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Nonadditivity contribution to the surface tension of simple liquids

R. D. Present, Chia C. Shih, and Yea H. Uang
Department of Physics, University of Tennessee, Knoxville„Tennessee 37916

(Received 30 March 1976)

The Kirkwood-Buff formula has been extended to include three-body interactions by differentiation of the
partition function with respect to the area. Assuming a step-function density profile (Fowler) and the

superposition approximation (Kirkwood) for the triplet correlation function, the nonadditivity correction y3 to
the surface tension is expressed as a septuple integral whose integrand contains the three-body interaction
potential u, 23 and the radial distribution function of the liquid g(r). We use the triple-dipole interaction
(Axilrod-Teller) for u)23 and the neutron diffraction data of Yarnell et al. for liquid Ar at 85'K to represent
g(r). It is necessary to make several changes of variable and inversions of the order of integration in order to
transform the integral into a sextuple integral which can be programmed without incurring large errors due to
cancellation. The result for Ar at 85'K is y3 = —4.5 erg/cm', which is not negligible when compared with
the experimental surface tension (13.1 erg/cm'). When y3 is combined with y2 [the surface tension computed in
the Kirkwood-Buff-Fowler approximation from realistic pair potentials for Ar using the same g(r) data], the
total surface tension is significantly smaller than the experimental value.

I. INTRODUCTION

Molecular theories of surface tension based on
radial distribution functions were first given by
Fowler' and by Kirkwood and Buff.' Fowler as-
sumed a step-function density profile at the inter-
face, whereas Kirkwood and Buff allowed for a
continuous decline in density in a surface layer
where the radial distribution function g(r», z„z,)
depends on the positions z, and z, along the normal
as well as on the intermolecular distance x„. It
is very difficult to make a theoretical or experi-
mental determination of g(r», z„z,). Fowler's
approximation appears t'o be a reasonable one
near the triple point, where the density falls off
sharply, and recent calculations"~ on liquid Ar at
85'K give fairly good values for the surface ten-
sion y but not for the surface energy (excess in-
ternal energy per unit area of the surface). Other
noteworthy theories of surface tension are the
significant-structures theory' and the Toxvaerd
theory, ' which is based on the Barkex -Henderson'
perturbation procedure. Lee et a3.' have recently
used Toxvaerd's method to calculate y for liquid
Ar with a realistic Ar-Ar pair potential, and they
have included the triple-dipole three-body inter-
a.ction. The purpose of this article is (i) to ex-
tend the Kirkwood-Buff formula to include non-
additivity effects and (ii) to evaluate the triple-
dipole nonadditivity effect in the Fowler approxi-
mation, using the Kirkwood superposition ap-
proximation and experimental g(r) data, .

II. NONADDITIVITY EXTENSION OF THE KIRKKOOD-BUFF
FORMULA

The Kirkwood-Buff formula was first derived
by a hydx"ostatic-stress calculation. ' A second

derivation was later given by Buff' who, follow-
ing Green's method'o for calculating the vapor
pressure, employed the purely statistical-mech-
anical procedure of differentiating the partition
function with respect to the surface area. We
shall generalize this derivation to include three-
body interactions ujj~ in addition to the pair inter-
actions ujj. The surface tension y is given by

where A is the surface area and Z is the con-
figuration integral (P = 1/kT)

g g dx ' 4zi

and the potential energy U of the assembly is
given by

U= ujj+ ujj ——U + U
i —j&j—N i —j&j&A «g

Transforming to Buff's dimensionless reduced
coordinates

x; =4' 'x' y =A' 'y,', z; =(V/A)z,

where the xy plane is parallel to the surface, one
has

Z = P ~ ~ ~ exp —P U r,', V,4 dx,'. . .dz„',

and the limits are dimensionless. Thus
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Let y, be the part of y that comes from a U2/aA in
Eq. (6). Then
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One readily finds that
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Introducing the pair correlation function in the
surface layer, p

2 (r,2, z, ), which depends on the
three-body intera ctions since U = U, + U„Eq. (10)
becomes

p(2)(r z )(x2 ~y2 2z2 )
12

(2) v ( 12 3 12 12) 12d i p (r12 2- 12& 1 Br12 12

From symmetry the term in y» is equal to the term in x», and the result ls

DO X2-Z2

CO 12 12

CO

CO

«, p(z, ) dT„p(z2)g(r„, z, )
r12 r12

(13)

where we have introduced the singlet densities p(z, ) and p(z, ) and the radial distribution function g(r„, z, )
in the surface layer. Equation (13) is the Kirkwood-Buff formula. It is to be noted that Eqs. (12) and (13)
contain the pair potentials explicitly but that the three-body (and higher-order) interactions are implicitly
contained in p(" (r», z, ) and g(r», z, ).

