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Electronic transport is considered in dense fully ionized hydrogen. The equivalence of the Boltzmann-Ziman
approach with the more deductive Kubo formalism for weak electron-ion interactions is established. The ionic
structure factors obtained from recent and improved Monte Carlo simulation of the classical one-component
plasma are used to obtain the linear time-independent transport coefficients. The effects of inelastic electron
scattering from the ionic density fluctuations are taken into account. The electrical and thermal conductivities,
the conductive opacity, the bulk viscosity, and the thermoelectric power at different densities and temperatures
are tabulated. These results are compared with previous calculations.

I. INTRODUCTION

We are concerned here with the problem of cal-
culating the electronic transport coefficients of
dense conducting fluids consisting solely of mas-
sive point ions and a neutralizing background of
fully degenerate weakly interacting electrons.
When the electron mean free path is larger than
the ionic binary correlation length, the nearly-
free-electron (NFE) approximation applies, and
the various time-independent transport quantities
may be easily obtained within the framework of
the standard Lorentz model, where the electrons
are elastically deflected at the surface of the
Fermi sphere by the ion density fluctuations. Usu-
ally, it is sufficient to consider the weak electron-
ion interaction in the Born approximation, while
the strong ionic equilibrium correlations are taken
care of through the binary structure factor S(k).
This is essentially the basic content of the well-
known Boltzmann-Ziman' formulation of electronic
transport, extensively used in liquid-metal phys-
ics. It has been extended?® to the critical domain
of alkali-metal vapors with the use of a hydro-
dynamic approximation for the generalized struc-
ture factor S(k, w) to explain the sudden breakdown
of the metallic conductivity in the vicinity of the
liquid-vapor critical point. The same approach
has also been recently applied® to the electric
resistivity of fully ionized liquid metals with hard-
sphere ionic structure factors.

In this work, we address ourselves to an exten-
sion to other electronic transport coefficients,
such as thermal conductivity, conductive opacity,
thermoelectric power, and bulk viscosity. Our
calculations make use of the ionic structure factors
obtained by one of us®* from Monte Carlo simula-
tions for the equilibrium properties of the one-

component plasma (OCP) model in a neutralizing
background, in terms of the dimensionless clas-
sical plasma parameter I'=3(Ze)?/r;, where
7;=(£mm,;)"'/? is the ion sphere radius, 8= (ksT)"",
and #n; is the ionic number density.

The present transport calculations are basically
motivated by their relevance to the computation of
the physical properties of the deep interior of
giant planets such as Jupiter and of the white-
dwarf stars. The connection with laboratory phys-
ics lies in our estimate of the electronic thermal
conductivity, which is essential to the energy bal-
ance of highly compressed deuterium plasma® (see
Fig. 1), obtained from laser compression in order
to reach charge densities and temperatures cap-
able of sustaining nuclear fusion reactions.
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FIG. 1. Region of simultaneous validity of both NFE
and OCP models. « =kgT/ep, B=ecp/m,c? y=kgT/
mgc?, 8=A/r; . Subregions A and B correspond to init-
ial and final states of systems under laser-driven fusion
conditions.
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The application to dense alkali vapors (Na, Cs,
etc.) in the critical regime, or in the electrode
region of some discharges (cathode spots in arcs
and sparks, exploding wires, etc.) will be given
further attention in a subsequent work.

The paper is organized as follows: In Sec. II the
conditions of validity of the NFE approximation are
explicitly given. The Ziman formulation is detailed
in Sec. II for the various linear electronic trans-
port coefficients, and the equivalence of the Boltz-
mann-Ziman approachwiththe more deductive Kubo
formulation for weak electron-ion interactions is
also pointed out. The choices of the effective elec-
tron-ion interaction U(k) and of the ionic structure
factor are considered in Sec. IV. The numerical
results are presented in Sec. V and discussed in
Sec. VI.

II. NFE MODEL FOR ELECTRON TRANSPORT

In order to be able to use the NFE model one
assumes the following:

(a) The temperature of the system is such that
the electron gas remains degenerate:

as=kgT/€x<<1 or T(K)<6X10°/7Z, (1)

where 7, is defined as usual, »,=%,/a,, and
v, = (3/41m,2)’/3 is the radius of a sphere that con-
tains one electron, a, is the first Bohr radius,
and €F=h'2(31r2ne)2/3/2me is the Fermi energy.

(b) The electron density is not too large, so that
the electrons can be treated nonrelativistically:

B=€p/mye?<<1 or n,<1.66X10% cm™. (2)

(c) The Lorentz gas model is applicable, i.e.,
the electrons interact only with ions. In a highly
degenerate system the electron-electron interac-
tion can be neglected as a result of the exclusion
principle. At higher temperatures the electron-
electron interaction could become important.®

(d) The electron scattering cross section from
the ionic system can be calculated in the first
Born approximation. This approximation is ade-
quate wherever’

/rei S‘Xei)
where
v, =2e%/€x and X,;=N/(2m,€p) 2.

