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Electronic transport is considered in dense fully ionized hydrogen. The equivalence of the Boltzmann-Ziman
approach with the more deductive Kubo formalism for weak electron-ion interactions is established. The ionic
structure factors obtained from recent and improved Monte Carlo simulation of the classical one-component
plasma are used to obtain the linear time-independent transport coefficients. The effects of inelastic electron
scattering from the ionic density fluctuations are taken into account. The electrical and thermal conductivities,
the conductive opacity, the bulk viscosity, and the thermoelectric power at different densities and temperatures
are tabulated. These results are compared with previous calculations.

I. INTRODUCTION

We are concerned here with the problem of cal-
culating the electronic transport coefficients of
dense conducting fluids consisting solely of mas-
sive point ions and a neutralizing background of
fully degenerate weakly interacting electrons.
When the electron mean free path is larger than
the ionic binary correlation length, the nearly-
free-electron (NFE) approximation applies, and
the various time-independent transport quantities
may be easily obtained within the framework of
the standard Lorentz model, where the electrons
are elastically deflected at the surface of the
Fermi sphere by the ion density fluctuations. Usu-
ally, it is sufficient to consider the weak electron-
ion interaction in the Born approximation, while
the strong ionic equilibrium correlations are taken
care of through the binary structure factor S(k).
This is essentially the basic content of the well-
known Boltzmann- Ziman' formulation of electronic
transport, extensively used in liquid-metal phys-
ics. It has been extended' to the critical domain
of alkali-metal vapors with the use of a hydro-
dynamic approximation for the generalized struc-
ture factor S(k, ~) to explain the sudden breakdown
of the metallic conductivity in the vicinity of the
liquid-vapor critical point. The same approach
has also been recently applied' to the electric
resistivity of fully ionized liquid metals with hard-
sphere ionic structure factors.

In this work, we address ourselves to an exten-
sion to other electronic transport coefficients,
such as thermal conductivity, conductive opacity,
thermoelectric power, and bulk viscosity. Our
calculations make use of the ionic structure factors
obtained by one of us' from Monte Carlo simula-
tions for the equilibrium properties of the one-

component plasma (OCP) model in a neutralizing
background, in terms of the dimensionless clas-
sical plasma parameter I'=P(Ze)'/r„where
r; = (-,'IIn;) ' ' is the ion sphere radius, p = (ksT) ',
and n,. is the ionic number density.

The present transport calculations are basically
motivated by their relevance to the computation of
the physical properties of the deep interior of
giant planets such as Jupiter and of the white-
dwarf stars. The connection with laboratory phys-
ics lies in our estimate of the electronic thermal
conductivity, which is essential to the energy bal-
ance of highly compressed deuterium plasma' (see
Fig. l), obtained from laser compression in order
to reach charge densities and temperatures cap-
able of sustaining nuclear fusion reactions.
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FIG. 1. Region of simultaneous validity of both NFE
and OCP models. n —= k&T/e~, P =~~/m, c, y =—k~T/
m~c, 6 =—A/r; . Subregions A and B correspond to init-
ial and final states of systems under laser-driven fusion
conditions.
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The application to dense alkali vapors (Na, Cs,
etc.) in the critical regime, or in the electrode
region of some discharges (cathode spots in arcs
and sparks, exploding wires, etc.) will be given
further attention in a subsequent work.

The paper is organized as follows; In Sec. II the
conditions of validity of the NFE approximation are
explicitly given. The Ziman formulation is detailed
in See. III for the various linear electronic trans-
port coefficients, and the equivalence of the Boltz-
mann-Ziman approach with the more deductive Kubo
formulation for weak electron-ion interactions is
also pointed out. The choices of the effective elec-
tron-ion interaction U(k) and of the ionic structure
factor are considered in Sec. IV. The numerical
results are presented in Sec. V and discussed in
Sec. VI ~

II. NFE MODEL FOR ELECTRON TRANSPORT

p
—= er/m, e'«1 or n, «1.66 && 10" cm '. (2)

(c) The Lorentz gas model is applicable, i.e. ,
the electrons interact only with ions. In a highly
degenerate system the electron-electron interac-
tion can be neglected as a result of the exclusion
principle. At higher temperatures the electron-
electron interaction could become important. '

(d) The electron scattering cross section from
the ionic system can be calculated in the first
Born approximation. This approximation is ade-
quate wherever'

ei ei ~

r„=Ze'/er and $„.=8'/(2m, er)'~'.

The critical density for the validity of this approxi-
mation is then defined by

In order to be able to use the NFE model one
assumes the following:

(a) The temperature of the system is such that
the electron gas remains degenerate:

n = k,T/er «-1 or T (K) «6 && 10'/r,',
where r, is defined as usua. l, r, =r,/a„adn
r, = (3/4vn, }' ' is the radius of a sphere that con-
tains one electron, a, is the first Bohr radius,
and sr =k'2(3v'n, )'~'/2m, is the Fermi energy.

