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The low-frequency microfield arising from homogeneous, anisotropic, partially developed turbulence is

represented by a Gaussian distribution, and is introduced into a generalized computation of the hydrogen Lya
line. The electrons are taken to be thermal, and they provide their usual impact broadening in the line center,

while their efFect is neglected in the wings. Analytical approximations, valid either in the line center or in the

wings, are obtained for the polarized profiles emitted both parallel and perpendicular to the turbulence axis.

This axis is simulated by a fictitious magnetic field 5 which is allowed to vanish at the end of the

calculations. The line profiles are characterized by the anisotropy parameter g' = 2(E', )/(E,') where

(E
~~ ) and (E ,') are the mean square electric field components parallel and perpendicular to the

turbulence axis of the microfield, respectively.

I. INTRODUCTION

In a turbulent plasma the low-frequency micro-
field distribution (ionic field) does not retain its
usual thermal Holtsmark-like form. ' There is an
increasing body of fairly convincing evidence that
turbulence may be considered as a vectorial super-
position of a very large number of statistically
independent fluctuations, so that the central limit
theorem (CLT) of probability theory may be in-
voked; accordingly, the components of the result-
ing electric field have a Gaussian distribution.
This is confirmed by observations of the hydrogen-
ic 2 'P-4'D 4921-A Hel line broadened by the highly
nonthermal plasma produced in a (9 pinch it also
agrees with a recent determination of the strong
turbulence spectrum' in a beam-plasma experi-
ment. On the theoretical side, several specula-
tions about the turbulence spectrum have reached
similar conclusions. The instability spectrum
observed in certain types of fusion devices led
some authors' to simulate their corresponding
low-frequency probability distribution with a super-
position of Rayleigh (Gaussian) distributions, as
is explained in Sec. II. Self-consistent treatments
based either upon the quasilinear theory of wave-
particle-generated weak turbulence, ' or on the
evaluation of the enhancement of the collective
contributions to the microfield, likewise reproduce
the above-mentioned Gaussian behavior in momen-
tum as well as in configuration space."

In this paper we shall pay particular attention to
the low-frequency microfield produced by ions as-
sumed to be nearly static. In this manner we sim-
ulate the low-frequency turbulent spectrum pro-

duced, say, by an ion-acoustic wave' or other re-
lated mechanisms. The corresponding distribu-
tion is then folded with the usual impact electron
profile in order to simulate in a realistic way the
influence of turbulent Stark broadening on hydrogen
lines. The usefulness and the credibility of such
an approach has been previously emphasized' in
connection with the quasistatic broadening of the
hydrogenic 4471-A He I line in the presence of
fully developed isotropic turbulence represented
by a three-dimensional Gaussian distribution,
taken as a working example.

The present paper is organized as follows: In
Sec. II the anisotropic Sholin-Oks distribution' is
used to model the low-frequency turbulent plasma-
atom intera. ction. The nonthermal energy fed into
the ions is taken to be large enough to allow one
to neglect the usual thermal probability distribu-
tion. ' Moreover, in order to define unambiguously
the turbulence symmetry axis, we suppose it to be
along a small static magnetic field B, playing the
role of a Tauberian parameter which is allowed to
go to zero at the end of the calculations. As a by-
product, this approach enables one to retain any
real combined Stark and Zeeman effect related to
nonzero B values, arising from turbulent heating, '
for instance. We present in Sec. III the general-
ized impact formalism in the presence of a static
magnetic field, "'"and derive in Sec. IV the B-0
analytical approximations valid in the center and
in the line wings, for the polarized intensities
emitted, respectively, parallel and perpendicular
to the turbulence axis specified by the vector B.
The corresponding numerical analysis is then dis-
played in Sec. V, with the anisotropy factor g'
=2(E,', )/(Ei) taken as a running parameter.
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II. TURBULENT PLASMA-ATOM INTERACTION

We have already presented' a quasistatic analy-
sis of the 4471-A He I line broadened by ions in a
strongly turbulent plasma with the three-dimen-
sional Gaussian microfield distribution