The critical density for the validity of this approxi-
mation is then defined by

r.<1/Z. (3)
(e) The mean free path of the conduction elec-

trons A, is sufficiently large,

Ao (7e<21r>1/3
Ze> - = >1 4
v 1 or 21r7$00 37 , (4)

where o, is the electrical conductivity and or(,=e2/
ay7, viewed as the atomic unit of the electrical
conductivity,® has the practical value of 4.6 X 10*

€ 'cm™. The condition on A, implies that the
conductivity of the system is sufficiently high such
that

0,>5.712X10°Z"3 /7, @ 'cm™ . (5)

III. TRANSPORT COEFFICIENTS

A. Basic considerations

We pay special attention to the simple situation
with completely degenerate electrons while the
ions remain classical. The interest of such a
model for the computation of thermal and electric
properties in dense and high-temperature plasmas
has long been recognized.*® However, two distinct
approaches, both using the Lorentz model of weak-
ly interacting electronic plane waves elastically
diffused by the classical ions, are considered with-
out any apparent appreciation of their relative
merits and possible connections between them.
The first one® relies on the deductive Kubo for-
malism® (see Appendix D for an explicit deriva-
tion), while the second one (Ref. 3 and references
cited therein) makes use of the Boltzmann equation
for the electronic transport of liquid metals.! Our
purpose is to emphasize that both methods produce
identical results for the electronic thermal con-
ductivity and the other related linear electric
transport coefficients, provided that the above-
mentioned requirements for the use of the Lorentz
model are satisfied. To save space, let us start
from the usual Ziman expression for the thermal
conductivity K 2,' restricted to the elastic approx-
imation fulfilling the Wiedemann-Franz relation,

PKY/T =351%(kg/€)?, (6)

where p is the standard Ziman expression

mz 2kRR 5 .
=—— e
p= 12n3ﬁ3e3nef0 dr R |UR)|2S(k) (7

for the electron resistivity given explicitly in
terms of the Coulomb electron-ion interaction
4mn,e®/k?* with the dielectric constant put equal to
1.8

Vieillefosse and Hansen'! obtained an analytical
expression for the ionic structure factor S(k) in the
long-wavelength limit. Their result is

2

q

S(CI)= 3F+q2(K"T/KT) )

®)

where g =k7; is the reduced wave number, K=
(1/n;)(8n;/3P)  is the isothermal compressibility
of the OCP, and K% =8/n; is the ideal-gas com-
pressibility. K, can be obtained from Egs. (11)
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and (20) of Ref. 4. The usual high-temperature
(Debye) approximation is recovered for K,=KY.
Collecting Eqs. (6)-(8) one readily obtains

K < 21h)’n, akyT

= 9
¢ 16mge” In[1+(4aq/3T)]’ ©

where qp=kpv;, kp= (;’;-7!)‘/3/78, and a=K2/K,.
Equation (9) is nothing but the result obtained from
the Chester-Thellung-Hubbard formalism detailed
in Appendix D.

Finally, it is worth pointing out that the above
result is a special case'? of the identity of the
Kubo and Boltzmann formalisms when the inter-
action is weak, or possibly strong but still local-
ized.

B. Linear electronic transport coefficients

In the framework of the Boltzmann-Ziman formu-
lation of electronic transport, all linear time-
independent transport coefficients are essentially
determined by the static structure factor of the
ions S(k) and the matrix element of the screened
electron-ion interaction U(k), as can be seen from
the following expressions.

1. Electrical conductivity

The electrical conductivity is given by
0,=n,e’T,/m,, (10)

with 7,=2), /vy, Where vy is the Fermi velocity,
T, is the collision time, and A, is obtained from

2r
A;1=27m,.f (1 - cosh)I(6)sinf db . (11)
0]

In this formula I(8) is the differential scattering
cross section of each ion and is to be calculated
in the first Born approximation. As originally
shown by Ziman,' the electrical conductivity o,
based on these assumptions, can be written in the

following form:
R/ F k )3 k
o) 3() &) (i)

o 127 fl
ol =
¢ " ne*vin; Jy
(12)
In order to avoid the repetition of lengthy ex-
pressions, it is useful to introduce the following
notation:

(Foon= [ axx |06 ; (13)
0
with this notation Eq. (12) takes the form

0';1:(1277/%82’1)%715) <S(x)> ’ (14)
where x=k/2kg .

