
PHYSICAL REVIEW A VOLUME 14, NUMBER 2 AUGUST 1976
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The thermodynamic properties of one-component ionic plasmas in a responding (polarized) background of
fully degenerate electrons are calculated over a wide range of temperatures and densities. The weak and

intermediate screening regimes are treated by two complementary methods which take the one-component

plasma in a rigid background as a starting point. Thermodynamic perturbation theory is used in the weakly

screened ionic plasma typical of white-dwarf matter; this leads to simple, analytic expressions for the

thermodynamic properties. Relativistic effects in the very dense electron gas are considered explicitly. A

variational method, based on the Gibbs-Bogolyubov inequality, and the physical idea of an effective charge
reduction of the ions, yields satisfactory results in the intermediate screening regime typical of the deep
interior of Jupiter. Our results are in good agreement with the available Monte Carlo data and represent a

significant improvement over previous calculations based on a hard-sphere reference system.

I. INTRODUCTION

Under the pressure and temperature conditions
characteristic of degenerate stellar matter (e.g. ,

in white dwarfs or the outer layers of neutron
stars) and of the interior of the heavy planets,
the lighter elements are generally assumed to be
completely ionized. The remaining nuclei can,
to a good approximation, be considered as point
charges, whereas the electrons are strongly de-
generate and, in first approximation, play the
role of a rigid, uniform background. If nuclei
of one element predominate, the physical situa-
tion can be reasonably well described by the sim-
ple model of the classical one-component plasma
(OCP), which may also be relevant for the de-
scription of super-dense matter in laser-driven
fusion experiments. The thermodynamic proper-
ties as well as the static and dynamic correlation
functions of the QCP have been accurately deter-
mined in a series of recent Monte Carlo"' and
molecular-dynamics' computer "experiments. "
The equilibrium properties of the OCP depend
only on the single dimensionless parameter I'
=P(Ze)'/a where Ze is the charge of the ions,
a = (4vp/3) '~' is the ion-sphere radius (p =X/V
is the ion number density), and P =1/ke T.

Since the degenerate electrons play the role of
the rigid uniform background, the thermodynamic
properties (internal energy, pressure, etc. ) of the
zero-temperature electron gas must be added to
the corresponding ionic properties of the OCP.
The for mer depend only on the dimensionless
parameter r, =a/(a, Z'~'), where a, is the elec-
tronic Bohr radius (a, =0.529 A). Such a. treat-
ment of the electron gas is only valid if the de-
generacy condition is satisfied, i.e. ks T/e F «1

whichcanbe reexpressedas: T«6.10'/r', . Heres F
stands for the Fermi energy per electron: eF
= Fi'(3v'pZ)'~'/2m. This condition is well fulfilled
in most astrophysical situations. The ions, on
the other hand, can be treated classically because
of their considerably higher mass. '

However, the picture of considering the elec-
tron gas as a perfectly rigid and uniform back-
ground is generally a very crude approximation.
Even a highly degenerate electron gas will be
Polarized by the ionic charge distribution, and the
formation of nonuniform electron "clouds" around
each ion will modify the ion-ion interaction. Con-
sequently, the bare Coulomb potential between
ions must be replaced by an effective screened
potential. The importance of electron screening
can be qualitatively discussed in terms of the
Thomas-Fermi screening length:

AT, , /a = (w/12Z)' r
Since in the crude Thomas-Fermi model the
screened interionic potential is v(r)= (Ze)'e "~ T'/r,
it is clear that electron screening is negligible
only in the high-density limit (r, -0). In a typical
white dwarf (density = 10' g/cm' and predominant-
ly helium composition), we find r, =0.015, and

ATl, '/a = 4 . In the deep interior of Jupiter (density
= 5 g/cm' and predominantly hydrogen composi-
tion), we find ~., = 0.7, and A, , /a = 0.7. Hence we

see that the screening length is of the order of
one or a few interionic spacing, which implies a
relatively short-ranged effective interaction corn-
pared to the bare Coulomb potential.