We turn now to the explicit terms in u;, 2. Let y, be the part of y that comes from 8U2/SA in Eq. (6).
Then

~ ~, -8U ~ ~ ijk lm d f ~ . .d IV - ~ ~ Bu Br2
y, — e 2 ~ÃX Z

N(N 1)(N-2) -zU p &u(22

3 5 Z ~3 Brim BA V
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where p' (r„r„r,) is the triplet correlation function in the surface layer. With the aid of Eq. (9), this
becomes
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y3 =— 71 T2 T3 xgm +p) —2zg 2 p r1, r2, r3

X2 -Z2

12 12

where we have assumed @123 to be a symmetric function of the r, and have again taken the term in y12
equal to the term in x'„. Finally

X2 -Z2

12 12

(16)

(16)

Equation (16) provides the nonadditivity extension
of the Kirkwood-Buff formula to take explicit ac-
count of three-body interactions.

Equation (16) is intractable without further as-
sumptions. We use the step-function approximation
for the density profile and the superposition ap-
proximation for p~'~(r„r„r, ). Taking the xy plane
as the surface of discontinuity with the liquid of
bulk number density n, above and the vapor of
density zero below, we assume for the singlet
dens itic s

n„z, 0.
p(z, )= '' ' i=1, 2, 8

0, z, & 0

and for the triplet correlation function

(17)

p~'l (r„r„r,) = p(z, )p(z, )p(z, )g (r»)g (r„)g(r„),
(18)

where g(r) is the radial distribution function in the
bulk liquid. Inserting Eqs. (17) and (18) in Eq. (16)
then gives

n3

0
1 1

(19)

Equation (19) can be used to calculate y, if u»,
and g(r) are known. It is reasonable to use the
triple-dipole interaction for u»„even for small
r;, , because of the cut-off provided by g(r;, ). The
radial distribution function g(r) will be taken from
experiment.

III. EVALUATION OF THE SEPTUPLE INTEGRAL FOR y3

It is necessary to make several changes of varia-
ble and inversions of the order of integration in
order to transform the septuple integral of Eq. (19)
into a sextuple integral over z„r]2 z12 'r13 z13
r23 which can be programmed for a computer with-

out incurring large errors due to cancellation.
The triple-dipole interaction is given by

u„, = v(r„r„r, ) '(1+3 cosy, cosy, cosy, ), (20)

where r;, are the sides and y; the interior angles

of the triangular array and v has been accurately
calculated for rare-gas atoms. " We denote the
threshold of the radial distribution function by dp,

this is often referred to as the distance of closest
approach and can be determined approximately
from diffraction experiments. We then assume
that g (r ) = 0 for r & d„and it will be convenient to
use d, as the unit of length. The coordinates in
all the following formulas are dimensionless,
e.g. , x» stands for x„/d„etc. The integration
is initially formulated in terms of cylindrical co-
ordinates and x;, , y;,. are replaced by the plane
polar coordinates p&„Q;,. It is convenient to in-
troduce

p(y„, r», r») =r, ,' '» g (r»)g (r»)g (r»), (21)
~r12

where F depends only on the sides r, , of the tri-
angle. Then

yg
3 gQ

dZ1 dZ12
0 0 g ]

OQ oo / OQ

dX12 6/12 ~Z 13
1

~13 P13 423 (+]2 Z]2)F.
0

(22)
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En order to avoid errors due to cancellation, the integrals over x», Y», and z» are rewritten as

J dz» dx» dy»(x» z»)F = dz}2 dx}2 d&» (x» z}2)F+ dz» dx}2 dy» (x}2 z»)F
«g

1
«oo «oo g

1
«oo «g «oo

(23)

