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We present the results of a systematic study of threshold instabilities in a Wien bridge oscillator. The
dynamical circuit equations can be cast into a time-dependent Ginzburg-Landau form where the order
parameter is the complex zero-dimensional amplitude of the oscillatory voltage. In this context we have been
able to simulate behavior which in classical theory is characteristic of first-order, second-order, and tricritical
phase transitions, and have measured the associated threshold properties.

In recent years there has been considerable in-
terest in the analogy between instabilities in dis-
sipative nonlinear systems and critical points of
equilibrium phase transitions. ' For example,
Graham and Haken' and DeGiorgio, Scully, Gold-
stein, and Lee' have related the behavior of a la-
ser near threshold with the critical point of a sec-
ond-order phase transition. Similar analogies
have found their way into the theory of instabilities
in chemical rate equations, ' thermal instabilities
in the Bernard problem, and instabilities in sim-
ple bistable electrical circuits including the para-
metric oscillator' and the tunnel diode circuit. '
Recently, Kawakubo et al. ' have noted that the
mean-square voltage fluctuations of a Wien bridge
oscillator diverges near threshold in a manner
analogous to mean-field theory for a second-order
phase transition. However, there exists little ex-
perimental evidence regarding the extent to which
this analogy holds.

With this motivation, we have examined in detail
the behavior of a Wien bridge oscillator near
threshold. We find that the behavior is well de-
scribed by classical Landau (or mean-field) theo-
ry except in the immediate vicinity of the mean-
field value of the critical feedback. In this region
we argue that the system becomes analogous to a
zero-dimensional superconductor (i.e., it has no
spatial extent and a two-component order param-
eter). The details of these arguments will be de-
scribed after the presentation of the experimental
data.

d'V 9&go(a —a,) dV

dP 1+3(a —n, ) dt

which can be approximated near threshold as

d'V dV
, + 9&so(n —a,}—+ +02V=f(t),

where &u, = 1/RC is the resonance frequency at
threshold and f(t) is a statistically defined Lange-
vin white-noise source. Experimentally f(t} is
either generated by Johnson noise in the circuit
components, or externally introduceQ by the addi-
tion of a white-noise generator to the circuit in
Fig. 1.

When f(t) = 0, oscillation at fixed amplitude ob-
tains when n —n, =0. For e &n, the amplitude of
oscillation grows until nonlinearities in the com-
ponents or the amplifier restore the condition
o. —a.,=0. For simplicity we add to the circuit a
specific well-defined power-dependent nonlinear
element such as a light bulb or a thermistor. o,

is then determined by the temperature and hence
the power dissipated in the nonlinear element.
Thus for a light bulb with relaxation time 7, n
trivially obeys the equation

—+ =.Ivl + bi&I' + ." .
dQ Q —Qo

dt T

a, is the linear part of n, a and b are positive
constant, and g is the complex amplitude of the
oscillatory voltage defined by V(t) = Re/(t)e'"0'.
The condition for oscillation with fixed amplitude

I. EXPERIMENTAL

The circuit diagram for a Wien bridge oscillator
is schematically shown in Fig. 1. The magnitude
of the voltage fed back into the resonant cavity is
determined by the dimensionless feedback param-
eter —,

' —n where n =R,/(R, +R,). The circuit os-
cillates when the feedback is greater than a criti-
cal value 3 —n, (i.e., when n ~ n„where n, —3

—1/A). The circuit equation for Fig. 1 is given
by

A~ 0

FIG. 1. Circuit schematic for the Wien bridge oscil-
lator.
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becomes

~o —o.+ «(I(l')+ rb(lyl')+. "=0, (3)

where g') is the time average of lgl'. Note that
in the absence of noise [i.e., f(t) =0] the stationary
or steady-state value of lrCI' obtained by setting
dn/dt = dP/dt= 0 is equal to the time average, since
after initial transients there are no fluctuations of
(t about (g). Furthermore, in the approximation f(t )
=0, ((g))' =(lit I)' =(Igl'). With the identificationthat
a, —T and n, -T, Eq. (3) becomes equivalent to the
equilibrium condition in Landau theory for T (T,.
Thus neglecting the I/I~ term in Eq. (3) we obtain
the mean-field expression for the onset of oscilla-
tions (g) = [(n, —ere)/«]' '. Similarly, for rto) n„
the steady-state solutions are (n)=n and Q) =0.