(b) The electron density is not too large, so that
the electrons can be treated nonrelativistically:

where e, is the electrical conductivity and o', =e'/
aors, viewed as the atomic unit of the electrical
conductivity, ' has the practical value of 4.6 ~ 10'
0 ' cm '. The condition on X, implies that the
conductivity of the system is sufficiently high such
that

a, & 5.72 x 10'Z'~ '/r 0 ' cm '

III. TRANSPORT COEFFICIENTS

A. Basic considerations

We pay special attention to the simple situation
with completely degenerate electrons while the
ions remain classical. The interest of such a
model for the computation of thermal and electric
properties in dense and high- temperatur e plasmas
has long been recognized. " However, two distinct
approaches, both using the Lorentz model of weak-
ly interacting electronic plane waves elastically
diffused by the classical ions, are considered with-
out any apparent appreciation of their relative
merits and possible connections between them.
The first one' relies on the deductive Kubo for-
malism' (see Appendix D for an explicit deriva-
tion), while the second one (Ref. 3 and references
cited therein) makes use of the Boltzmann equation
for the electronic transport of liquid metals. ' our
purpose is to emphasize that both methods produce
identical results for the electronic thermal con-
ductivity and the other related linear electric
transport coefficients, provided that the above-
mentioned requirements for the use of the Lorentz
model are satisfied. To save space, let us start
from the usual Ziman expression for the thermal
conductivity K,'," restricted to the elastic approx-
imation fulfilling the Wiedemann-Franz relation,

pK', /T = 3v'(ks/e)',

where p is the standard Ziman expression

for the electron resistivity given explicitly in
terms of the Coulomb electron-ion interaction
4xn, e'/k' with the dielectric constant put equal to
1 8

Vieillefosse and Hansen" obtained an analytical
expression for the ionic structure factor S(k) in the
long-wavelength limit. Their result is

r. =1/Z. t', 3) 3I'+ q'(Kor/Kr) ' (6)

(e) The mean free path of the conduction elec-
trons X, is sufficiently large,

0, 2m "'—'&1 or 2m' —'
y'~ oo

(4)

where q = kr, is the reduced wave number, K~ =

(1 /)n(9 /nap)r is the isothermal compressibility
of the OCP, and Kr=P/n, is the ideal-gas com. -
pressibility. Kz, can be obtained from Eqs. (11)
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and (20) of Ref. 4. The usual high-temperature
(Debye) approximation is recovered for Kr =Kr
Collecting Eqs. (6}-(8)one readily obtains

(2xk)'n, . nks2T

16m,'e' In[1+ (4o.q'/3F)] '

where q~ =kzr, , kz ——(-', v)'~'/x„and o& =Kro/Kr.
Equation (9) is nothing but the result obtained from
the Chester-Thellung-Hubbard formalism detailed
in Appendix D.

Finally, it is worth pointing out that the above
result j.s a special case of the identity of the
Kubo and Boltzmann formalisms when the inter-
action is weak, or possibly strong but still local-
ized.

B. Linear t.*1ectronic transport coefficients

In the framework of the Boltzmann-Ziman formu-
lation of electronic transport, all linear time-
independent transport coefficients are essentially
determined by the static structure factor of the
ions S(k} and the matrix element of the screened
electron-ion interaction U(k), as can be seen from
the follow ing expressions.

J. Electrical conductivity

The electrical conductivity is given by

o, =n,e'r, /m, ,

with r, =X,/or, where oz is the Fermi velocity,
v, is the collision time, and A., is obtained from

A,,'=2'; 1 —cos8 I 8 sin8d8.
0

In this formula f(8) is the differential scattering
cross section of each ion and is to be calculated
in the first Born approximation. As or iginally
shown by Ziman, ' the electrical conductivity a,
based on these assumptions, can be written in the
following form:

where the Lorenz number I.o has the value

I., =-,'v'(ks/e)'. (16}

As Rice" has pointed out, the inelastic scattering
of electrons from ionic density fluctuations could
modify the Lorenz ratio. Taking into account this
effect, the corrected thermal conductivity K, may
be written in the following form:

K, = K,'/(I+ a,),
with

(17)

y = ff'k~/2M, ksT, x = k/2k~.

M,. is the ionic mass and the angular brackets are
defined in (13).

A useful coefficient, which plays an important
role in the energy transport formulation of the
stellar interior and particularly white-dwarf stars,
is the conductive opacity K,. It is connected, as
usual, to the thermal conductivity by the following
relation":

(19)

where N, is Avogadro's number and a the Stefan-
Boltzmann constant.

3. Electronic bulk viscosity

The electronic bulk viscosity g, is given by

g 5S~Cy +~1

where r, is„ in general, different from w, of Eq.
(10). Following Baym" we write the ratio r,/7„

2. Thermal conductivity and conductive opacity

The electronic thermal conductivity K~ is related
to the electrical conductivity by the Wiedemann-
Franz law

(15)

o 2k~ 2k~ 2k~ 2k~

(12)

In order to avoid the repetition of lengthy ex-
pressions, it is useful to introduce the following
notation:

(13)

with this notation Eq. (12) takes the form

2~~m, o, 3((l —x ')S(x))
5e'q, (S(x))

The electronic bulk viscosity is then obtained from
this equation by inserting o, from formula (14),

45((l —x')S(x))
k&~n]

4. Thermoelectric power and the Hall coefficient

The thermoelectric power Q is represented
through the dimensionless parameter $,

o, ' = (12w/ke'~)~n, )(S(x)), .

where x=—k/2k+ .

(14)
~k 8v~ k)

(23)
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q = (v'k'sT/3e e~)g.