W(E) dE =4m(l/2')' 'E'e ' dE (2.1)

and also in a weakly turbulent plasma with the
one-dimensional Gaussian

W(E) dE =(1/2mr)'I'e a ~"dE. (2.2)

In both cases, we noted the characteristic Gaus-
sian fall-off in the wings transmitted by the quasi-
linear Stark effect of the hydrogenic He I lines.
However, the one-dimensional calculation dis-
played some numerical discontinuities, calling
clearly for a smoothing of the final profile through
the inclusion of the usual thermal electron contri-
bution. Also, and even more importantly, experi-
mental observation' suggests that the anisotropy
brought about by the partially developed turbulence
induced by growing waves propagating primarily
along a given direction has to be taken into account
in the static microfield distribution. Therefore in

order to retain the physical complexity of the tur-
bulent spectrum with waves traveling also per-
pendicularly to the above-mentioned turbulent axis
(and depicted by a fictitious Tauberian magnetic
field B) we shall follow Sholin and Oks' and specify
the low-frequency microfield as a superposition of
a one-dimensional noise spectrum with a wave
vector along B llo, and a two-dimensional spectrum
with a wave vector in the perpendicular plane.
Each of these two spectra represents the result of
the compounding of a very large number of oscil-
lations with random phases. The amplitude dis-
tribution in each of them may be expressed by the
corresponding Hayleigh di stributions,

(2.3a)

W, ( E~) d E~
= 2 ((E~~&)

' exp(-E ~/(E ~&)E~ dE~,
{2.3b)

with the average fields taken to be much larger
than the Holtsmark contribution E, = 2.603eN' '
given in terms of the charged-particles density¹N,=N;. The distribution of the total turbulent
electric field E= Ell+E may then be written

W(E, cos8) dE d cos8 = dE„dE W, (E, )W,(f )5(E —E —E ) dE d cos8

1I2 g& — E&

«;;& «'& ' E' (2E'& &E'&
(2.4)

The directional diagra. m corresponding to Eq. (2.4)
is an ellipsoid of revolution with the axis o, . As
the degree of anisotropy q'=2(E, ', &/(E2~& increases
steadily from 0 to ~, the ellipsoid changes its
form from an oblate "lens" to a very extended
"sausage, " taking the form of a sphere for q'= l.
In the following analysis the magnetic field B will
be taken to be sufficiently weak such that the elec-
tron Larmor frequency be small compared with the
electron plasma frequency. That is,

I, ((u) = dEW(E)I, ((u, E, B), (3 1)

where I;(~, E, B) is expressed in terms of the
standard generalized impact profile as

I„-(e, E, B)=~ '
Re+ &&pl e ~ rl PJ&&goal e ~ rl &a&

jjk

x&q, l[f(a„-a „.) 4'"]

emitted intensity polar ized along the unit vector e:

(n —1)eB/2m, c « ~~„ (2 5) (3.2)

which for the hydrogen Lyman-z line imposes the
inequality 220B(G)N ' '( Icm) «1.

III. LYMAN-a PROFILES

A. General formulation

Using the anisotropic microfield distribution
(2.4), we may now proceed along the lines of the
combined Stark and Zeeman calculations described
elsewhere. "'" However, we shall outline only the
more significant features of this formalism, rele-
vant to the present work. Let us consider then the

with b, &u=a —&u, . The quantity &, ={Ei," E~~ l)h '-
is the unperturbed energy, while

~~ ~ =K&*I {H -E'."')IC~&-&O, I(II E',"'ly,&]@-'
is the energy expressed in terms of the upper and
lower statically perturbed levels associated with
the wave functions P; and Qj. With the low-fre-
quency turbulence concentrated in the ionic corn-
ponent, we then retain the usual thermal electron
impact broadening in the term 4 and write it in
the standard Griem-Kolb-Shen operator formal-
ism" as
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4 = —r ~ r —. E(t) ~ E(0) dt38'

where

4/~ ae
(3m, )'t'b, V;

4 ~e& -" 2m
(0.6342+ ne ')

7l ao
(3 3)

is carried out with

~q&= Q a'~ni&.

