tributions to the ring-collision memory function
involve only hydrodynamic modes and by using

V(s)

0.6

Q.4

14—

0.2 0
DE

1.2—

1.0

I

6 8
s

10 12

FIG. 3. Theoretical velocity autocorrelation function
V(s) in a hard-sphere fluid, (a) Tj=-0.0741, (b) g=0.2468,
and (c) g=0.4628.

o.s—

FIG. 4. Variation of self-diffusion coefficient ratio
D/OE with density in a hard-sphere fluid, present cal-
culation (points) and computer molecular dynamics re-
sults (curve) (Ref. 6).
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TABLE I. Comparison of the calculated self-diffusion
coefficients in a hard-sphere fluid at various densities
with the results of computer molecular dynamics (Ref.
6).

V/Vp

Present
calc.

D/DE

Reference 6

10
5

2

1.6

0.074 i
0.148
0.247
0.3702
0.4628

1.09
i.i2
1.25
1.20
1.05

1.07
i.i6
1.34
1.27
0.84

interpolation formulas for time-correlation func-
tions, we have computed numerically the memory
function 5@(t) and the VCF V(t). Although the
approximations used are quite crude, the com-
puted self-diffusion coefficient ratio D/Ds is
found to have the same variation with density as
the computer molecular-dynamics results. The
calculated VCF does not agree as well with the
computer data in the high-density region; how-

ever, we believe that some of the discrepancies
may be removed by refining the present approach.

It is instructive to examine in more detail the
behavior of the ratio D/Ds. In the low-density
region (V/Vo ~ 7) D is greater than Dz and the
enhancement i" more or less constant with density.
One sees that the effect arises mostly from the
devia. tion in VCF from an exponential at times
of order (I-10)rs. The well-known long-time tail
of the VCF also contributes to the enhancement
but the magnitude of this contribution is small.
In the intermediate-density region (2 s V/V, &7)

D/Ds varies much more strongly with density,
rising to a peak value around V/Vo-2. 5. The
peak is a consequence of the competition between
two processes, the correlated collision which
tends to enhance the diffusion and the so-called
collision transfer which tends to retard diffusion.
In the high-density region (V/V, s2) collision
transfer effects dominate and one sees a rapid
decrease in D/Ds

The effects of ring collisions on the VCF in the
intermediate-time (prior to the onset of the long-
time tail) was first investigated by Mazenko. In
this calculation 5$(t) was evaluated using simple
hydrodynamic expressions for the time-correlation
functions and nonhydrodynamic corrections were
not considered (A. =A., = 0). The result was that
an enhancement in D/D~ was obtained, but the
ratio did not decrease at high densities. Also
the enhancement was increasingly more over-
estimated as the density increases. As pointed
out by Resibois, the use of the simple hydro-
dynamic expressions for time-correlation func-

tions leaves out the damping effects of collision
transfer which are most important at high den-
sities. An advantage of the interpolation formulas
given in Appendix B is that collision transfer
effects are taken into account. The dashed curves
in Fig. 1 are the results when the calculations
were repeated using the interpolation formulas
instead of the simple hydrodynamic expressions.
The negative structure in Fig. 1 was found to
overwhelm the long-time tail and the enhance-
ment effects in D/Ds was lost. For example, at
V/VO=10 the computed value of D/Ds was 0.804.

From the above observation one may conclude
that in the present formulation collision transfer
effects do not lead to an enhancement in the dif-
fusion coefficient, but they do appear to be the
dominant effects at high densities where D/Ds
decreases rapidly with decreasing V/V, . As
shown in Fig. 1 the origin of the enhancement lies
in the nonhydrodynamic correction factor

It should be noted, however, that Res-
ibois obtained the enhancement effect without
cons idering the nonhyd rod ynamic cor rection. '
In his calculation he included another contribution
to the ring-collision memory function. In ad-
dition to our 5$(t) (with A =X, = 0) he considered
the effects of correlated sequence of two binary
collisions between three particles. The latter
appears in the calculation as a term involving
the three-particle correlation function. Appl. ying
the quasihydrodynamic approximation Resibois
showed that this term can be expressed as a cou-
pling between the van Hove self-correlation func-
tion and the density correlation function. We have
evaluated this term numerically and found that
it more than compensates for the short-time neg-
ative structure in the dashed curves of Fig. 1,
and the net result for the ring-collision memory
function behavior is qualitatively similar to the
solid curves in Fig. 1.

The difference between the present calculation
and the analysis of Resibois' therefore lies in
his inclusion of the binary ring collisions between
three particles and our consideration of nonhy-
drodynamic corrections. In each case the effects
are essential to obtaining the enhancement be-
havior in D/Ds. Although both calculations pro-
duce correctly the qualitative variation of D/Ds
over the entire density range, neither calculations
give completely satisfactory results for the VCF
at high densities. In our case we believe that a
better approximation for the transverse current
correlation function J, (k, t) and inclusion of ad-
ditional couplings between hydrodynamic modes
could improve the agreement between calculated
p(t) and the computer results. One should also
investigate the validity of the various interpo-
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lation formulas for time-correlation functions.
As noted by Resibois kinetic model calculations
can provide an answer to this question. Work
along this direction is underway and we hope to
report on the results at a later date.