The first integral on the right-hand side vanishes and the second integral, transformed to cylindrical co-
ordinates, becomes

J
Do 7I+a ~o

12 P12 P12 412(P}2 cos 412 z12)F 2 12 P12 P12[(2P12 z}2)++4P}2slQ2lx] F1
g1 Ot g 1 g1

where cosa =z,/P». Since r»d3'» = p» p» sinp33d$23, Eq. (22} can then be rewritten as

2Pg 'j 00 DQ oo OQ max(r 23 1)
y3 d2 dZ1 dg 12 dZ13 dP, 2 P12 dP13 P13 &23K23Q,

0 0 g1 0 max(r 1 )23

(24)

(-,' p'„—z'„)a+ —,
' p'„sin2a

G=
P12P13 s~n423

and r '23=[( z„—z„}'+(P»+P»}2]''. If P» is now replaced by 3» and p» by r„, Eq. (25}becomes

(26)

2e' &oo } OO max(r 2+3. 1)

y3 — 2 dg1 6812 dg13 A 3t 13 A23P23G.
0 0 1

max [{g ~g 2),1] &max(tz 3 I 3 1)1 12 max(r 23, 1)

Equation (27) is in suitable form for computer programming. An alternative form of Eq. (27} is obtained

by changing the order of integration. Thus

2'
g

y, = ' dz,
0 0

(„2 g2) 1h
dZ12

ax(g1 ~ 1) max t'-{r 12 -g ) -g j1 2
3

Oo r 13 max(r 233 1)
d~ 13~13 d813 dy23 y'23G.

max( max(r — 1)

(28)

In order to evaluate Eqs. (27) and (28) numerically, the integration domain is divided into blocks of
finite size. The integration over each variable is then reduced to an N-point Gaussian approximation
given by

b

f (x)dx =(b-a) g f[a+(b-a)x, ]Ex;,
0 4=1

where the tabulated values of x, and ax} depend only on I}I and not on the specific function f (x}. The
Gaussian approximation becomes exact if f (x) is a polynomial of degree less than 2N and, in other cases,
it is accurate to the extent that f(x) can be accurately approximated by a 2N-I degree polynomial. The
summation of the contributions from all the blocks, with appropriate cut-off determined by the integration
limits, leads to the following approximation for Eq. (27):

=2"' N1 g g3 a(j,+1) g 1+b (2 2+ 1) -z +c(i +1)
1 3

0 j1-"0 j2=0 j3=0 C j1 -g +bj22 -g +c j31

mjn t(g *g 2) 3 13

0

mm( ig13

13 ( 13}

and for Eq. (2&):

mmt(r23) 1 1j

minI(r+ )
(30}
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II (j1+ 1)
dz,

m~(», , 1)+b(j2+1)
~12 "~12
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+cJ 3
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in both Eqs. (30) and (31), the parameters a, b,
and c which control the size of the blocks and the
parameters N„N„and N, which specify the num-

ber of Gaussian points are selected by trial and

error. The two formulas give results of com-
parable ac curacy.

IV. RESULTS AND DISCUSSION

Up until recently x-ray and neutron diffraction
experiments on liquids have been subject to large
errors; these are partly manifested by large-
amplitude ripples ing(r) for small values ofr at which

the atoms overlap and g (r) is expected to vanish.
Recent neutron diffraction experiments of Yarnell
et al." on liquid Ar near the triple point provide
data for g(r) in which the spurious ripples are
extraordinarily small (the estimated error in the
structure factor is-0.01). We have used these
experimental data to calculate y, for liquid Ar at
85 'K, where the density &, =0.021 25 atoms/A'.
The distance of closest approach or threshold
of the g(r) curve occurs at d, =3.20 A. The co-
efficient v of the triple-dipole interaction, given

by Eq. (20), has been found" to be 7.45 XI0 "
erg cm' for Ar.