In a similar manner, one can show that the am-
plitude E of an applied voltage V, oscillating with
frequency tc, (i.e., V, = ReiEe'"o') takes the place
in the Landau analogy of the field conjugate to g.
The condition for steady-state oscillations be-
comes

(a, —ct,)(licl)+ «(Igl')+ &b(lttI')+ "' —E/9&v,'=0,

(4)
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which is again equivalent to classical Landau theo-
ry when E is the field conjugate to g. We see
therefore that in the absence of noise [i.e., f(t) =0]
the steady-state or time-averaged behavior of the
circuit is reminiscent of the mean-field approxi-
mation for the equilibrium behavior of a system
which has a phase transition. It is tempting there-
fore to assume that the analogy between the time-
averaged circuit response and equilibrium phase
transitions holds in the presence of fluctuations
and hence define the usual critical exponents P,

and y ass
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E -(n, —cr,), E=O, o, )a„sQ)

as
where in the above simple classical or mean-field-
like model (Ital) = (g) and ii = -„5= 3, and y = l. In
Sec. III we will confirm the general structure of
the phase-transition analogy but will show that the
lack of spatial extent of P leads to the nontransi-
tional behavior characteristic of, for example, a
zero-dimensional superconductor.

Figures 2(a) —2(d) show experimental results ob-
tained on the analog second-order phase transition
as described above. We show the measured values
of (Ir)l) and &(Igl)/()E as a function of the feedback
parameter &0 and the applied field E. The fact
that the measured value of x= 8(lrtI)/sE appears
not to diverge as no-n, can at least be partially

=- 6.0-

40

2.0—

0

&Mr 82 86 90 94„10

Qp

FIG. 2. Characteristics of the analog second-order
transition. (a) The average amplitude of oscillation
(( pi) vs the feedback parameter ao. (b) () fit i)2 vs no.
(c) (I t)l) vs the amplitude E of the driving voltage. (d)
The inverse generalized susceptibility y '= (8(i gi) /'dE t '
vs Ao.
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II. DEVIATION FROM CLASSICAL THEORY

When f(t) is nonzero, fluctuations of l|tl from (lPl)
may become important and the validity of the sim-
plified mean-field-like analysis given in Sec. I is
called into question. Intuitively one might expect
that for np~~ a, or ap~~ n, some aspects of the
mean-field analysis would be approximately cor-
rect. The problem is in determining how and when
the classical theory fails as np- &,. There are
at least two equivalent approaches which one can
take to answer this question. Since g has no spa-
tial extent, the problem can be transformed into
a one-dimensional statics problem with the trans-
formation it-X. The circuit response can then
be determined exactly using the techniques devel-
oped by Scalapino, Sears, and Ferrell. ' Alter-
natively, the problem can be treated as a dynamics
problem in zero dimensions via application of the
time-dependent Ginzburg-Landau formalism.

We choose the latter approach. Let $(t) =i/le'".
Under the assumption that g is slowly varying com-
pared to V, Eq. (1) can be rewritten by averaging
over a few oscillatory cycles. ' We obtain

(dial/dt)+ (9~./2)(a a)ill—= ~hei(t),
(8)

lcl(dv «t) = ~.(t),
where

n, (t) =R Gf(t)/2 .] *' '"'},
n. (t) = -Rdff(t)/2 .]e *'"""'l,

and we have neglected terms small compared to
dg/dt. In the limit a, -a„

1 Qg

dt 7 dt

and Q. can be replaced by its steady-state value in
the absence of noise (i.e., et=(o)+ralpl2). Equa-
tion (8) becomes

dig) 9up„+ 2'(o. -o.+«I&l')l&l=&IAI(t)

Equation (9) is in the form of a time-dependent
Ginzburg-Landau (TDGL) equation, "

(10)

where tt'; = g, or g„FQ;j is the Landau functional,
and l is the inverse relaxation time associated
with rl~. (t). q~. (t) is a statistically defined white-
noise source with zero mean and correlation func-
tion given by

(r4.(t)rt, ,(t')) .. .„=21'8,,8(t - t'),

(a)
l
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FIG. 4. Characteristics of the analog tricritical point.
(a) (t g () vs no. (b) (II P () vs eo.

d I@I I' 5E d(p

dt T 5lgl
' dt

where

(12)

q~~~(t) = g~ (t) cosy+ i)& (t) sing,

q„(t) = q, (t) cosy —g~ (t) sing.