From Eqs. (23) and (14) it follows that"

S(2u )iV(2r„)i'
2(S(x))

When the Fermi surface is not distorted and
remains spherical, the Hall coefficient R and the
Hall mobility p, are given by

fr=1/en„p, = iftiv. . (26

IV. CHOKE OFS(k) AND U(k)

A. Structure factor

As can be seen from Sec. DI, in order to evalu-
ate the transport coefficients at different tempera-
tures, in the framework of the NFE model, it is
necessary that the structure factor provide this
functional dependence in T. In their calculation
of the electronic conductivity in fully ionized liquid
metals, Stevenson and Ashcroft used the struc-
ture factor appropriate for a fluid of hard spheres
in the Percus-Yevick approximation" (Appendix
B). Although this choice may be adequate at the
liquid densities, its use is in general unsatisfac-
tory for the following reasons:

(a) This procedure retiuires an independent
determination of the temperature scale, since
hard-sphere properties depend only on density,
and one is led to derive independently the temper-

ature dependence of the packing fraction y(T),
where

y = ', w-(2r„)3n, =.(r„/r,.)',

and r„ is the hard-sphere radius. Although y(T)
can be obtained from the slope of the curve of the
effective ion-ion interaction energy, it is assumed
that y(T) decreases on heating as (T) ", where v

is an adjustable parameter. "
(b) This variable parameter v is usually adjusted

to fit the experimental results.
(c) Its range of applicability is limited to the

fluid densities such that x„&z,. &10'~, as is shown
ln Flg. 9~ this ls discussed in Biol e detail ln Ap-
pendix B.

We propose instead to choose, for the ionic
structure factor, the structure factor of the class-
ical one-component plasma (OCP), i.e. , a system
of point charges in a uniform background of con-
duction electrons. The radial distribution function
of this system has been recently determined very
accurately by Monte Carlo simulations' over an
extensive range of thermodynamic states. In Ap-
pendix A we show how the structure factor can be
extracted from the Monte Carlo data with a very
high degree of accuracy. The advantages of this
procedure are that it leaves no adjustable param-
eter, it provides explicitly the temperature depen-
dence of the transport coefficients, and the calcu-
lations can be extended to a larger density range,
i.e. , to the region where x,. &r„. The comparison

%X

', T 10 K(OCP)

,
',HS(r&=10 cm}

'

1 ~ '
~ 10 K(OCP}'

10I'K(OCP)

n;(cm )

FIG. 2. Electrical con-
ductlvl+ 0'~ of hp'drogen at
different temperatures
and densities, vrith U(k)
obtained from expressions
(C5) and (C7). Curve
GCP: S(k) from OCP. In
each curve points 1 and
2 correspond to the condi-
tions 6=1 and a =l, re-
spectively. Curve HS:
8 g') obtained from hard-
sphere model. . ~„ is the
hard-sphere radius and
A~ the mean free path of
the conduction electrons.
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FIG. 3. Electrical conductivity with different U(k) and with S(k) from OCP. Curve U«. U(k) for the dielectric func-
tion, taking into account the exchange and correlation corrections. Curve U& . U(k) for the Lindhard function. Curve

U&F. U(k) for the Thomas-Fermi approximation.

B. Pseudopotentigl

The choice of U(k) is based on pseudopotential
theory, and a brief discussion of the scattering
potential and the dielectric constant is given in

TABLE I. Maximum relative errors made on cr at
different temperatures, when U,„ is replaced by Thomas-
Fermi (U+& ) or Lindhard (U& ) functions (r, & i).

io io' io' io io'

between results obtained with the structure factors
of the OCP and of hard-sphere models is made in
Fig. 2, where the electrical conductivity of hydro-
gen at different densities and temperatures is
plotted. v, was obtained from (14) with U(k) from
expressions (C5) and (C7). Curves OCP and HS
correspond to S(k) from, respectively, the OCP
and hard-sphere models. In these calculations the
hard-sphere radius r„varied from 10 "to 10 ' cm.
As can be seen from Fig. 2, at a given r„, which
may be viewed as at constant temperature, the
use of S(k) from the hard-sphere model limits the
calculations to r,. &r„, and as r,. approaches r„ the
electrical conductivity diverges, which is not
physically satisfactory.

V. NUMERICAL RESULTS FOR DENSE HYDROGEN

PLASMAS

Different conditions imposed by the NFE and
OCP models define the boundaries of a region in
the T-r,. (or T —n, ) plane where both models re-
main simultaneously valid. This region is shown
in Fig. 1. The line 5=1 is due to the fact that in
the framework of the OCP model the ions are
treated classically. This implies that

5-=A/r, . «I or r, (Z' ')»32.87T ' ', (27)

Appendix C. Figure 3 shows the electrical con-
ductivity obtained with different U(k) and with S(k)
from the OCP. Curves U», U„and U,„corre-
spond, respectively, to the expressions (C4), (C5),
and (C7) for the dielectric function. As can be
seen from Fig. 3, when r, &1, the different expres-
sions for U(k) give sensibly identical results.
Table I illustrates, for r, &1, the maximum rela-
tive errors made on o, when the exchange and cor-
relation corrections are not taken into account and

U„ is replaced by the Lindhard function (U, ) or by
the Thomas-Fermi approximation (Urr). In this
table cr'", 0', and 0 correspond, respectively, to
U,„, U„and U~F

ex g)/
(&ex &yF )/&ex

+ 0.02 + 0.04 + 0.04 + 0.02 + 0.003
—0.i —0.07 -0.04 -0.02 —0.006

where A = (2vk'IMpaT)' ' is the thermal de Broglie
wavelength. As can be seen from Fig. 1, almost
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FlG. 4. Electronic ther-
mal conductivity K, of
hydrogen. For compari-
son, the thermal conduc-
tivity K,', derived from
the Vhedemann-Franz
relation (without
taking into account the
inelastic electron scat-
tering), is also pl.otted
(dashed curves).
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the entire path of a system undergoing changes
under the laser-driven fusion regime lies inside
this region. The subregions A and 8 represent,
respectively, the initial and the final states of such

a system.
The general behavior of the electronic transport

coefficients of hydrogen at different densities and
temperatures is shorn in Figs. 2-8. The elec-

)Q30 0( (CfA )

gl

E
V

V FIG. 5. Conductive
opacity K„of hydrogen.
Curve HL: results of
Hubbard and Lampe.
Curves Kc and Kco. our
results obtained, re-
spectively, from K~
and X,'.
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FIG. 6. Electronic bulk viscosity g~ of hydrogen.

trical conductivity was obtained from Eq. (14),
the thermal conductivity from (15)-(18), the con-
ductive opacity from (19), the electronic bulk
viscosity from (22), and the thermoelectric power
from (24) and (25). In these calculations we used
U(k) as defined by Eqs. (C3) and (CV) and S(k) of
the OCP. In each curve the points 1 and 2 corre-
spond to the conditions 5=1 and n = 1, respectively.