The aim of the present paper is the calculation
of the thermodynamic properties of the ionic one-
component plasma in the presence of a yesponding
electron background. This is achieved by relating
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the properties of the screened ionic plasma to
those of the OCP, for which accurate computer
data are available, through thermodynamic per-
turbation theory. ' The present work differs es-
sentially from previous calculations in the choice
of the reference system. While previous workers
used the hard-sphere fluid as their reference, "
we have chosen the OCP to be our reference sys-
tem. This choice will be shown to be both more
natural (the screened ionic plasma reduces to the
OCP in the limit r, - 0) and more useful. The
weak (~T).»a) and intermediate (a»: -—a) screening
regimes will be treated on a slightly different foot-
ing. The weakly screened ionic plasma will be
studied by thermodynamic perturbation theory, in
the generalized random-phase approximation (Sec.
II). An expansion in powers of a/Xi). will be pre-
sented in Sec. III: This expansion yields simple
analytic expressions for the corrections to the
thermodynamic properties of the ionic plasma in
the range r, «1. In that limit, relativistic effects
become non-negligible in the electron gas, and
these will be considered explicitly.

The intermediate screening regime, on the other
hand, will be studied in the framework of a new

variational approach, based on the physical idea
of an effective charge reduction (Sec. IV). Results
based on this approach will be compared to the
more usual hard-sphere variational calculations
as well as to recent Monte Carlo data"" in Sec.
V. The influence of the assumed form of the elec-
tron dielectric constant on the thermodynamic pro-
perties will also be discussed. The structure fac-
tors of the OCP, which are of central importance
in our work, are tabulated in the Appendix.

Our calculations are limited to systems of a
single ionic species. The extension to two-com-
ponent systems awaits a detailed study of the cor-
responding reference system (i.e., the "two-com-
ponent plasma" in a rigid uniform background)
which is presently under way.

Hence the induced charge density can be related to
the external charge density through the static di-
electric function e(k) of the electron gas. To lead-
ing order in p„, (linear response) we have

ii,„,(k) =[I&e(&) —Ijp...(k). (4)

This is the first term in a systematic expansion of
p,„,(k) in powers of p,„,." The following terms
can be expected to be negligible in the high-den-
sity limit (r, «1). The second-order term was
explicitly considered by Stevenson' in the range
r, =1. We have limited ourselves to the linear
response term for two reasons. First, inclusion
of higher-order terms leads to expressions for
the free energy which require a knowledge of the
three- and higher-order distribution functions of
the reference system; these must then be approxi-
mated by superposition or convolution-type ap-
proximations, the validity of which is unknown,
especially in the case of the OCP. Secondly, our
results for r, a1 show that the uncertainties in the
dielectric function of the electron gas are such
that screening corrections obtained with various
dielectric functions in the framework of linear
response theory differ already so much, that it
seems pointless to include nonlinear terms which
depend even more sensitively on the choice of e(k).

From Poisson's equation the electrostatic po-
tential due to the total charge density is given by

.„,)i), (
—)) ...(k),

(5)

where the first term stems from the external
charge density and the second term from the in-
duced charge density. Replacing p,„,(k) by p&
for brevity, the Hamiltonian of the system then
reads

II. THERMODYNAMIC PERTURBATION THEORY

Because of the large mass ratio between ions
and electrons, the latter react practically instan-
taneously to any variation of the ionic charge den-
sity which plays the role of an external charge
density:

(2)

where the r; (1 & i &N) are the ion positions, and

p,„)(r) has the following Fourier transform:

1 ~ 4v(Ze)'
2V

The prime in the sums denotes that the term k =0
is omitted, to account for the uniform (nonpolar-
ized) background. In the first term N is subtracted
from p&p T in order to eliminate the infinite self-
energy of the ions. The first term in (6) accounts
for the direct ion-ion interaction; it is identical
with the Hamiltonian of the unscreened OCP. The
second term corresponds to the indirect, or elec-
tron-induced, ion-ion interaction, which vanishes
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in the limit of zero screening [e(k) = 1]; this second
term will be treated as a perturbation.