Note that 0~~~(t) and q„(t) do not represent white-
noise sources because of the time dependence of
y(t). Comparing Eq. (12) with Eq. (9) we obtain
for I"

F(lg= (9~.&/41')(a. —a.)lyl'+ (9~.«T/8r) lel'.

Decoupling the statics from the dynamics forces,
T =4?'(dp. Thus the parameter T, which is a mea-
sure of the fluctuations in lgl, is defined in terms
of the circuit parameters I' and ~p. The Landau
function then becomes

F(lg =,'~!(a. —a.)ltl'+ f~'.«lel'.

F(lgl) in Eq. (13) represents a fictitious Landau
free-energy function for the circuit chosen such
that the TDGL equation reproduces the circuit
equation. All time-averaged moments of g can

(13)

where (. ~ ),q,„represents the equilibrium statisti-
cal average. To show the analogy between Eq. ( 10)
and Eq. (9)we transform Eq. (10) to radial coordi-
nates. Let g= p, + ig, = i/le'". Then if F is indepen-
dent of y Eq. (10) becomes
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now be obtained by computing equilibrium aver-
ages over the Landau function given in Eq. (11).
Since P is a zero-dimensional field these averages
become simple integrals, as illustrated below:

erature, but in fact happens in many systems of
limited dimensionality. '

The measured moments for the second-order
phase transition can be calculated from the ap-
propriate integrals over E(~P~]. The susceptibility,
for example, is given by

where the partition function Z is given by

Z
~

dye-Ftiqit» (15)

and where g(ici) is an arbitrary function of P and
dP= ~iCi~d~tcI dy. The equality of the time average
(g(tci)) and the equilibrium average (g(g)) „,„ is
just the usual requirement of ergodicity built into
the TDGL formalism, and in the remainder of the
text we use these symbols interchangeably.

Therefore we have shown that the circuit re-
sponse can be represented by an equilibrium aver-
age over a properly chosen free-energy function.
Furthermore, as anticipated in Sec. II, the form
of F/) thus obtained has, in the classical or
mean-field approximation, a phase transition at
~a= ~c.

At this stage the approximation that n = n, + ra~/~'
must be scrutinized. Examination of Eqs. (8} and

(2) shows that approach of ~iC
~

to tIg~) is not mono-
tonic as suggested by Eq. (9), but rather is oscil-
latory. In the limit nq —a„$&'- (I/r)ti~ [or equiv-
alently 18&q(ao —a,) « I/&] and Eq. (13) is approxi-
mately valid. However, if iCi

~ (I/v)it, one cannot
let a =(a) but rather must appropriately average
over the fluctuations in n. Since the approach to
~tCi~ to (]P~) and a to (a) is oscillatory, the usual
TDGL formalism must be modified. It is found
however that even in this region Eq. (13) is still
valid "

~q~
2e-F(i q I t/Tdq

ZT .
For ct, » n, the dominant contribution to Ff~g[j
comes from the ~g~' term in Eq. (13) and the sus-
ceptibility is mean-field-like. In this region we
obtain

1 1
X 2 ~

9M Q —Q,

As n, approaches ct, the ~g~ term in Ef]tii[[be-
comes important and classical theory breaks
down. At n, =n„x= 2/3+ 0(nba TP~' is finite, but
large if the noise is small. The condition for the
validity of the mean-field-like theory is

(18)

ct —ct » (TaT/9(d'}' ' (19)

volts RMS

Equation (19}is analogous to the Ginzburg criteri-
on for the validity of mean-field theory. T, which
is a measure of the magnitude of the fluctuations
in g (i.e., T =41'&a&,), maybe varied atwillby intro-
ducing an external noise source into the circuit.
The role of T in the circuit response is illustrated
in Fig. 5, where we plot the probability amplitude
of (P~ [-=P()tCI}] vs )g~ for various values of the ap-
plied noise at fixed n, & a,. P(~P~), which is ex-

III. DISCUSSION

The previous two sections have demonstrated
that the Wien bridge oscillator is well described
by a, zero-dimensional Ginzburg-Landau (GL) field
theory. A zero-dimensional field displays no long-
range order in time. For example,

0—

(g) =— //~de ~g~
e'~e ~iiq'tg =0

~I

(18)