The results of these calculations, are given in
Tables II-IV for T=108, 10', and 10'K. For I"» 1
the structure factor was obtained from the Monte
Carlo data, while for I &1 it was obtained from
the hypernetted-chain (HNC) integral equation
(Appendix A).

The simple long-wavelength limit of S(k), Eq.
(8), was also used to evaluate the transport coef-
ficients of hydrogen at different temperatures and
densities. Some of these results are summarized
in Tables V and VI for T'=10' and 10 K, respec-

10 n;(cm )
I I II I

l
I

10

K T(K)

FIG. 8. Conductive opacity of hydrogen at different
temperatures and at two densities (p). Curves HL: re-
sults of Hubbard and Lampe; curve SA: results of
Stevenson and Ashcroft; curve&, : from our results
twith Eq. (C 7) for e] curve K (&=1): our results with-
out the electron screening.

tively. A comparison between the approximate
results of these tables and the "exa,ct" values of
Tables II and III shows that this approximation
is quite satisfactory especially for low values of
I'.

VI. DISCUSSION

In general, the accuracy of the results given in
Tables II-IV depends mainly on the accuracy with
which S(k) is known. With the more accurate data,
based on extensive Monte Carlo runs, ' it is ex-
pected that the overall error of these results
should be less than 1%. More specifically, the
following remarks, concerning the various trans-
port coefficients, are in order.

500—

0
l1 1

I I I I

10
l1 10-10 10 r; (cm) 10

I'IG. 7. Thermoelectric power Q of hydrogen.

l. Electrical conductivity

In the computations relative to cr, , the effects of
inelastic electron scattering from the ionic den-
sity fluctuations are not taken into account. In
fact, their contribution is negligible in this case."

The condition X, /rI & 1, pointed out in Sec. II,
defines the boundary of a region in the 0., —x,.
plane, where the NPE model is applicable. This
limit is shown in Figs. 2 and 3 by the line A.,= z, ,
and as can be seen from these figures our calcula-



ELECT RON IC TRANSPORT IN DENSE FULLY ION I ZE D H Y D ROGEN 847

c0
Q

o g
C4

8 e4
Q eM

Q

0 0
Q

cD

Q.

cd Z

Q
8--N

~ s

~H~~ Q

CLI re%

I
Q cL, G

II V

~a~

O
c0

~W
C.

0
o'U o d)

o
cd

F
sel rH

Q)

e ~ a

g .w Ki
Q)

~~ ~ r

~W
Q Ro

(g g Ui0
0 Q

cd~89
0 ~

g R
g0'o~~

~0

Q

8 ~
0 pockg~g
~o8cd
St

o
O

W Q

41
g
g

I

6

I

o ILI~"'8

6
b o

I

cD

lQ

O

O

CO

00
O
00

O

X
00

X
CD
t

CO

x x

00 O
lA

N

O

X

00
00

O

X

LQ

CD

LQ
LQ

O CD

O
LO

CO

lQ

cD

O
X

t
CD

O
X

CO
CD

CD

O

O
X

O
X

C0

O
X

CD

O O O O O O
X X X X X X
O c0 + 00 cO

CD LQ
cD W W M cg CO

cD

X

00
O

O O O
X

CD
O
CO

O
X

EQ
CD
CO

00

O
X
00

cD

X
lA
CD

O
X

QO
ECJ

O
X
lQ

X
CD

X

lQ

CD

O

X
CO
00

O

X
O
cD

CD

X

O

cD

X
00

Cb

O

X

O
X
LO
00
lQ

O
X

CD
CD
cD

cO

o
X

CD
O

00

O
X

CD

O

X
cO
CD

CD

X X X X X
lA ~ W 00

CD cO

00

X

le

X X
00
lA t
O cD

I

O

X
EQ
00

I

cD

X

CO

I

X

t

I

O
X

I

O

X

00

I

O

X
CD
00

I

O
X

00

I

O
X

CD

I

O
X

CD

O O

X X

O

O O O
X X X
t

O
00

EQ 00

O
X

Cq

O
X
CD
CD

CO

O
X
O

O
X
O
t

cD
O
CD

00
O
O

O
O

O
cD

O
O

O
cD O O O

O

X
O
CO

O

X

00

X X X
00
00

X X X
CO CD O

CDcaOO
LQ

I I

O O

X X
00 CD
O

I I

O O
I I

O O
I I

O O
X X

lA

QO

X
CD
00
cO

X
cD
CD

00

X
CD
00

X

00

I I

X X

t
CO

00

O

X
lQ

O
X

00

O
X

O
X
le
CO

00

O
X
00

X

I I I

O O O
X X X

O

I

O

X

Cg

I

O

X
CD

CO

I

O

X
t
00

00

I

O
X

CD

O

I

O

X

t
00

O
X
lA

EA

cD

X

CD

O
X

cb

t

O
X
O
O

cD

X
CD

00

X
CD
CD
CO

X
lQ
lQ

X
EQ

CD

cD

X
CD
O

O
X
00

O

O

X
CD
O
00

O
X
00

O
X
t
lA

t

O
X

cD

O

X
CD

00

O
X

O

O

X
00

Cg

O
X

00
CD

X X

O

X X
O t
CO CO

t

I

O
X

O

I I

O O
X X
lQ EQ
M CD

00 t

I I

O O
X X
00 O
CO t
CD

LQ

I

CD

X

CD

CO

I

cD

X

00

CD

I

O

X
t

CD

CO C)