2. Thermal conductivity and conductive opacity

The electronic thermal conductivity K9 is related
to the electrical conductivity by the Wiedemann-
Franz law

K(=L,To,, (15)
where the Lorenz number L, has the value
Ly=31%(kg/e) . (16)

As Rice’ has pointed out, the inelastic scattering
of electrons from ionic density fluctuations could
modify the Lorenz ratio. Taking into account this
effect, the corrected thermal conductivity K, may
be written in the following form:

K,=K)/(1+a,), 1
with

a, = (6/7%)y (1 - 3x%)/(Skx)) (18)
and

y =23 /2M kT, x=Fk/2kp.

M, is the ionic mass and the angular brackets are
defined in (13).

A useful coefficient, which plays an important
role in the energy transport formulation of the
stellar interior and particularly white-dwarf stars,
is the conductive opacity K. It is connected, as
usual, to the thermal conductivity by the following
relation'®:

Kc=£3§'NOaT3/MiniKe’ (19)

where N, is Avogadro’s number and a the Stefan-
Boltzmann constant.

3. Electronic bulk viscosity

The electronic bulk viscosity 7, is given by
nez'g-neeFTn’ (20)

where 7, is, in general, different from 7, of Eq.
(10). Following Baym* we write the ratio 7,/7,
as

Ty 2epme0, K= x*SE)

T, 5e’n, Sx))

The electronic bulk viscosity is then obtained from
this equation by inserting o, from formula (14),

- 450 - x*)Stx))
e nein,

(21)

. (22)

4. Thermoelectric power and the Hall coefficient
The thermoelectric power @ is represented
through the dimensionless parameter £,

_ kp [90,(R)
s—z—ﬂ%(——ﬂ—ak )F, (23)
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ature dependence of the packing fraction y(T),

y =577 'n; = (r,/7,)°,
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by
here
Q= (7*k3T/3e€,)t. (24) v
From Eqgs. (23) and (14) it follows that'®
2
pog_ S@ke) |UCRD)|" (25)

25(x))

When the Fermi surface is not distorted and
remains spherical, the Hall coefficient R and the
Hall mobility p are given by

R=1/en,, p=|R|o,. (26)

IV. CHOICE OF S(k)'AND U(k)

A. Structure factor

As can be seen from Sec. III, in order to evalu-
ate the transport coefficients at different tempera-
tures, in the framework of the NFE model, it is
necessary that the structure factor provide this
functional dependence in 7. In their calculation
of the electronic conductivity in fully ionized liquid
metals, Stevenson and Ashcroft® used the struc-
ture factor appropriate for a fluid of hard spheres
in the Percus-Yevick approximation'® (Appendix
B). Although this choice may be adequate at the
liquid densities, its use is in general unsatisfac-
tory for the following reasons:

(a) This procedure requires an independent
determination of the temperature scale, since
hard-sphere properties depend only on density,
and one is led to derive independently the temper-

.n30

and 7, is the hard-sphere radius. Although y(T)
can be obtained from the slope of the curve of the
effective ion-ion interaction energy,® it is assumed
that y(7) decreases on heating as (7)™, where v
is an adjustable parameter.'®

(b) This variable parameter v is usually adjusted
to fit the experimental results.

(c) Its range of applicability is limited to the
fluid densities such that »,<»;<107,, as is shown
in Fig. 9; this is discussed in more detail in Ap-
pendix B.

We propose instead to choose, for the ionic
structure factor, the structure factor of the class-
ical one-component plasma (OCP), i.e., a system
of point charges in a uniform background of con-
duction electrons. The radial distribution function
of this system has been recently determined very
accurately by Monte Carlo simulations* over an
extensive range of thermodynamic states. In Ap-
pendix A we show how the structure factor can be
extracted from the Monte Carlo data with a very
high degree of accuracy. The advantages of this
procedure are that it leaves no adjustable param-
eter, it provides explicitly the temperature depen-
dence of the transport coefficients, and the calcu-
lations can be extended to a larger density range,
i.e., to the region where r;<7,. The comparison
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FIG. 2. Electrical con-
i 1 ductivity o, of hydrogen at
different temperatures
and densities, with U(k)
obtained from expressions
(C5) and (C7). Curve
OCP: S(k) from OCP. In
each curve points 1 and

2 correspond to the condi-
tions 6=1and ¢ =1, re-
spectively. Curve HS:

q S (k) obtained from hard-
4 sphere model. 7, is the

| hard-sphere radius and

\ A, the mean free path of
the conduction electrons.
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FIG. 3. Electrical conductivity with different U(k) and with S (k) from OCP. Curve U.y: U(k) for the dielectric func-
tion, taking into account the exchange and correlation corrections. Curve U;: U(k) for the Lindhard function. Curve