The problem now lies in the choice of the static
dielectric constant of the degenerate electron gas.
This can be cast in the general form

v("(k)a,(k)
1 -G(k) v "(k)v, (k) '

where v(')(k) is the bare Coulomb potential

vt" (k) = 4v(Ze)'/k',

(7)

(8)

f(y) = —+ ln
1 1 —y' 1+y

4y 1 —y

where

y =q/2qF,

q(: =akF =(9 vZ4/)' '(

(10)

(12)

is the dimensionless Fermi wave number, and

q, =a/X» = (12Z/a)' 'r,' '

is the dimensionless Thomas-Fermi wave number.
The Thomas-Fermi dielectric constant used in
Ref. 9 is recovered if f(y) is set equal to 1 for all

The factor G(k) appearing in (7) is meant to cor-
rect the Lindhard e(k) for exchange and correla-
tion effects. Since the pioneer work of Hubbard, '4

several attempts have been made to determine
G(k) from first principles. One of the most wide-

ly used forms is that proposed by Qeldart and
Vosko. " Among the more recent calculations of
G(k) are those of Geldart and Taylor" and Toigo
and Woodruff. " We have used these various di-
electric functions in the range r, a1, and a com-
parison will be made in Sec. V.

Finally, in the high-density limit, the degener-
ate electron gas becomes relativistic. This occurs
when

6'
F ~ FflC

i.e. when r, s0.01.

(14)

and v, (k) is the polarizability of the free-electron
gas, as first calculated by Lindhard. " The un-
known function G(k) has been determined by sever-
al authors through a variety of approximations.

The simplest approximation is to set G(k) =0.
This is the random-phase approximation, and the
corresponding dielectric constant, which we shall
refer to as the Lindhard dielectric constant, is ex-
act only in the limit r, -0. It is expected to be
reasonably accurate in the range r, & 1 and will be
used extensively in our calculations. Introducing
dimensionless wave numbers q =a@, the Lindhard
dielectric function reads

e(q) =1+(q,',:/q')f(y),

= 3 q) (r ) r' dr,
" sinqr

qJ'
(15)

where r is in units of a. With this convention the
effective (screened) interionic potential in q space,
divided by k~ T, is

pv-(q)= 3r/q &(q) .

The reference potential is

Pv ' (q) = 3r/q',

and the perturbation potential is

31" 1
(e)=)) (a)-p "'(q)= —, -)).q' ~(q)

(18)

(17)

Since e(q) ~1 for all q, w(q) is negative definite.
We start out from the familiar exact expression

for the excess free energy per ion, involving an
integration over a coupling parameter A.:

(p) oo

+ — S"'(q)~(q) q' dq
3m

1 oo

d(( [S(q; A) —S(')(q)]u)(q)q'dq,
37T p p

(18)

where the superscript (0) will henceforth refer
systematically to the reference system (the OCP).
S(q; A) is the structure factor for a system of iona
interacting through the potential pv(')(q)+Xti(q);
S(q; 0) —= S(')(q). The perturbation potential (17) is
clearly long ranged in r space. Hence it seems
natural to apply to our problem the perturbation
techniques developed for such situations. ""

To lowest order, it is assumed that the pertur-
bation potential does not affect the structure factor
of the ionic fluid, i.e., S(q; A. ) =S" (q) for all A. .
From Eq. (18) we then obtain the following first-
order correction to the Helmholtz free energy:

s~'&(q) k(q)q' aq,pF 1
N 3v p

so that to first order

(19)

In that range the screening corrections are ex-
pected to be weak and the relativistic counterpart
of the Lindhard dielectric function" must be used.
This will be examined in Sec. III.