Finally, the line profile is normalized relative to
the total line strength,

I(n', n) = —g [(l+1)(A„","') + l(H"„,' ')'], (3.7)

1./o
=4.976& 107n' N, (cm

T.( K)
(3.4)

by putting R=(r/a, )[I(n', n)] 't'.

B. Polarized profiles

The static Hamiltonian

H H, + (e/2m, c) 8 ~ (L+2S) +e E F,

H, = (P'/2m, -e'/r),
(3 6)

is specified by the interaction shown in Fig. 1,
through the eigenvalue problem

ih a, ao
(3.6)

Here x is the vector component of the optical elec-
tron's position coordinate, y =cos6, and

A =ca+/hu&~, ~~ =eH/2m, c,
~' = (» E',"&)/-lid —1, E,&"& = -e'/2a, n'.

It is now convenient to introduce the reduced
static electric field P =E/E„ together with A =A,P
and A, =ca@2/i2u~. The corresponding electron
profile is then expressed in terms of the reduced
wavelength

2mc 6&
&0 o ~o '

in A per cgs units. With these substitutions one
then finds that

S , (n, A-, y) =ii ' Re+(i)ii le

&&&C2lP'"'+t(~ —~;, )I ']C;&

The dipole matrix elements a.re easily worked out
in the usual spherical ~nlm& or ~ni& representation
with i =l(l + 1) +n, and the diagonalization procedure

where

n) )P y{n) 2@2g2 2 m 1/2
0 0 e

2mc Eo 5.206ern, c mk~T,

(3.8)

pE

B
z ii

&& bt,'~'(0.6342+ inc ')
0

A.

a;i =
2,', E

—' [&i(A, y) —VgA, y)].

(3.9)

The whole area under the given profile is given by

S (oi,A, y) do =g [(g, ~e ~
R)gati, .&]

'.

FIG. 1. Geometry for the interaction of the atom with
the turbulent electric field E of the plasma. k is the
direction of observation of the emitted radiation, e& and
~z are unit vectors perpendicular to one another and
lying in the x-y plane, such that && & F2 ——k/)k ~, and y
=- cos8. The turbulent electric Geld is symmetrical
about the z axis and is parallel to the Qctitious magnetic
field B.

Let us note that 6"~ is diagonal in the ~nt& repre-
sentation, as a result of which

p(n)
Se (»A » y) = & ZIii e(A ~ y) T(rl)2 I g „A/2

iqP +« —&~&~ 'Y»

(3.10)

with

I2 -, (A, y) =a; Q a';bib'(np)e ~ R)n'r&(n'r(e ~ R(nq&.

Here the eigenvector components a pertain to the
upper level (n = 2) and the b to the lower level
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(n' =1). In the Lyn case, matters simplify con-
siderably withP =s andP =q, respectively, while

It will prove useful to specialize the analysis to two
cases, namely,

(nl')n'~(r ~ r/a, ') ~nlm) =r n'[n' —(l'+l +1)]6„.6

(3.12)

00 1

S-, (a) =v dz dy[S-, (o, ,A, y}
0 - j.

The final profile for the emitted light polarized
along e then reads

(3.13)

+S.„(n», y)]W(E, y),

(3.14)

with e, =(sing, cos(I), 0}, and

S-,(a) =v dE
0

dy{cos'8, [S~(a,A, y}+S,„(a,A, y)]+2 sin'8, S, (n, A, y)]W(E, y),
l

(3.15)

with e, =(-cos8, cos()), cos8, sin({), sin8, ) (see Fig.
1). Finally, an averaging over the azimuthal angle
(I) is performed with the aid of the identities