Upgt U(k) for the Thomas-Fermi approximation.

between results obtained with the structure factors
of the OCP and of hard-sphere models is made in
Fig. 2, where the electrical conductivity of hydro-
gen at different densities and temperatures is
plotted. o, was obtained from (14) with U(k) from
expressions (C5) and (C7). Curves OCP and HS
correspond to S(k) from, respectively, the OCP
and hard-sphere models. In these calculations the
hard-sphere radius 7, varied from 10™° to 10" cm.
As can be seen from Fig. 2, at a given 7,, which
may be viewed as at constant temperature, the

use of S(&) from the hard-sphere model limits the
calculations to »,>7,, and as v, approaches 7, the
electrical conductivity diverges, which is not
physically satisfactory.

B. Pseudopotential

The choice of U(k) is based on pseudopotential
theory, and a brief discussion of the scattering
potential and the dielectric constant is given in

TABLE I. Maximum relative errors made on o, at
different temperatures, when Uy, is replaced by Thomas-
Fermi (UTl ) or Lindhard (U, ) functions (r < 1).

T (K) 10" 10° 108 107 108
(0%~ o) /oex +0.02 +0.04 +0.04 +0.02 +0.003
(0%*=oTF) /o 0.1 -0.07 -0.04 -0.02 —0.006

Appendix C. Figure 3 shows the electrical con-
ductivity obtained with different U(k) and with S(&)
from the OCP. Curves U,g, U;, and U,, corre-
spond, respectively, to the expressions (C4), (C5),
and (C7) for the dielectric function. As can be
seen from Fig. 3, when 7 <1, the different expres-
sions for U(k) give sensibly identical results.
Table I illustrates, for <1, the maximum rela-
tive errors made on ¢, when the exchange and cor-
relation corrections are not taken into account and
U,, is replaced by the Lindhard function (U,) or by
the Thomas- Fermi approximation (Uyg). In this
table ¢®*, ¢!, and ¢™F correspond, respectively, to
Uey» U,, and Ugg.

V. NUMERICAL RESULTS FOR DENSE HYDROGEN

PLASMAS

Different conditions imposed by the NFE and
OCP models define the boundaries of a region in
the T— 7, (or T -n,) plane where both models re-
main simultaneously valid. This region is shown
in Fig. 1. The line 6=1 is due to the fact that in
the framework of the OCP model the ions are
treated classically. This implies that

60=A/7r;<<1 or »(zZ'/3%>32.87T"1/2, (27)

where A= (2n#%/M kzT)*/? is the thermal de Broglie
wavelength. As can be seen from Fig. 1, almost
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under the laser-driven fusion regime lies inside
this region. The subregions A and B represent,
respectively, the initial and the final states of such
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The general behavior of the electronic transport
coefficients of hydrogen at different densities and
temperatures is shown in Figs. 2—8. The elec-
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FIG. 6. Electronic bulk viscosity 71, of hydrogen.

trical conductivity was obtained from Eq. (14),
the thermal conductivity from (15)-(18), the con-
ductive opacity from (19), the electronic bulk
viscosity from (22), and the thermoelectric power
from (24) and (25). In these calculations we used
U(k) as defined by Egs. (C3) and (C7) and S(k) of
the OCP. In each curve the points 1 and 2 corre-

spond to the conditions 6=1 and a =1, respectively.

The results of these calculations, are given in
Tables II-1V for T=10%, 107, and 10° K. For I'>1
the structure factor was obtained from the Monte
Carlo data, while for I'<1 it was obtained from
the hypernetted-chain (HNC) integral equation
(Appendix A).

The simple long-wavelength limit of S(&), Eq.
(8), was also used to evaluate the transport coef-
ficients of hydrogen at different temperatures and
densities. Some of these results are summarized
in Tables V and VI for T=10°% and 10" K, respec-

0% 0% ni (cm®)
TP L A B e Ay
FZ = a=1 ‘ ! f “‘-
1000 = 0=
g.
i_
3L
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r “w
L >
o] S
L L I L B
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FIG. 7. Thermoelectric power @ of hydrogen.
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FIG. 8. Conductive opacity of hydrogen at different
temperatures and at two densities (p). Curves HL: re-
sults of Hubbard and Lampe; curve SA: results of
Stevenson and Ashcroft; curve K, : from our results
[with Eq. (C 7) for €]; curve K, (€ =1): our results with-
out the electron screening.

tively. A comparison between the approximate
results of these tables and the “exact” values of
Tables II and III shows that this approximation
is quite satisfactory especially for low values of
T.