We formulate now the perturbation theory for a
general c(q). The expansion will be specialized to
specific dielectric functions later on. Henceforth,
only dimensionless quantities will be used. In
particular we shall use dimensionless Fourier
transforms of the type

OO ~

q)(q) = 47(pa' q)(r) r' dr
qr
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pF(1] ~~(0)
N N 1V

(20)

The next term in the expansion of the free en-
ergy is obtained by making the "generalized" ran-
dom-phase approximation (RPA)" on the structure
factor:

S( .
)

"'(q)
1+Aw(q)S"'(q)

' (21)

-w(q)Sio) (q)}q dq, (22)

pF &'i PZ «)

N N 3n'
+ in[1+ w(q)S~O (q)] q'dq.

(23)

The second-order term corresponds to the sum-
mation of all ring diagrams in the generalized
cluster expansion of the free energy. ' These
ring diagrams are known to be dominant for long-
range potentials (cf. the analogy with the familiar
Debye-Hiickel theory of electrolytes).

Andersen and Chandler ' have derived a third
term in the cluster expansion of the free energy,
by summing a still larger class of diagrams. The
corresponding expression for the free energy [Eq.
(3.17) of Ref. 21] is again expressible in terms of
the structure factor of the reference system alone,
but this additional term cannot a Priori be ex-

The corresponding second-order correction to the
free energy is obtained by replacing (21) in (18),
and integrating over A. :

PF, 1
3m'

(In[1+w(q)S (q)]

pected to be very useful here (except in the limit
of a very weak perturbation, i.e. , r, -0) since an
important feature of the Andersen-Chandler theory
is missing in our problem: Because of the ab-
sence of an impenetrable (hard sphere) core in the
effective ion-ion potential, the expansion cannot
be "optimized" by varying the perturbation po-
tential in the unphysical region inside the core.
For that reason we have limited the expansion to
second order in the present work. However, we
have checked that the neglected third term in the
expansion is indeed negligible, compared to the
two first terms, in the range r, & 0.1 (see Table
1)

From Eq. (19) and (22) it is clear that the ap-
proximate expression of the free energy reduces
to simple integrals involving the structure factor
of the OCP. The radial distribution function is
known accurately from the Monte Carlo work''
for many values of I in the range 1»I'» 160. The
corresponding structure factors have been calcu-
lated as outlined in the Appendix. One difficulty in
the calculation of pF, /N is immediately apparent:
Since Stoi(q) is positive definite and dt(q) is nega-
tive, it is clear that in the case of a large per-
turbation, the argument of the logarithm appear-
ing in the integral of Eq. (22) will become nega-
tive in a certain range of q values. From (17)
this is seen to occur for sufficiently large values
of 1 ore, (i.e. , sufficiently strong screening). The
situation is illustrated in Fig. 1 which shows the
locus of points in the (F,r, ) plane where 1+Stoi(q)

x ur (q) = 0 for the Lindhard dielectric function,
Z =1, and the value q =4 which corresponds roughly

TABLE I. Convergence of the perturbation expansion of the free energy PF/N, the equation
of state pP/p, and the internal energy pU/N, for rs=0. l, Z=1 and five values of I'. For each
thermodynamic quantity we give the zero-order term (reference system), the first-order term
and the BPA term in the first, second, and third lines. In the case of PF/N we also list, in a
fourth line, the next term in the Andersen-Chandler expansion.