X X

QO

O
X
CD
CD
O
CcI

O
X
Cb

O
X

00
CD

O
X

cb
CD

00

X

CD

X

t
cD

t

CO

O

CD

cD

cD

O

CccI

O

00

cDO

O

X
O

I

O

X
t
CQ

O
X
O
O

I

X

CO

O

X

EQ

O

X
t
00
CO

X
CD

I

O
X

O

X
t
CD

cD



848 H. MINOO, C. DEUTSCH, AND P. HANSEN

At

U
Q

0

'a

V

8

~g
cd

V

0
cd

g

8

0
cd

g

II

Cd

QQ

g
CI)

~~
Q

e tel

CLI0
Q

0
N

Q
~~
0
Q
dI

I

Qy

g
O

I

C, bO

~a
Q

I

~v bG
CO

g

CO

00
Cb

00

00
Cg

00
O

O

I I

O
X

Cgl
00 g

I
cD

X

I

X

00 ~ CO

4

Cb

X X X
O 4
lQ l

I IOOO
X X X

CD
00
cO

I

X X X
O
C0 O CCI

X X
QO 00

CD

C4

LCJ Cf

X
00
CD

cG

Cg

Cf

X

CIO

CO
4

I I

O O
X X

led

Cg

X

cD
00 t

X X
O
00

X X

00
CG

X X

N O
X
t
CO

CO

O O O
X X X

LQ
cD

X

Cb
Cb

CO

O O
X X

00

X X
CO

00

X X X
Cb CO Ch

CV ~ CO

O cD

X X X
CO M t-
O LQ

X

O
00

„8
Q

I

C'

g- 6

I

p
Q

X X

CCI

t
00 CD

I I

X X
LO

c0
QO

O O
X
t

X X
CG
Cb
t

I

X

O
X X

CG

CD
LA Cg

Cb

I

X

I
CD

X

00

C4

O
X

Cb

C)

X
lD

I
CD

X

00

O
X

X X X
QO

Cb

CCI 00

I I I

O O O'

X X X
CFi t
QO
O 00 CD

Cg

X X X
t

Cg
Cg

~ ~ ~

Clh

cD «D

X X

00
M

00

I

X X
EC
LO

00 LD

X X

Cb 00

"T 7 IOO OOOO
X X X X X X
cO Cq ea ~ ~ aO

cy cu Cb m t O
co

Al

C4
V0

0
cd

cd

0

U

~o

8

cd

V

0

0
oral

F
V

Q

8

CLI

0
Cd

g

II

cd

S

Q0
Q

0
CQ

cd

Q
~~
0
Q

W

ge cow

8

8
Q

I

LO + {g) 00 H O
00 00
O C4

0000m~
0 4

CD

CQ
lQ
CD
QO

I I I

O O cD

X X X
~cOO
t

t

lC Cb

1 ~

LA

QO
4 4

O O

X X
cd

CO

~ cn m

00

Cb M 00 CO

Cb W C4

Cg ~ cG CO
lQ t CO

Cb

I

00 O
X
00

Cb ~
I
O

X

X X X
QO LA
Cb O t
lQ

Cf

X X X
Cg QO
C5
00

I
O O
X X

CO
Cb 00

Cg

I I

O O
X X
t O
cO cO

t

LO
00

O O O
X X X

00 O CO
CC O
rl t

X X
lQ
00 00
O

X X

C4
Cg O

O O
X X

Cg 00

X X

C5
O

X
CD

EQ

O
X X X
t WCO
00 O CO

O

X X
CO CD
00 00
O

X X
00

O
Cg

O O
X X

00
O

Cg

X X
CD
00

c0

X X X

t CO C5
QO

CD

X X

4a

O O
X X

O
CV

cD O

X X

O t
CO

aa
cD cD

X X
00 Cb

I I I

O O O
X X X
t

QO
CIO

I
O O
X X

CA
00 00

O
I

O O
X X

00

I I
cD

X X

ao M

I I

O O
X X

00

Cg

O O O
X X X

t Cb O
e4

4 4 ~

cQ

X X

Cg

Cg

X X
t

lA

O O
X X

CJb QO
«D

c

O O
X X

t O
~ 4

777'f 71OOOOOO
X X X X X X

LQ LO
CG Cq W M t

t CO ~ t

O
cD

O
00 Cb

O O

cD
LQ CD t 00 C55 m Cu M W CO

O O O O O O



14 ELECTRONIC TRANSPORT IN DENSE FULLY IONIZED HYDROGEN 849

TABLE V. Electronic transport coefficients at T= 10 K. S(k) was obtained from the theoretical expression at the
long-wavelength limit.