VI. DISCUSSION

In general, the accuracy of the results given in
Tables II-IV depends mainly on the accuracy with
which S(%) is known. With the more accurate data,
based on extensive Monte Carlo runs,* it is ex-
pected that the overall error of these results
should be less than 1%. More specifically, the
following remarks, concerning the various trans-
port coefficients, are in order.

1. Electrical conductivity

In the computations relative to ¢,, the effects of
inelastic electron scattering from the ionic den-
sity fluctuations are not taken into account. In
fact, their contribution is negligible in this case.'®

The condition ), /7;> 1, pointed out in Sec. II,
defines the boundary of a region in the o, — 7,
plane, where the NFE model is applicable. This
limit is shown in Figs. 2 and 3 by the line A, =v,,
and as can be seen from these figures our calcula-
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TABLE V. Electronic transport coefficients at 7=10% K. S(k) was obtained from the theoretical expression at the

ELECTRONIC TRANSPORT IN DENSE FULLY IONIZED HYDROGEN

long-wavelength limit.

849

n; v o, KE, K Ne Q
r (em™®) (cm) (Qlem™) (Wm™TK™) (Wm-fx-l) (P) (uv K1
0.04 3.274 x10%7 4.177x10°10 3.419x107 8.351 x10° 8.349 x10° 293.9 814.3
0.05 6.396 x 10%7 3.342x10710 6.464 %107 1.579 %101 1.578 x10%° 861.3 523.0
0.06 1.105x10% 2.785x10710 1.096 x 108 2.677x10'0 2.675x101° 2094 363.9
0.07 1.755x 10?8 2.387x10°10 1.721 x108 4.204 x101° 4.200x101° 4467 267.7
0.08 2.620 x10%8 2.089x10710 2.555x108 6.241 x101° 6.233 %1010 8657 205.1
0.09 3.730x10%8 1.857x1071° 3.631 x108 8.870 x 1010 8.855x10!° 1.558 x10* 162.1
0.10 5.117x10%8 1.671 x10710 4.984 x108 1.218 x10!! 1.215x10!! 2.644 %104 131.3
0.12 8.842x10%8 1.392 x10710 8.668 %108 2.117 x10!! 2.111 x10!! 6.648 x10* 91.07
0.14 1.404x10%° 1.194x10710 1.391 x10° 3.397 x10!! 3.382x10!! 1.459x10° 66.83
0.16 2.096 x10%° 1.044 x10710 2.102x10° 5.135x10!! 5.103 x10!! 2.898 x10° 51.09
0.18 2.984 x10%° 9.283x10711 3.034x10° 7.411 x10!! 7.350 x 10!t 5.328 x10° 40.30
0.20 4.094 x10%° 8.355x10711 4.221 x10° 1.031 x101? 1.020 x10%? 9.211 x10° 32.59
0.22 5.449 x10%° 7.595x10 711 5.698 x10° 1.392 x 1012 1.374 x101? 1.515x10° 26.88
0.24 7.074 x10% 6.962 %1071 7.503%10° 1.833x101? 1.803x10" 2.390 x10° 22.55
0.26 8.994 x10°? 6.427x1071 9.673x10° 2.363x10!2 2.317 x10'? 3.642x10° 19.18
0.28 1.123x10%° 5.968 x 1011 1.225x10%° 2.992 x1012 2.922 x 1012 5.384 x10° 16.50
0.30 1.382 x10%° 5.570 x 1011 1.527 x101° 3.729 x10%2 3.627 x 1012 7.757 %108 14.35
0.32 1.677x10%° 5.222x107!! 1.877x101° 4.585x101? 4.439 x10"? 1.093 x107 12.59

tions are well within the region of validity of the
NFE model.

2. Thermal conductivity and conductive opacity

The inclusion of the inelastic electron scattering
effects introduces non-negligible corrections to
the electronic thermal conductivity and hence to
the conductive opacity (see Tables II-VI). A com-
parison is made between K, (solid curves) and K°
(dashed curves) in Fig. 4, where K? is obtained
from the Wiedemann-Franz relation (15) and K,
from expresssions (17) and (18). The factor a;,
given by expression (18), represents the deviation
of the Lorenz number from the ideal Sommerfeld
value, due to the inelastic electron scattering ef-
fects. As can be seen from the values of a, given
in Tables II-IV, the contribution to K, from the

inelastic scattering of electrons becomes im-
portant at higher densities and lower tempera-
tures.

In Figs. 5 and 8, our results for the conductive
opacity are compared with those given by Hubbard
and Lampe (HL).” K, and K° are computed, re-
spectively, from K, and K¢ using expression (19).
Our results, in the region of applicability of the
NFE-OCP models, should be more accurate than
those of HL for the following reasons:

(a) The values that we are using for the structure
factor are much more accurate than those used
by HL.