J
2% 2'

d(I) cos'Q = dQ sin'Q =7t,
0 0

m
Ss (o) =—

0
dy W(E, y)

x[S~(a,A, y) +S; (n, A, y)

Se,(a) =-'[S-.,(o')+Se,(o)1

= cos'8P))(a) + sin'8P~(a),

defined as

(3.16)

etc.
We now assume that the observations of the line

shapes are performed without a polarizer, and
with that in mind, we introduce the two normalized
intensities S)) and S~,

+2S~(n, A, y)]. (3.18)

C. Static algebra

They are the intensities as observed parallel and
perpendicular to B, respectively. Equations (3.17)
and (3.18) provide the basis for our anisotropic
polarization-dependent analysis of turbulent Stark
broadening, with the thermal electron impact con-
tribution retained in the line center.

s„(.) =.J ss
0

dy W(E, y)

x [S-,(a,A, y) +S:„(a,A, y)],

(3.17)

It remains to apply the above expression to the
Lya line, and to diagonalize Eq. (3.5) for the
eigenvector components a, through the relation-
ship

3A (1 yq s&'/~2

3Ay

3A(1 —y')'~'/~2 3Ay -3A(1- y')' s/v 2 a'
2a

-($ —1)

(3.19)

Then, solving the characteristic equation
I

a' =[(1—$')/2(1+9A' —2$')]'~',

]' —$ '(1 + 9A ') + 9A 'y' = 0

for the eigenvalues yields

(3.20) a' =[—',A(1 —y')' '/(1+ ()][(I—g')/(I +9A' —2$')]') ',

a' = (3Ay/$)[(1 —f')/2(1+9A' —2$')]'(',

2 s (I +9As)2

Eq, E2-+ 1,

together with

(3.21)

a'
=[~A (1 —y )

' '/(1 —()][(I—$')/2(l +9A' —2$')]' '.
(3.22)

Note that ~;,a"=1. As a consequence, the re-
duced collision operator I' ') =Br ~ r/a,' may be
given the matrix representation
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27 0 0 0

0 9 0 0

0 0 9 0

0 0 0 9

(3.23)

on the right-hand side of the last two equations
represents the contribution to the central compo-
nent of the Stark-broadened line.

IV. APPROXIMATIONS FOR THE LINE CENTER
AND THE WINGS

with

8 =7.212& 10 ' N' '(cm ')T ' '( K)

&&113.76 —0.51n[N, (cm ')/T, ('K)]]. (3.24)

The anisotropic electron profiles then become

2 ~ 98 9e
6,A„616* ( «)*'616* ( x,))

e (1 —9A'r')
[(1~ 6A')' —36A'y*('1' )

(3.25}

9a 9a
6~A, 818'+(c[ —K,)' 81n' (+o(K+)6'

where

-e QA'(1 —r')
3[(1+6A')' —36A'y('1' )'

(3.26)

2mm, cA, 2

36' 2 2 1/2 1/2
x 1+q 1

(1 QA2)2
(3.27)

A =ea,(E,)
g' '/h(A)~ »capo/k(d~ » 1,

with the result that

S, (n, A, r) =- 2(1+r')81 .2I, 9a
L 818'+ g2

9a
+ (1-r')

810,'+ (n —o~)'

(3.28)

98
818'+ (&r + az)'

(3.29)

In accordance with the prescription given in Sec. I,
we now set the Tauberian parameter equal to zero.
Thus as B-O,

In the previous sections we developed a full im-
pact formalism which took into account the electron
impact contribution in addition to the turbulent
quasistatic fields. As a result, complete profiles
can now be obtained by appropriate P and y averag-
ing of Eqs. (3.29) and (3.30). The integrations
must be carried out by numerical methods. How-

ever, in the remainder of this paper we shall not
pursue this course. Rather at this stage we shall
make an approximation which will allow us to pro-
ceed to an analytic derivation of line-profile for-
mulas. This entails the assumption that the elec-
tron contribution can be neglected in the line
wings. This assumption is undoubtedly well satis-
fied in many turbulent plasmas studied to date,
where, as is discussed in Ref. 8, one finds that
the quasistatic turbulent microfield is at least an
order of magnitude greater than the classical
thermal microfield. In such experiments as least,
one can safely neglect the thermal quasistatic
broadening due to the electrons, which, as is well
known, is at most 59%%u~ of the thermal ionic contri-
bution.