I'=2 I'= 1P r=50 r =100 I' = 140

—1.065
—0.555 x 10 &

—0.461 x 10
0.960 x 10

—7.109
-0.133
—0.701 x 10

0.424 x 10 3

PF/N

—40.823
-0.377
—0.177 x 10

0.645 x 10 '

—84.293
—0.640
—0.460 x 10

0.145 x 10

—119.381
-0.839
—0.850 x 10

0 338 xlp

—0.444
0.390 x 10
0 167x 10

—1.332
—0.368 x 10
—p.133 x lp 2

—2.663
0 147 x 10
0.295 x 10-2

—7 ~ 990
0 796x 10
0 231 x 10

-14.361
0.315 x 10
0.547 x 10 2

P U/N

—43.083
-0.270
—0.179 x 10 &

—29.157
0 418 x 10
0.603x 10 '

-87.473
-0.500
—0.783 x 10

—41.031
0.446 x 10 '
0 707 x 10-~

12$ 09&

-0.689
—0.165
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&0 8O

I'IG. 1. Range of validity of the generalized SPA.

—=F
PU' 8 PE
N 9F N

S

pQ 1 p U K 8 pI'

p 3 N 3 N; N

(24)

(25)

to the first maximum in the OCP structure factor.
All (F,r, ) points above the curve yield an imagin-
ary PF, /N!

In view of this difficulty (which is a familiar
deficiency of the HPA), we have limited our cal-
culations with the perturbation expansion to the
range q „~ 1, and the Lindhard dielectric function.

From the free energy, we obtain immediately the
excess internal energy and the equation of state
through usual thermodynamic relations:

Results from this perturbation theory will be given
in Sec. V, and compared to the results obtained
by other approaches. %e conclude this section by
examining the convergence of the perturbation ex-
pansion in Tables I and II, for r, =0.1 and 0.5, and
Z =1. The saliant feature is the smallness of the
corrections to the thermodynamic properties com-
pared to the corresponding values for the unper-
turbed system (the OCP). Except for the lowest
values of F, the corrections amount only to a few
percent of the zero-order term. This feature will
be discussed in more detaij. in Sec. V. At r, = 0.1,
the expansion appears to converge very well for
the three calculated quantities pF/N, pU/N, and

PP/p As e. xpected the situation is much less
favorable ate, =0.5; although the RPA term re-
mains small compared to the first-order term in
the expansion of the free energy, it turns out to be
of comparable magnitude in the derivatives PU/N
and PP/p. Moreover the HPA term becomes im-
aginary for F z 80, rendering the expansion use-
less at; large F. The situation is even worse for
higher values of Z, which imply stronger screen-
ing. The perturbation expansion is thus clearl y
limited to the range r, «1.

III. EXPANSION IN POWERS OF qT, .

From (9)and (12)we see thats(q)-1 as qT, .-0;
the perturbation potential (17)vanishes in that limit.
Hence, q.„.is a natural "small" expansion para-
meter in the high-density limit. However, from
(19) and (22) it is clear that the corrections to
the free energy are rather complicated functions

fined order in that parameter. Consequently, it
seems natural to expand pF, /N and pF, /N in powers
of q.„,, since the expansion is expected to be valid

ou e t ird term in the Ander sen-TABLE II. Same as in Table I, but for & =0.5 th t th h

Chandler expansion of PE/&.

r= 30

—1 ~ 065
—0.207
—0.325x 10 ~

-7.109
-0.561
—0.854 x 10 ~

-23.710
-1.192
-0.215

-40.823
—1.739
-0.427

-58.133
—2.267
—0.829

—0.444
—0.254 & 10 2

0.555x10 '

-2.663
0.341 x 10
0.255x10 '

-8.477
0.674x10 '

0.550x10 '

—14.361
0.934 x 10
0.702 x10 '

—20.270
0.100
0.220x10 '

1 ~ 332
—0.163
—0,240x10 '

-7 ~ 990
-0.379

0 563 x 10

-25.430
-0.871
-0.246

—43.083
-1.320
—0.727

-60.811
—1.810
—2, 119
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pF, /N= —(q'/v)rI(r)+ +q,' ,
+ .o(q~~), (26)

only at high densities, we limit ourselves to the
case of the Lindhard dielectric function. After a
straightforward calculation we obtain

(30)

term in the Andersen-Chandler expansion is of
order q.'„. Gathering results, we have

PE PE~ ~ q-"rI(r) + "+o(q', ).

where

9'"(q)f (y)

q
(27)

From (24) and (25) we derive the corresponding
expressions for the internal energy and the equa-
tion of state:

rI(r) =xr +sr'I'+ c . (28)

From a least-squares fit we find for Z = 1:
A =0.05793, B =0.97112, C =-0.34311; for Z =2:
A =0.11020, B =0.78638, C =-0.13231; for Z =6:
A =0.16601, B =0.86149, C =-0.20925.