0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.j.8
0.20
0.22
0.24
0.26
0.28
0.30
0.32

+i
(cm 3)

3.274 x 1027

6.396 x 10"
1.105 x f 0
1.755 x 1p

2.620 x f 0
3.730 x 10
5.117x 10"
8.842 x 10'
1.404 x 10
2.096 x 10
2.g84 x10"
4.094 x 1p

5.449 x 1029

7.074 x 10
8.994 x 10
1.123 x fp
f.382x fp
1.677 x10

(cm)

4.177 x 10 '

3.342 x 10 '

2.785 x f 0-io

2.38V x 10-"
2.089x fp '

f.857 x fp '
1.6V1 x 10-"
1.392 x 10
1.194 x 10
f.Q44 x fp
9.283 x 10
8.355x fp "
7.595 x j.p
6.962 x 10
6.427 x 10
5.968 x fp
5.57P x 1P
5.222 x 10

0'e

(n 'cm ')

3.4fg xf0
6.464 x 10'
1.096 x fp
1.721 x108
2.555 x 10
3.631 x f p8

4.984 x f 08

8.668 x 10
1.391 x 10
2.102 x 10
3.034 x 10
4.221 x 10
5.698 x 10
7.503 x 10
9.673 x 10
1.225 x fp"
1.527 x 1P

1.877 x 10'

K
(W m-' K-')

8.351 x 109

f.579x f0&0

2.677 x 10
4.204 x 10
6.241 x f0'
8.870 x 10'
1.218 x j.p"
2.f 17 x f Qi'

3.39V x 10"
5.135x 10
v.411 x 10"
1.031 x 10"
j. .392 x 10'2

1.833 x j.p"
2.363 x f0~2

2.992 x 10'
3.729x fp
4.585 x 10~

K
(w -&K-)

8.349 x10'
1.578 x 10'
2.675 x 10
4.200 x 10
6.233 x 10
8 ~ 855 x 10'
1.215 x10"
2.111x 10~~

3.382 x f Qi

5.103 x 10"
7.350 x10"
1.020 x 10"
1.374 x 10
1.803 x10"
2 3j.V xf0"
2.922 x f 0~2

3.627 x 10
4.439 x 10~

~e
(P)

293.9
861.3
2094
4467
8657

1.558 x 10
2.644 x 10
6.648 x 10
1.459 x 10
2.898 x j.p

5.328 x 10
9.21 j, x 10
1 ~ 515x 10
2.390 x 10
3.642 x 106

5.384 x 106

7.757 x f0
1.093 x 10

Q
(@V K )

814.3
523.0
363.9
267.7
205.1
162.1
131.3
91.07
66.83
51.09
40.30
32.59
26.88
22.55
19.18
16.50
14.35
12.59

tions are well within the region of validity of the
NFE model.

2. Thermal conductivity and conductive opacity

The inclusion of the inelastic electron scattering
effects introduces non-negligible corrections to
the electronic thermal conductivity and hence to
the conductive opacity (see Tables II-VI). A com-
parison is made between K, (solid curves) and K',
(dashed curves) in Fig. 4, where K, is obtained
from the Wiedemann-Franz relation (15) and K,
from expresssions (17) and (18). The factor o.„
given by expression (18), represents the deviation
of the Lorenz number from the ideal Sommerfeld
value, due to the inelastic electron scattering ef-
fects. As can be seen from the values of n, given
in Tables II-IV, the contribution to K, from the

inelastic scattering of electrons becomes im-
portant at higher densities and lower tempera-
tures.

In Figs. 5 and 8, our results for the conductive
opacity are compared with those given by Hubbard
and Lampe (HL).' K, and K, are computed, re-
spectively, from K, and K, using expression (19).
Our results, in the region of applicability of the
NFE-OCP models, should be more accurate than
those of HL for the following reasons:

(a) The values that we are using for the structure
factor are much more accurate than those used
by HL.

(b) The screening effect of the electrons is in-
cluded explicitly in our calculations. In fact, the
important contribution of the electron screening
is illustrated in Fig. 8, where the curves K, and

TABLE VI. Electronic transport coefficients at T =10 K. S(k) was obtained from the theoretical expression at the
long- wavel ength l im it.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2
3

(cm 3)

5.117x 10
4.094 x 10
1 .382 x 10
3.275 x fp
6.396 x 10"
1.105xfp
1.755 x 10"
2.620 x 10"
3.730 x fp
5.f f7xf0
4.094 x 10"
1.382 x f 0~0

(cm)

1 .671 x10-'
8.355xfp '0

5.570 xfp "
4.f77xfp '0

3.342 xi 0 '0

2.785 x 10 io

2.387 x 10 '0

2.089 x 10 &0

1.85v x 10-"
1.671 x 10 '
8.355 x 10 "
5.570 xfp "

ae
(0 ~cm ~)

8.707 x fp
6.000 x 10
f.969 x f 0
4.687 x j.p

9.298 x 107
1.639 x 10
2.657 x 10'
4.050 x 10'
5.885 x 108

8.229 x f 08

7.537 x 10
2.690 x 1p'

z',
(W m-' K-')

2.f27x f07
1 .466 x108
4.809 x f 08

1.145 x 10
2.271 x 10'
4.003 x j.p
6.491 x fp
9.894 x f0~
1.437 x f 0'
2.010 x 10'
1.84j. x f 0~~

6.571 x f Oi~

K
(Wm-' K-')

2.127 x 107

1 .465 x 10
4.800 x 10
1.141 x 108
2.257 x 10
3.963 x 10'
6.397 x 109
9.696 x 10'
1.399 x fp"
f .942 x 10'0

1.546 x j.p"
4.392 x f0"

te
(P)

0.5485
14.71

109.6
472.7

1499
3894
8804

1.795 x 104

3.380 x fp
5.973 x 104

2.7f8x f06
2.669 x 10

Q
(VVK ')

1215
310.8
138.5
77.69
49.49
34.17
24.95
18.97
14.89
11.98
2.766
1.107
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K, (e = 1) represent our results using the OCP
structure factor. The curves K, are computed
with U(k) from expression (C3) combined with

(C5) and (O'I) for the dielectric function, while
the curves K, (e= 1) are obtained by putting &(k)
= 1 in (C3) for U(k) and hence disregarding the
electron screening. Although in Ref. 7 the expres-
sion used for the scattering potential in the region
of interest is not given explicitly, it seems that in
this region the HL computations are based mainly
on a previous work by Hubbard, where an expres-
sion analogous to (C3) with e(k) = 1 was used [see
Ref . 8, Eq. (19)] .