(b) The screening effect of the electrons is in-
cluded explicitly in our calculations. In fact, the
important contribution of the electron screening
is illustrated in Fig. 8, where the curves K, and

TABLE VI. Electronic transport coefficients at 7= 107 K. S(k) was obtained from the theoretical expression at the

long-wavelength limit.

nj 7 O Kg K, e Q

r (cm™) (cm) (Q7ltem™) (Wm™TK™) (Wm™TK™) (P) (VK™
0.1 5.117 x10% 1.671 x107? 8.707 x10° 2.127 x107 2.127x107 0.5485 1215
0.2 4.094x10% 8.355x10710 6.000 x10° 1.466 x108 1.465x108 14.71 310.8
0.3 1.382 x10%7 5.570 x10 710 1.969 %107 4.809 x108 4.800 x10° 109.6 138.5
0.4 3.275x10%7 4.177x10710 4.687 x107 1.145x10° 1.141 x10° 472.7 77.69
0.5 6.396 x10°7 3.342 x10710 9.298x107 2.271 x10° 2.257 x10° 1499 49.49
0.6 1.105x10% 2.785x10710 1.639 x108 4.003x10° 3.963%10° 3894 34.17
0.7 1.755x10%8 2.387 %1010 2.657 x108 6.491 x10° 6.397 x10° 8804 24.95
0.8 2.620 x10%8 2.089 x10710 4,050 x108 9.894 x10° 9.696 x10° 1.795x104 18.97
0.9 3.730 x10% 1.857 x10710 5.885x108 1.437 x1010 1.399 x 101 3.380 x 10* 14.89

1 5.117x10% 1.671 x10710 8.229x108 2.010 x101° 1.942 x101° 5.973 x10* 11.98
2 4.094 x10%° 8.355 10711 7.537 x10° 1.841 x10!! 1.546x 10! 2.718 x10° 2.766

3 1.382 x10%° 5.570 x10 711 2.690 x101° 6.571 x10!! 4,392 x10!! 2.669x107 1.107
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K_ (e=1) represent our results using the OCP
structure factor. The curves K, are computed
with U(k) from expression (C3) combined with
(C5) and (C7) for the dielectric function, while

the curves K, (e=1) are obtained by putting (k)
=1 in (C3) for U(k) and hence disregarding the
electron screening. Although in Ref. 7 the expres-
sion used for the scattering potential in the region
of interest is not given explicitly, it seems that in
this region the HL. computations are based mainly
on a previous work by Hubbard, where an expres-
sion analogous to (C3) with e(k)=1 was used [ see
Ref. 8, Eq. (19)].

(c) As was stated above, we include in our cal-
culations the effects of inelastic electron scattering
from the ionic density fluctuations.

The results given by Stevenson and Ashcroft®
(SA) for the conductive opacity are also included
in Fig. 8. The discrepancy between the SA results
and ours might be attributed to the uncertainties of
the temperature dependence of the hard-sphere
model, as was discussed in Sec. IV and illustrated
in Fig. 2 for the electrical conductivity.

APPENDIX A: STRUCTURE FACTOR OF THE OCP

The excess thermodynamic properties and the
equilibrium distribution functions of the classical
one-component plasma depend only on the dimen-
sionless parameter

T'=p(Ze)*/v,; ,

where 7; is the ion sphere radius. In Ref. 4 the
pair distribution function g(») was calculated
“exactly” in the range 1 = I'=<160 by the Monte
Carlo method. The structure factor is then im-
mediately obtained by the Fourier transform

S(q)= 1+3f (g0 - 1] S““’X

X?dx, (A1)

where g=Fkv; and X=7/v;. However, since the
simulated systems are of finite size (a few hundred
particles in a cubic volume, with periodic boundary
conditions), g(X) is known only in the range X =3L,
where L is the cube edge (L is typically of the
order of 5). At large values of I', g(X) has pro-
nounced oscillations which are not yet sufficiently
damped for X=3L, so that large truncation errors
occur in the evaluation of (A1). Consequently an
extrapolation scheme is needed to obtain accurate
values of g(X) in the range X >3L. We have used

a method inspired by a similar scheme devised by
Verlet'” in the study of classical liquids. g(X) is
obtained for X > 3L by solving the set of equations

g(X)=.€’MC(X), X =3L ’ (A2)

CX)=-T/X, X>3L, (A3)

P. HANSEN 14

complemented by the Ornstein-Zernike relation
between g(X) and C(X),

g0 -1=C00+ - [ g -1]C(X- yaX .