It should be stressed that the integral I(I'), cal-
culated with f (y) =1 (Thomas-Fermi approxima-
tion), ' is independent of Z and differs markedly
from the Lindhard results for low values of Z (by
a factor of 5 for Z = 1 and I" = 100 !). In fact the
Lindhard integral reduces to the Thomas-Fermi
result only in the limit Z —~, as is immediately
clear from Eqs. (9) and (12). For that reason the
Thomas-Fermi results of Ref. 9 are only useful
in the case of the heavier elements.

In a similiar way, the lea.ding term in the ex-
pansion of pE, /N is found to be of order 3 in q». .

pr, /N= ——,', q.,', + o(q,', ). (29)

It is interesting to note that the leading term in
PE2/N is one order higher in q„ than the leading
term in pF, /N, which, a posteriori, justifies the
labeling of these terms as first- and second-order
corrections in the perturbation theory of the free
energy. Similarily it can be shown that the third

and f (y) is defined through (10) and (11). The in-
tegral I(I') depends only on I' and can be calculated
easily with the help of the OCP structure factors
tabulated in the Appendix. The numerical data
for I(I') can be fitted over the range 1 ~ I' s 160 by
the simple expression

PU PU&" " [rI(r) + r'I'(r)]+ o(q,', ), (31)

F!0) 3
— "r'I'(r)- '+ (q'),

p p 37t' 18 TF (32)

eu 1 9~x= ~-1
mc 137 4 (33)

and the function E is given by

where the prime denotes the derivative with re-
spect to I'. Equations (30), (31), and (32) to-
gether with (28) represent simple analytic ex-
pressions for the thermodynamic properties of
the weakly screened ionic plasma, valid for
q. «1. From (14) it is clear that the dominant
correction is linear in r„ in agreement with the
Monte Carlo results of De Witt and Hubbard. "
The expansion also shows that the corrections to
the free and internal energies are negative, while
they are positive for the equation of state, except
at very low values of I'.

A difficulty arises in the limit r, -0. As pointed
out in Sec. II, relativistic effects of the electron
gas are expected to become important when
x, ~ 10, which is precisely in the range of white-
dwarf matter. The relativistic equivalent of the
Lindhard dielectric function has been calculated
by Jancovici. " Specializing his result to the case
of zero frequency, we find e(q) =1+ (q7~ /q ')E(x, y), . -

where y is defined by (11), x is the dimensionless
relativistic parameter

2 '
F(x, y) = —(1+x~)' — sinh '(x)+(1+x )' ln

3 6yx' 1-y

(34)

In the range x 6 1, we expand F(x, y) in powers of
X2:

F(x, y) = f(y)+ x'(p(y)+ o(y'), (35)

where f(y) is the nonrelativistic limit (10), and

43,
)

1 3y —4y-+1 1+y
( )8 16 y 1 —y

To lowest order in q~, we now find

pF, /N = —(q,', /v)rl(r;x)+ o(q,', , },
with

I(r )

" s"'(q)F(x; y)dr(r;x) = dg
0

=I (r) + x'Z (r),

(37)

(38)

(39)
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where

j(r) s")(q)(p(y)
d (40)