(c) As was stated above, we include in our cal-
culations the effects of inelastic electron scattering
from the ionic density fluctuations.

The results given by Stevenson and Ashcroft'
(SA) for the conductive opacity are also included
in Fig. 8. The discrepancy between the SA results
and ours might be attributed to the uncertainties of
the temperature dependence of the hard-sphere
model, as was discussed in Sec. IV and illustrated
in Fig. 2 for the electrical conductivity.

APPENDIX A: STRUCTURE FACTOR OF THE OCP

The excess thermodynamic properties and the
equilibrium distribution functions of the classical
one-component plasma depend only on the dirnen-
sionless parameter

I' = P(Ze)'/r, ,

where r; is the ion sphere radius. In Ref. 4 the
pair distribution function g(r) was calculated
"exactly" in the range 1 ~ I'~160 by the Monte
Carlo method. The structure factor is then im-
mediately obtained by the Fourier transform

complemented by the Ornstein-Zernike relation
between g(X) a.nd C(X),

g(X) —1=C(X)+ — [g(X') —1]C(~X—X'
~) dX' .

(A4)

Here C(X) is the direct correlation function, and

guc(X) denotes the pair distribution function cal-
culated by the Monte Carlo method for X» —,'L.
Note that n, r',. =3/4v. Equations (A2)-(A4) form
a closed set which can be solved iteratively like
the usual integral equations. The ansatz (A3) is
justified by the fact that in the OCP C(X) tends
rapidly towards its Debye-Huckel limit —P(Ze) /
r= —I'/X, for all values of I'. The Monte Carlo
calculations have shown that C(X) differs from
—I'/X by less than 1% at a distance of the order
of the mean inter-ionic spacing (X=1.6). For
X= ,'L the —difference between C(X) and its asymp-
totic form is completely negligible, so that the
ansatz (A3) is practically exact. S(q) as deter-
mined by this method is tabulated for several
values of I' elsewhere. "

For I'~ 1 the structure factor can be calculated
quite accurately by solving the HNC integral equa-
tion."

In the range q «2, S(q) is everywhere very close
to its exact long-wavelength limit given by (8)."

APPENDIX B: STRUCTURE FACTOR FROM THE HARD-

SPHERE MODEL

The integral equation of Percus and Yevick for
the pair distribution function has an exact solution
for the special case of the hard-sphere model. ""

The structure fa.ctor is obtained" in the form

[S(u)] ' = I+E(u)[sinu f(u)+cosug(u)+ h(u)],
S(q) =1+3 [g(X) —1] X ' dX, (Al)

(B1)

where q= kr, and X= x/r. , However, since the
simulated systems are of finite size (a few hundred

particles in a cubic volume, with periodic boundary
conditions), g(X) is known only in the range X« ,'L, —

where L is the cube edge (L is typically of the
order of 5). At large values of I', g(X) has pro-
nounced oscillations which are not yet sufficiently
damped for X= &L, so that large truncation errors
occur in the evaluation of (Al). Consequently an
extrapolation scheme is needed to obtain accurate
values of g(X) in the range X & ,L. We have used-
a method inspired by a similar scheme devised by
deerlet" in the study of classical liquids. g (X) is
obtained for X & 2L by solving the set of equations

where the dimensionless variable u is connected to
the hard-sphere radius x„by the relation u= 2&x„.
A.s a function of the pa.rameters x and p defined by
x—= k/2k~ and p = r„/r, , the v-ariable u can be ex-
pressed as

u= (144vZ)' px . (B2)

The functions F( u), f(u), g (u), and h(u) in formula
(Bl) are

E(u) = 24(p/u')',

f(u) = u[u'(o. + 2P+ 4y) —24y],

g (u) = —u (o. + P+ y) + 2u'(P+ 6y) —24y,

g(X) = g (X), X —,'L, —

C(X) = —I'/X, X & L, —

(A2)

(A3)

h(u) = —2Pu +24y,

and a, p, and y are different functions of p,
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I II I
]

1 I I I I I I I

I

I I I I I I I I U(k) = Uo/e(k), (C3)

1.0—

S

(c4)

where U = —4vn, e'/k' and the dielectric function0

e(k} is given by

e(k) = (k'+ q ~r F)/k' .

A more accurate form of e(k) is obtained in the
framework of the random phase approximation by
Lindhard and Bardeen. Their result is"

0.5— e(k) =
I
k'+q TFf(k/2kF)]/k',

1 x~ —1 1 —x
f( )= —+

2 4x +x

(c6)

(C 6)

I I I I I I I II

10 r; /th 100

FIG. 9. Values of the hard-sphere structure factor
for five values of x = &/2k&, as a function of r; =

This expression is valid rigorously only in a very-
high-density Fermi gas, when r, «1. At the lower
densities the exchange and correlation corrections
should be taken into account. This leads to another
expression for e(k) similar to the expression (C5),
where the Lindhard function f(x} is replaced here
b

1& r, /r„& 10 . (B3)

APPENDIX C: SCATTERING POTENTIAL AND DIELECTRIC

FUNCTION

In the simplest form the screened Coulomb po-
tential around a point ion, as first given by Mott,
is

v = —(ze /r) e 'T F"

where qTF= (4krlwao)' ' is the inverse of the
Thomas- Fermi screening length. In the Thomas-
Fermi approximation, U(k) is taken as the Fourier
transform of this potential,