(A4)

Here C(X) is the direct correlation function, and
Zuc(X) denotes the pair distribution function cal-
culated by the Monte Carlo method for X <3L.
Note that n;73=3/4r. Equations (A2)-(A4) form
a closed set which can be solved iteratively like
the usual integral equations. The ansatz (A3) is
justified by the fact that in the OCP C(X) tends
rapidly towards its Debye-Hiickel limit - g(Ze)?/
rv=-T/X, for all values of I'. The Monte Carlo
calculations have shown that C(X) differs from
- T'/X by less than 1% at a distance of the order
of the mean inter-ionic spacing (X=~1.6). For

=1L the difference between C(X) and its asymp-
totic form is completely negligible, so that the
ansatz (A3) is practically exact. S(gq) as deter-
mined by this method is tabulated for several
values of I elsewhere.'®

For I' =1 the structure factor can be calculated
quite accurately by solving the HNC integral equa-
tion.*®

In the range ¢ =2, S(q) is everywhere very close
to its exact long-wavelength limit given by (8).'!

APPENDIX B: STRUCTURE FACTOR FROM THE HARD-
SPHERE MODEL

The integral equation of Percus and Yevick for
the pair distribution function has an exact solution
for the special case of the hard-sphere model .2%:%

The structure factor is obtained'® in the form

[S()] ' =1+ F (u)l sinu f(u) +cosug()+ h@)] ,
(B1)

where the dimensionless variable « is connected to
the hard-sphere radius 7, by the relation u=2kv,.
As a function of the parameters x and p defined by
x=Fk/2kp and p =7, /¥;, the variable u can be ex-
pressed as

u=(14412)* 3px . (B2)

The functions F( u), f(u), g(u), and h(x) in formula
(B1) are

F(u)=24(p/v?)?

fla) =ul?(a + 28+ 4y) - 24y] ,
g) = —u*(a+B+y)+ 2°(B+ 6y) - 247,

h(u) = - 2B + 24y

and a, B, and y are different functions of p,
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FIG. 9. Values of the hard-sphere structure factor
for five values of x =k/2kp, as a function of r; =
(‘3"1"1;)'1/3 .

a=(1+2p2/1 -p%*,
B=-6p°(1+3p°)*/(1-p%)*,
r=2p°(1+2p%/(1 - p%)* .
Figure 9 gives as a function of p™! the behavior of
the structure factor for five values of x= k/ZkF,

as calculated from formula (B1) with « given by
(B2). It can be seen from these calculations that

S(x)=0.992 ,
when 7; =107, and 0=x=1, and

S(x)=0,
when »; -~ 7,, so that in the transport coefficients
given in Sec. III the structure factor obtained from

the hard-sphere model has a contribution in the
density range defined by

1<7,/r,<10 . (B3)

APPENDIX C: SCATTERING POTENTIAL AND DIELECTRIC
FUNCTION

In the simplest form the screened Coulomb po-
tential around a point ion, as first given by Mott,
is

V== (Ze?/v)e *T¥" (c1)
where gpp=(4kz/ma,)'/? is the inverse of the
Thomas-Fermi screening length. In the Thomas-
Fermi approximation, U(k) is taken as the Fourier
transform of this potential,

Uk) = - 2 kpe®/n(k*+ g 7 5) (c2)

or in the alternative form

Uk)=U,/€(k) , (C3)

where U, = - 4mn,e?/F? and the dielectric function
€(k) is given by

(k)= (R +q2 )/ K . (C4)

A more accurate form of e(%) is obtained in the
framework of the random phase approximation by
Lindhard and Bardeen. Their result is??

€(R) =[R2+ q%pf(R/2kp)] /K, (C5)

1 x2-1 1-x
f@=g+ =7

Tz’ (C6)

This expression is valid rigorously only in a very-
high-density Fermi gas, when »;<<1. At the lower
densities the exchange and correlation corrections
should be taken into account. This leads to another
expression for €(k) similar to the expression (C5),
where the Lindhard function f(x) is replaced here

by

- fx)
Fx)= 1 - (qre/2kp)2 fl)Rx2+g)" T (€7

where

g=(1+0.02627,)"" .

APPENDIX D: CHESTER-THELLUNG-HUBBARD FORMALISM

We follow closely the Hubbard presentation® of
the Chester-Thellung version® of the Kubo formal-
ism for the linear response theory.

The time-independent transport coefficients G;
of the electron gas are isotropic tensors defined
by

J=¢G,,(eE) +eG,,(VT)/T , (D1)
Q=- G, (¢E) - G,,(VT)/T, (D2)

where J is the electric current density, (_5 is the
electron energy crossing unit area per unit time,
and E is the electric field.