Therefore we are left with a quasistatic treat-
ment in the Lyo. wings, and thus we extend to
a.nisotropic distributions [Eq. (2.4)] our previous
isotropic calculations' of the quasistatic profiles
of the He?4471-A line. Note, however, that we
still retain the impact electron broadening at and
near the line center (o. = 0}, where the unshifted
central components are mainly influenced by such
electron impacts.

The two complementary approximations just dis-
cussed are worked out below, yielding simple
analytic formulas for the line profile. In a subse-
quent work, if it proves necessary, we shall im-
prove our somewhat restricted treatment of the
electron broadening in intermediate regimes by
proceeding to a complete numerical analysis.

A. Line wings

We therefore introduce in Eqs. (3.29) and (3.30)
the approximation

2 818'+ ~ —~ )' Qt2[818'+ (o. + me)'] ' =)i6((3.+o, ) as 8 —0. (4 1)
98

81tt'+ (~ + (ae)'

(3.30)

Here o~ =(SP&')/(2mm, c). Note that the first term

Observe that one proceeds to this limit without the
need to invoke any wavelength-dependent criterion.
Integration over the turbulent probability distribu-
tion of el.ectric fields W then leads to an integral
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of the form

We note that two distinct y averages are to be con-
sidered, according to whether the anisotropy para-
meter q' = 2(E~~&/(E2~& is smaller or larger than

unity.

1. q~ —=2(E2&/(E2&~1

The corresponding y quadratures are easily
carried out with the aid of the following identities:

2b 222 1 77

dy e ~ '~ /e = —— 4(a&—b/d),
2 2 Q

(4.3)

f1
~2b„P],2 I

dyy =
2( 2b/d2p&2

x @(a~b/d) —~b e "

(4 4)

with 4 as the Fresnel error integral,

J d~ ~2e-8 (a+by )~ P 0
2'' m~C

=(a/d)'exp]-[a'(a+by')/d]], (4.2)

where

d= 2hk20/wmec, a =Eo/(E', &, b =E)7) 1~/2(E~I&.

This leads to the following expressions for the
line profiles:

S, (x) =-wZe ' tt [w't'«C (x) —w't'4 (x)/2«+e ' ],
(4.5)

$,(x) = ,'wZ-e * t[w't'«C(x) yw'~'C(x)/2« e-* ].
(4.6)

Here x is the dimensionless wavelength variable,

&b 1/2 gy 1 1 1/2

d 2(E') (E2$

and f and Z are constants defined

f=b/a =
1 ((E0/2(E~i &)

1/2 E3
0

w(E') b(E')

s 0

(E ) ~ 1 —(E &/2(E(', &,

Recall that the foregoing results are applicable
only when the anisotropy parameter q' ~ 1.

2. q2 —=2&E»/(E2&~~1

The y averages are obtained from

+1
2

r d 0, 2 -a (a+by )/0 = n (tl+ y) X
2

dyy e
-1

zB(1, z) ~F~(1;z,' —a2b/d ), for y,
[-—,'B(&, 2),F,(2; ~,' —a'b/d') +2B(1,~),F,(1;—', ; —a'b/d )], for y,

(4.7)

where 1F1 is a confluent hypergeometric function
and B is the P function. These results lead to line
profiles given by

S~, (x) = —', wZx'e *'tt,F,(2; 2, -x'),

$~(x) =—', wZx'e * ~~[3,F,(1;-', ; -x')
—g, (2; 2, -«')]

(4.8)

(4.9)