U(k) = ' kre'/F(k + q &F)

or in the alternative form

(C 1)

n = (1+2P')'/(1 —P')4,

P = —6P'(1 —.'P')'/(1-P'),
r = -'P'(1+ 2P')'/(1 P')' . -

Figure givF' 9 gives as a function of p ' the behavior of
the structure factor for five values of x=0/
as calculated from formula (Bl) with u given by
(B2). It can be seen from these calculations that

S(x) ~ 0.992,
when r. ~ 10m„and 0 ~ x ~ 1, andi

S(x) -0,
w en r,. -r„,h, . - so that in the transport coefficients
given in Sec. III the structure factor obtained from
the hard-sphere model has a contribution in the
density range defined by

where

f(x)
1 —(qr F/2k F) f(x) (2x + g)

(C7)

g= (1+0.0262r, )
' .

We follow closely the Hubbard presentation' of
the Chester-Thellung version' of the Kubo formal-
ism for the linear response theory.

The time-independent transport coefficients G, ,
of the electron gas are isotropic tensors defined
by

J= eG»(eE)+ eG»(VT)/T,

Q = —G» (eE) —G» (VT}/T,
where J is the electric current density, Q is the
electron energy crossing unit area per unit time,
and E is the electric field.

In the following, we shall restrict ourselves to
S,, which are the diagonal parts of the tensors G,,
The electron thermal conductivity is then explicitly
given by

K, = (S„S„—Si,S„)/TS, (»)
so that Q= —K, VT when J=O.

In the Lorentz model, the single-electron Ham-
iltonian reads

(Dl)

(D2)

Nq

H= P — Q e'~r-r. ~-', (D4)
2@i ]

where the sum is taken over all of the N,. protons
located at r . p and r are the momentum and posi-
tion operators of an electron. K, is now evaluated
with the weak-coupling approximation, such that

APPENDIX D: CHESTER-THELLUNG-HUBBARD FORMALISM
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the H eigenstates may be taken as plane waves for independent electrons diagonalizing the kinetic term.
Chester and Thellung' have shown that the Kubo expressions for the G,, may then be obtained from

the generating function

Vd p Vd3p' ~f
(2 @ (2 @)

(D5)

where E=p3/2m, . The sums run over spin states. f=(1+e3( "') ' is the Fermi distribution. P, (p', s', p, s)
denotes the probability at time t that an electron is in state ~p', s'), given that an electron was placed in
state ~p, s) at t=0. It is obtained as a solution of the master equation

3 II—P, (p', s', p, s) = g, 3 W(p', s', p", s")P,(p", s",p, s,
i27TrV)

—P, (P', s', P,s), @)3
W(p", s",P', s'),

SI3
(D6)

with W(p', s', p", s") the transition probability per unit time for an electron to change from
~

p", s") to
~p', s'). The G, , are then given as

G„=Z(0), G, =G, =—d&(y) '

0

Integrating Eq. (D6) over time gives

d'~(y)
G (D7)

—(2vk)36(p' —p)6„,V '= g
S t ~

3 II

(2 @)3
W( p', s', p", s")I ( p", s",p, s)

—I(p', s', p, s)g Vd p"
(27p@)3 (P p

s )P ps (D8)

where

I(p, s', p, s) = dtP, (p', s', p, s),

with

P, „=0, P, =(27pk)'6(p' —p)|)„.V
The electron-ion interaction

N.
e' r —r

taken in the first Born approximation (weak-cou-
pling) yields the probability

in terms of the equilibrium ionic pair distribution
function. The above average is meaningful as long
as the electron mean free path remains much
larger than the mean ionic correlation distance.
Thus we may look for a solution of Eq. (D8) in the
form

f(P', s', p, s)=6(P'-P) 6„/&,(P)P, (h), (D8)
1=0

where t'=(p p')/P' and P, ($) is the Legendre poly-
nomial. Only the l =1 term is expected to survive
the angular quadrature in Eq. (D5). Inserting Eq.
(D9) into (D8) and using

=2vm (4'')' "' e'"'(' 'a '
kpV3

with k=(p' —p)k ', and the corresponding canoni-
cal average

(W(p', s', p, s)) = 2 em, 6„, , N, S(k),(4") 6rp -p)
SpV

where

S(k) =1+N,k(k).
k(k) = V ' d'rg(r)e'~',

6(p' —p)=, Q (2l+1)P, (&),
fM= 0

we get

p(2 h)'p ' d(s(k)) '
83'3m e N, 1 —$

Measuring momenta in units of x, we obtain the
dimensionless momentum q =kr, , with 1 —$ =g'q3/
2x',.p'. The transport generating function becomes

8h 3g,.
(y) =-27. ..,m

x dq q' —G(q) exp, , (D10), af —@ex
BQ' 2r',.rn,
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where n, =fq, /V, Z is the unit tensor, and

,S(q') 1 4o.
G(q) '=2 dq', =—ln 1+, (D11)q' n 3&

where the "hydrodynamic" structure factor [Eq. (8)
in the main text] was used. Specializing Etl. (D10) to
completely degenerate electrons and restricting to
the first term in the sf/sq expansion, we obtain

with

C, = (2')'n, /2Vv'm', e',
6C2 =(m,ksT/h')'(2nq) 4~',

C, =5'/2m, r', .

Equation (D3) is therefore given as

Sii -CiqF G(qr)

Sia=S2i CiCAG(qr»

S22 CiC'q'r'G(q~»

(D12)

f~, =[(2va)' f;/16m', e'] G(q, ) n, T,

which is nothing but the Boltzmann-Ziman equation
(9) in the main text.
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