APPENDIX A

To derive (3.10) we begin with the approximation
(3.9) for S and a similar approximation for S, .
Since one knows that"
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TSsS T =0

we can write the integrand in (3.5) as

(A1)

T(S, S —So S)T = T[ P(S —S )P + S ] [P, (S, —S, ')P, + S, '] T

= TP(S —S")PP, (S, —S, ')P, T+ TP(S —S )PS, ~ T + TS P, (S, —S, ')P, T, (A2)

where P, =
~ 1) (1~ is the hydrodynamical projection

operator for the single-particle phase-space
correlation function, S =S e ' and S ' =S'e
Note that we have used (Al) in eliminating a
S S, ' term in (A2). We now argue that the last
two terms in (A2) are small for all times and
as a first approximation can be ignored. Con-
sider the term S, 'P(S —S )P. This quantity will
decay rapidly to zero in time because of the e
factor. It also vanishes for short times because
S-S' and S"-S' as t-0. Since the quantity starts
at zero and decays rapidly to zero it is reasonable
to ignore it. Similar arguments apply to the
S~P, (S, —S~~)P, term. In this approximation (A2}
reduces to (3.10).

APPENDIX B

We follow Resibois' in constructing interpolation
expressions for the correlation functions appear-
ing in (3.16). The basic ingredients used to rep-
resent a correlation function F(k, f) are its short-
time expansion F" (k, t ) and its hydrodynamic
limit F"(k, f). These are then connected together
through the relation

F(k, s)=F" (k, s)e ~ +[1—e ~ ]F"(k, s),

where x=ko, y =[4v vnv'g(o)] ', and functions

f, and X are defined below. The corresponding
hydrodynamic expressions are

S,"(x, s) = exp[ —(xy)'sD(x)],

J,"(x, s) =exp[ —(xy)'sv(x)],

J,"(x, s) = cos[ c,(x)xys] exp[ —(xy)2sI'(x)],

(B3)

4 c (x) ' 4 2v x

3 v, 3 15y

3
D(x) = —,

v(x) = — 1+ ' +
15y 15y2 '

5

Wharf,

' f, 5 Wmf,
6 15y 10y 36 15y

x f2 A(x) 2 1
9800y 2 3 C~ (x)

where

(B4)

where D, v, and I' are the wavelength-dependent
coefficients of self-diffusion, shear viscosity,
and classical sound attenuation, respectively.
They are also given below.

All the quantities in (B2) and (B3) will now be
defined. They are

(BI)
where s = t/7s is the dimensionless time and o.'

is a parameter. For the three correlation func-
tions under discussion their short-time expres-
sions are

c', (x) = v o [1 —nC(x) + —', (1+ v m f,/6y)2],

3 (1+ v wf,/6y) '
(B5)

S (x, s) = exp[ ——,'(xys)'],

(x, s) = exp —(xy)' ' + —1+

Jf'(x, s) = [ 1 —(xys)'X(x)] exp —(xy)2', +
sf, s'X(x) I

75 Fmf, ' f,
10

' 6''
y

It should be noted that c,(x) and C~ (x) are the
wavel. ength-dependent adiabatic sound speed and
the constant-pressure specific heat, and A(x} is
the wavelength-dependent thermal. conductivity
coefficient. In (B5) C(x) is the direct correlation
function. For a hard-sphere fluid we will use
the expression"
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C(*)=, ,(
' *—* s*l ~ [2*s' *-(*—21 o *-2] ~[(4x' —24x)s' *-(*'—12* 241 " 241I,

24' ~CX Q
x' x X3

(B6)

with

fo(x) = (3/x')(sinx —x cosx),

f, (x) = (30/x')(x cosx —sinx) + 10/x',

f, (x) = (15/x')(3 sinx —3x cosx —x2 sinx),

f, (x) =10/3x' —(10/x') [(»' —2) sinx+ 2x cosx],

f4(x) =(6/x )(x —sinx),

f, (x) = (15/2x ) [(4x —9) sinx+ (9x —x ) cosx] .

(B8)

The above expressions completely determine
the three correlation functions, S, (k, t ), J, (k, t ),
and J, (k, t) in terms of the variables x, y, s, and

f/ ~

It should be noted that the short-time correlation
functions in (B2) are obtained by considering time
expansions of the various correlation functions.
On the other hand, the hydrodynamic correlation

(1+2q)' (1+q/2)2
0 (1 )4 1 1 L (i )4 1 2 1 0/

(BV)
and q = —,mncr' is the dimensionl. ess packing pa-
rameter. The only quantities yet to be specified
are the x-dependent functions f, , f = 0, . . . , 5.
They are

functions (B3) are obtained by using wavelength-
dependent transport coefficients and thermody-
namic properties in the well-known expressions
one can derive from the equations of linearized
hydrodynamics. We have recently shown that a
kinetic model representation of the generalized
Enskog transport equation, called wave-number-
dependent triple-relaxation-time model (QTRT)
kinetic equation, provides a reasonable descrip-
tion of the thermal fluctuations in a hard-sphere
fluid at arbitrary wavelengths. " We have used
the sum-rule properties of this kinetic equation
to obtain the short-time correlation functions
(B2). In addition, the expressions for v(x), A(x),
I'(x), C,(x), C~ (x) are all calculated using the QTRT
description. [The resuLt for D(x) is obtained
using a lower-order kinetic model. ") Since our
results, aside from a slight difference in J (x, s)
and I'(x), are the same as those used by Resibois,
we may conclude that these interpolation formulas
are at least consistent with the generalized Enskog
kinetic theory. By matching (Bl) with kinetic
equation results one may determine the values
of n and u, . We have not done this; instead in
our numerical work we have adopted the values
of n = a, =

& used by Resibois.
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