Equations (4.5), (4.6), (4.8), and (4.9) represent
our final results for the line profile of the turbu-
lently broadened wings of the Lyman-z line. When
the turbulence is isotropic, that is, when g2=1,
all four equations reduce, as expected, to a com-
mon result,

$~~(y) =$~(y) = w. (wa)'t'y'e ', (4.10)

where

a =Eg(E~&, y = (a/d)a' ' =n, X(d(EJ' ')

dP P 2e 8 (0+b7 )
4 (a +by')'~' '

while the y average is

(4.11)

+1 d 02

(a +by')"'

2 1 1
b a 'i'

( +a)b'i'

2 1/2 1/2(a +b) + ),(, 2a

for y'. (4.12)

The corresponding profiles are Lorentzian and the
intensities S], and S~ for both g' & 1 and q' & 1 are

B. Line center

There is no analytic dichotomy between g'& 1
and q2& 1, provided the dimensionless parameters
are given their appropriate values. The P average
now becomes
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R = 9a/(81a'+ n'). (4.15)

The quantity 96 is the normalized electron col-
lision frequency [Eq. (3.24)j and o. =Ah/E„ the
normalized wavelength. For the case of isotropic
turbulence, that is, in the limit as g' 1, f-0,

Sii(a) =S (a) =y(9a)/(8la'+ a'). (4.16)

given by the following expressions for the unshifted
central components:

1 1+
&„(a)=~(&-y~ .g* &.[f'*~ 0 f)"I),

(4.13)
i/2

S,( ) R(3 —— „, 1 [f'~' ~ (1 f)'~']).

(4.14)

Here f is once again defined a,s

f= b/s =
I (&E i&/2(E'ii &)

and 9 denotes the Lorentzian profile whose form
1s

for g'=0. 1825, and

Sii(n) = 2.506(9a)/(81a2+ o '),

Si(o) = 2.747(9a)/(81a'+ a ),
(5.4)

g'= 0 I83

0 50
X

I—
(7)

I- pZ

for g'=9.0.
The effects of anisotropy in the turbulent micro-

field on line shape are brought out more forcefully
by plotting the ratio of S~~/S~ as a function of the
relevant quantities. Figure 3 shows such a plot
obtained from the line-wing formulas (4.5), (4.6),

V. NUMERICAL RESULTS

The wing contributions to the full line profile are
illustrated in Figs. 2(a} and 2(b). They were com-
puted for the case for which the root-mean-square
electric field of the turbulent fluctuations equaled
20 times the Holtsmark normal field E„namely,

(E'&"=(«;,&+Ng)" =2«.. (5.1)

0
0

IQ

WAVELENGTH IN UNITS QF X

Figure 2(a) shows a plot of S~, and S, computed
from Eqs. (4.5) and (4.6) for an anisotropy para-
meter of magnitude t)'=0. 1825. Figure 2(b) shows
the corresponding profiles calculated from Eqs.
(4.8} and (4.9) for an anisotropy parameter equal
to 9. With these choices of g', the wavelength
variable x plotted along the abscissa of both fig-
ures has identical values, namely,

oo
x

50-

(A

LIJ
I—

3

x = ab '~ '/d = 0.11066K/Eod . (5.2)
(b)

Sii(o) = 2.292(9a)/(81a'+ a'),
S~(o) = 2.854(9a)/(81a + o.'),

(5.3)

This makes for easier comparison of the two fig-
ures, and the effects of the turbulence anisotropy
are thereby more clearly brought out.