The result for the nonadditivity correction y, is
-4.5 erg/cm' for liquid Ar at 85'K. This is to be
compared with the values' of y, calculated by the
Kirkwood-Buff-Powler method for the same state
of Ar using the same experimental g(r) data" and

two realistic pair potentials for Ar. The Morse-
spline-van der Waals (MSV III) potential" gave y,
= 15.0 erg/cm' and the Barker-Fisher-Watts
(BFW) potential" gave y, =13.7 erg/em'. The ex-
perimental value is 13.1 er g/cm'. It is to be
noted that part of the nonadditivity effect is taken
into account through the use of the experimental
g(r) data in evaluating y, . The complete non-
additive surface tension y2+ y„as obtained by the
Kirkwood-Buff-Fowler method, is then 10.5
erg/cm' for the MSV III potential and 9.2 erg/cm'
for the BFW potential. The agreement with ex-
periment is not improved by the inclusion of y, .
There is one other independent calculation of y„

that of Ref. 8, in which the triple-dipole potential
was also used to represent the three-body inter-
action for all values of the distances r;, and in
which the superposition approximation was also
used. This calculation was based on the Barker-
Henderson perturbation theory, and the method is
thus completely different from that used here.
Nevertheless, the value of y, obtained in Ref. 8 for
liquid Ar at 84 V. is -4.0 erg/cm', which is re-
markably close to the value we have obtained. The
large value of ~y, ( obtained in both calculations is
not surprising in view of the large triple-dipole
nonadditivity correction to the vapor pressure near
the triple point where the correction" exceeds
n, 4' T. The singular behavior of the triple-dipole
potential [u», ~(r»r»r») '] could lead to an ex-
cessively large contribution from small r;j values.
We have estimated the contribution to y, from
triangular arrays in which the r; j are small by
introducing a, cut-off distance ~* such that the
three-body interaction vanishes when any r;j & v*.
If r*=3.76 A (the minimum of the BFW pair po-
tential), the value of y, is reduced in magnitude to
-2.5 erg/cm', but for x*=3.5 A there is little
change with y, = —4.2 erg/'cm'. The contribution to
y, from triangles in which all sides are smaller
than 3.76 A is only -0.1 erg/cm'. A large part of

y, comes from triangles with one side smaller
than the separation at the minimum of the pair po-
tential, and single-overlap three-body interactions
should begin to play a role at these distances.

The three-body dipole-quadrupole interactions
have been studied and found to make small but not
negligible contributions to third virial coefficients
and crystal encl gles. ' ' There is no reliable
calculation of three-body overlap interactions.
We have essentially assumed that these inter-
actions are absent and that the triple-dipole inter-
actions ca.n be used for distances x;j greater than
d„where u.j. is cut off through th vanishing of
g(r„.). Although there is no theoretical justifi-
cation for this procedure, it has been found to
give satisfactory results in several cases. Third
virial coefficients of noble gases, calculated from
realistic pair potentials, are -3(g smaller than
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experimental values at low temperatures. In-
clusion of the triple-dipole nonadditivity correc-
tion, in which u;» is eut off through the vanishing
of the Boltzmann factors, gives results that are
in very good agreement with experiment. " Cal-
culations of solid-state and liquid-state proper-
ties of Ar, Kr, and Xe, using a realistic pair po-
tential and including the triple-dipole interaction,
have also given very good results. "'"'" A re-
cent determination of the cohesive energy of fec
Kr, in which three independent semiempirical
pair potentials adjusted to fit many two-body data
were used and in which the triple-dipole inter-
action was included, gave excellent agreement
with the experimental cohesive energy. "

The disagreement between the calculated values
of y2+y3 and experiment could be due to the use of
the step-function profile in obtaining y, . In Ref.
3 the effect of surface thickness was examined,
and it was found that for surface thicknesses less
than d, the value of y, was inappreciably changed

from the step-function result. We have also esti-
mated the effect of surface thickness on y, in a
different way, using a cubic density profile and
experimental g(r) data, and obtained a similar
result. Although there appears to be no reliable
way of estimating surface thickness, there are
some indications that the thickness near the triple
point is of the order of the molecular diameter. "
Therefore, the step-function approximation is
probably fairly reliable.

The major approximations of this calculation,
leading to uncertainties in the result, are (i) the
neglect of n-body interactions with n~4, (ii) the
use of the triple-dipole potential to represent the
three-body interaction for all values of the dis-
tances r,&, (iii) the use of the superposition ap-
proximation for the triplet correlation function,
and (iv) the use of the Fowier approximation. In-
accuracies in the g(r) data and in the pair po-
tentials used to calculate y, should also be con-
si.dered.
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