In the following, we shall restrict ourselves to
S;; which are the diagonal parts of the tensors G;.
The electron thermal conductivity is then explicitly
given by

K,=(8,,S,, - Slzszl)/Tsu s (D3)
so that Q = - K, VT when J=0.
In the Lorentz model, the single-electron Ham-
iltonian reads

2 N
H=L— _ 3 e|F-F, |, (D4)

2m, &1

where the sum is taken over all of the N; protons
located at ¥,. P and T are the momentum and posi-
tion operators of an electron. K, is now evaluated
with the weak-coupling approximation, such that
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the H eigenstates may be taken as plane waves for independent electrons diagonalizing the kinetic term.
Chester and Thellung® have shown that the Kubo expressions for the G;; may then be obtained from

the generating function

- T3 (v

> Vdp Vd3p' of

where E=p?/2m,. The sums run over spin states. f= (1+ ef‘F~#))-1

. -yE"“’I * -, , -
(277;[)3 (277%)3 OFE ppj(; dtPt (p »S, P, S) ) (Ds)

is the Fermi distribution. P,(}p’,s’, P, s)

denotes the probability at time ¢ that an electron is in state ]5’, s’), given that an electron was placed in
state |f), s) at t=0. It is obtained as a solution of the master equation

d = = Vdsp” TN ! TR’ ’ et N
E—{Pt(p,s',p,s)=; f'—(z__’rhf)s' W(p ,s,p’,s’ )Pg(p y S ,p,S)

d3 12

-P (P s;p,s)Zf (2 h—)g W(p ,S’ P’ s) (DS)

with W(D’, s’,p’’, s’’) the transition probability per unit time for an electron to change from Iﬁ", s'’) to

|p’,s’). The G,; are then given as

dL(y)

"’G(O), G12=021= - dy

’ 22
y=0

Integrating Eq. (D6) over time gives
- Va3
3 ’ -1 _ £__
- 2n7)*8(p’ - D)oV " = s§” GrhP wi

—I(ﬁlsslyﬁy S)Z f (
sll

where
K5, s",5,9)= [ atP§,',B,9)
0

with
P, =0, P, o=(2m0)P6(p -D)o,,V
The electron-ion interaction
N.
= Y e F-T
=1
taken in the first Born approximation (weak-cou-
pling) yields the probability
W=|(p',s'|¢|B,s)|* @mm,/5p) 6(5' - B)

Ny Ny

4}
=27fm (Epvz (47762)2 ss z :z :etk-(r -r ,)
=l o'=1

with k = (B’
cal average

P)7Z-!, and the corresponding canoni-

. (4me*)? 5’ D)
<W(§';s,,p;s)>=27mebss' R _—;%T/"ZP—'NiS(k)’

where

S(k)=1+N,h(k)

n(E)=v-* f drg(r)e’® ¥t

a*L(y)

v

(D7)

[

[

(B, 8",8", 8" (5", 5", D, 9)

"Il

sll,ﬁ” s,) b (D8)

in terms of the equilibrium ionic pair distribution
function. The above average is meaningful as long
as the electron mean free path remains much
larger than the mean ionic correlation distance.
Thus we may look for a solution of Eq. (D8) in the
form

I5,5',5,5)= 80" ~B) 50, S A(D)PY(E), (DY)

where £=(pD’)/p? and P,(£) is the Legendre poly-
nomial. Only the /=1 term is expected to survive

the angular quadrature in Eq. (D5). Inserting Eq.

(D9) into (D8) and using

o' -5)-" =RV S @rvny o),

we get

_ 3@2mnPp < LdES(R)\ !
Al(p)_8‘rrzm 2N, 1-¢ )

Measuring momenta in units of »;!, we obtain the
dimensionless momentum ¢ = k»;, with 1 - £=73%g2/
27%p2. The transport generating function becomes

87 °%n;
L) =- 2T e*

© af _h—zqzy
¢~ G(q) exp D10
Xfod‘”aq (g)e (21,%), (D10)

e
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where n;=N,/V, J is the unit tensor, and
Glg) l—zf dq 'S(") 1 (1+4°“’2>, (D11)

where the “hydrodynamic ” structure factor [Eq. (8)
inthe maintext] wasused. Specializing Eq. (D10)to
completely degenerate electrons and restricting to
thefirstterm inthe 8f/3¢ expansion, we obtain

8,,~C,qr Glgp) ,
8,2=8;,~C,Cyq% Glgp) , (D12)
Sy~ C Ca q : Glgp) ,

with
C, =(2mh)°n;/2Tm *m? e*
C, = (m kT /M%) (2n,)4/3
C,=k%/2m,v3.

Equation (D3) is therefore given as
K, =[(@2nh)® k3 /16m3e*| G(gp)n, T ,

which is nothing but the Boltzmann-Ziman equation
(9) in the main text.

*Laboratoire associé au CNRS.
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