We see that the wing formulas (4.5), (4.6), (4.8),
and (4.9) make no contribution at the exact line
center x =0. To obtain the complete profile also
valid at and nea. r x = 0, one must add to Figs. 2(a)
and 2(b) the appropriate Lorentzian profiles given
by Eqs. (4.13) and (4.14). For the parameters q'
chosen above one then finds that at and near the
line center

0
0

WAVELENGTH IN UNITS OF X

FIG. 2. (a) Wing contribution to the normalized line-
intensity profile as calculated from Eqs. (4.5), (4.6),
(4.8), and (4.9). SII is the intensity viewed along the
axis of symmetry z, and S~ is the intensity perpendicu-
lar to it. The anisotropy parameter q = (2E I(&/ Q'p)
=0.183. To obtain the full line profile one must super-
pose contributions from the line center given by Eqs.
(4.13) and (4.14). (b) Same as (a), except that the anisot-
ropy parameter q =9.0.
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2.0

IQ

09
0
I-
cL

QB

I.2

m
Z
w 07
Z

06

0.8

05
IQ IQ

I I

2 &E, ) &E1&

04

FIG. 4. Ratio of intensities S I~/S~ at and near the line
center, as a function of the anisotropy parameter q
=2(& I~)/(E~). Note that at the line center this ratio is
independent of the wavelength.

0
0

I I I I

I 2 3 4 5

WAVELENGTH INTERVAL IN UNITS OF X

FIG. 3. Ratio of the intensities S~~/S~ at the line wings
as a function of the normalized wavelength parameter
x = G.b 2/d defined in the paragraph following Eq. (4.6).

VI. DISCUSSION

We have presented what we believe to be the first
comprehensive calculations of a line profile broad-
ened by plasma turbulence. The hydrogen Lyman-
~ line was chosen not so much because of its value
as a diagnostic tool but rather because of the basic
simplicity afforded by this transition. The com-
putations are entirely analytic and they serve in a

(4.8), and (4.9). It is clear that for a given tI' dif-
ferent portions of the line wings exhibit different
values of the intensity ratio S~~/S~. This suggests
that careful measurements of the relative values of

SI, and S~ in a turbulent plasma may not only yield
information about the absolute value of the turbu-
lent electric field, but that one may also derive
the degree of anisotropy q' of the field fluctuations.

In contrast to the line wings, where the ratio
S~~/S~ is a strong function of the wavelength x, the
same ratio is independent of wavelength at and
near the line center. This is obvious by taking the
ratio of Eq. (4.13) and (4.14). A plot of this ratio
as a function of q' is illustrated in Fig. 4. We see
that as q' increases from zero, S~~/S~ increases
from a value of 0.6667, reaches unity at q'=1,
and then approaches asymptotically the value
0.9053 as q'-~. By and large, the ratio S„/S~ at
the line center is much less effected by the degree
of anisotropy g' than are the line wings.

sense as "model" calculations for more compli-
cated transitions. Such transitions include, for
example, the higher-series hydrogen lines, where
numerical procedures are unavoidable.

The limitations of the hydrogen Lyz line as a
Stark-broadening diagnostic of conventional plas-
mas are well known. First, the line center is al-
most always strongly self-absorbed even when
hydrogen is used in minute concentrations as a
seed gas. " Secondly, the Stark-broadening para-
meter is small, so that even if self-absorption
were unimportant, a large part of the line profile
may be strongly Doppler broadened.

However, matters can be very different in super-
dense plasmas such as those produced by focusing
intense laser radiation on solid targets. Under
such conditions hydrogenlike spectra (including the
Lyn transition) of highly stripped heavy ions are
observed. Plasmas with ion densities in excess
of l0" cm ' are being produced. If then the ion
temperatures are not excessively high (below a
few keV), Stark broadening prevails, as has been
demonstrated in recent experiments. "

Our computations can be used for deducing the
turbulent Ly n profiles of high-Z ions similar to
those mentioned above. The turbulent microfield
given by Eq. (2.4) is independent of the Z value and
therefore the line wings remain unchanged. The
Lorentzian line center 98/(81&t'+ n') changes be-
cause the collision parameter 8 of Eq. (3.24)
changes: the line width AA. (in wavelength units)
scales approximately as Z ', all other parameters
(N, T) remaining constant. We stress, however,
that the present calculations can be used for hot
superdense plasmas only as long as the ion ener-
gies are sufficiently low so that the ion dynamics
of the perturbers can be treated in the quasistatic
approximation, as is implicitly assumed in this
paper.
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