Since (~g~)eq. +v is nonzero, the absence of long-range
order in time is a manifestation of the indepen-
dence of the system's free energy of the phase
p; q is allowed to fluctuate over all possible val-
ues. Therefore while we find experimentally that
the classical theory describes g~)„,„quite well
except when o., =—n„ it fails badly in describing
(g), since it predicts (P)„,„q'-0 for n, &n, .
This dichotomy of behavior is not new to the lit-

L

-10 0 IO V01ts

FIG. 5. Probability of obtaining a particular am-
plitude of oscillation P( I fi[t~) vs

~ g ~
for the second-order

transition with no =0.0950, at various values of the ap-
plied white noise.
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perimentally measured with a high-frequency gate
and a pulse-height analyzer, is given by P(ili~)
=e ~' """ For a —u» (raT/9id')'~', P(~ili)

should be Gaussian with a half-width (at fixed n, )
proportional to T'~'. Since T I'--(noise power),
we expect the Gaussian half-width to be propor-
tional to the applied-noise voltage. Our experi-
mental results, as illustrated in Fig. 5, are con-
sistent with this picture.

The region over which the classical theory does
not apply can also be adjusted by varying the ap-
plied noise. For the second-order transition, or-
dinary thermal and amplifier noise is so small
that the deviations from classical behavior are
difficult to measure. The large apparent devia-
tion from classical theory for the tricritical-point
circuit can be attributed to one of two possible
sources: (1) crossover from a tricritical region
to a critical region as co increases owing to the
inability to experimentally set the coefficient of
~i'~' (in Eq. 2) exactly equal to zero, or (2) large
ambient electrical noise in the circuit.

To examine the role of noise in the validity of
the classical theory, we have measured the fre-
quency-dependent voltage-voltage correlation func-
tion G(&d) as a function of n, in the presence of a
large amount of externally induced noise." G(&o)

is experimentally measured using a Saicor model
52-8 frequency spectrum analyzer. The theory
above predicts that G(~) should be a Lorentzian
peaked at (do. As &~-0., the Lorentzian half-
width y should narrow, corresponding to critical
slowing down. For the nonconserved order-pa-
rameter field g defined above, this slowing down
should be proportional to the inverse of the gen-
eralized susceptibility, x '. Fig@res 6(a) and 6(b)
demonstrate that y does indeed vary as x ', ex-
cept that the absence of long-range order is clear-
ly visible when the noise is large. There are two
specific features of Fig. 6(b) which should be
noted: The critical value of ao —n, for which clas-
sical theory first fails is increasing with increas-
ing noise, a.s suggested by Eq. (19), and the mean-
field value of the critical feedback, n„decreases
as the noise increases. This second effect can be
understood as a destabilization of the oscillatory
state as the noise increases. One can estimate
the magnitude of this by arguing that the oscilla-
tory phase will be destabilized when the depth of
the free-energy minimum (for ~$~40) is small
compared to T. Formalizing this idea we obtain

a (T) =n' (raT/9id')' '
where a, is the critical point as a function of noise
and n', is the unrenormalized mean-field value of
the critical feedback (= 3 —1/A).

In conclusion, we have demonstrated that the

360—
& Noise -22 Vo

ci Noise=l. 6 Vol

o Noise=0. 8 Vo

(~strumetitol
Resolution ~

0 l

0.08 0.09 Q.l0

Qo

FIG. 6. (a) Fourier transform of the voltage-voltage
correlation function G(~) vs frequency cu at various val-
ues of no &e . (b) Half-width y of G(w) vs ao for vari-
ous values of the applied white noise.

Wien bridge oscillator is well described by a
zero-dimensional GL field theory. All circuit
characteristics can therefore be obtained by per-
forming averages within the framework of equi-
librium statistical mechanics. In the absence of
externally induced noise, a mean-field-like theo-
ry is adequate to describe the circuit response ex-
cept in the immediate vicinity of n, . %e also ob-
serve that the oscillator has no long-time phase
coherence.

Viewed from a different perspective, these de-
vices become unique tools with which one can
simulate mean-field theory at rather complex
multicritical points, of which the tricritical point
is just one example. In this context, it is possi-
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ble to use coupled Wien bridge oscillators to sim-
ulate either bicritical- or tetracritical-point phe-
nomena and examine not only the mean-field val-
ues of the critical indices but also the regions of
relative stability of the various ordered phases.
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