We have cheeked that for r, = 0.01, the error
made in replacing (38) by (39) is less than 10%%uo for
all r values, which is sufficient for our purpose,
since the screening corrections are small at
such a. high density. rJ(r) can again be fitted
over the range 1& I' ~ 160 by a simple expression
of the form (28) with the following values of the
coefficients Z = 1:g = 0.001 445, B= 0.199 28,
C = 0.073 38, Z = 2: A. = 0.003 562, B = 0.384 10,
C = -0.09467; Z = 6: g =0.033127, B=0.37880„
C = -0.06434. Expressions for pU/N and pP/p,
similar to (31) and (32), follow immediately from
(37) and (39); it must be kept in mind, in deriving
pP/p, that x is a function of r, [cf. E(I. (33)]. The
relativistic effects increase the screening correc-
tions by roughly 50/o at r, = 0.01, and by less than
10% at r, = 0.02; the in. crease is somewhat larger
for ionic plasmas of higher valence.

IV. VARIATIONAL APPROACH

The perturbation expansion of Sec. II and the
related qT, : expansion of Sec. III are useful only if
q.„, & 1. Jovian interior conditions (x,= 0.5, r&10)
on the other hand correspond precisely to the
range where the perturbation theory becomes
unreliable. For that reason we propose a different
approach to deal with the range qT, : —1. This is a
variational method based on the Gibbs-Bogolyubov
inequality:

PF/N & PF+/N+ PF, /N,

which we use with the OCP as a reference system.
Compared to the va, riational approach based on a
reference system of hard spheres, the present
method has two major advantages: It becomes ex-
act in the limit r, -0, since the screened ionic
plasma then reduces to the reference system
itself; this means that our variational results can
a priori be expected to be much more accurate
than the hard-sphere results for small values of
y . Secondly, the comparison in Sec. V will show
that the OCP variational free energies are system-
atically lower than the hard-sphere results even
in the range r, ~ 1. Since both sets of data are
upper bounds to the exact free energy, our results
are necessarily closer to the exact result.

The choice of the variational parameter in the
reference system is based on the simple physical
picture of charge reduction due to screening:
instead of choosing an unscreened reference fluid
of ions with charge Ze, as was done in the pertur-
bation theory of Sec. II, it seems reasonable to

reduce the charge of the ions to Z'e (Z' &Z): Z'e
is, roughly speaking, the total charge of an ion
and its surrounding electron "cloud. " Z' is then
the variational parameter in our problem. Since
the OCP properties depend only on the dimension-
less parameter I', the variational parameter will
be

I"= (Z'e)'/akeT,

and the Gibbs-Bogolyubov inequality reads

PF(I'; r, ) & PF (I") PF,(I";r, )

N N N

(42)

(43)

The perturbation potential is now

3I' 1 I'
w(q) = —,q' e(q)

3I 1 r -r' 3r'—1 +q' e(q) r' q' (44)

instead of (17), so that (43) can be rewritten as

P F(r; r, ) PP"(r') I' "
s„)( r, )

1

r-r pv"'(r)
r' (45)

where U" denotes the excess internal energy of
the OCP. For PF")/N we have used in all our cal-
culations the remarkably simple fit to the Monte
Carlo data-" proposed by De Witt, "which is valid
in the range I'~ 1:

pro)
=HI'+ BI'" C lnI'+ D, (46)

(47)

The final formula, s are

pv(r; r.) r pv'"'(r')
r'

q"'(q; ("( —() dq, (qq(

where g = -0.896 434, B = 3.447 408, C = -0.555 130,
D = -2.995974. The corresponding pU'/N is ob-
tained by differentiation with respect to I'.

Using these expressions and the structure fac-
tors of the OCP tabulated in the Appendix, we
have minimized the right-hand side of (45) with
respect to I'. In the range qT, ~ 1, we have
limited ourselves to the Lindhard dielectric func-
tion, whereas for qT, ,& 1 we have also used the
e(q) of Refs. 15, 16, and 17.

The internal energy and equation of state can be
calculated from formulas (24) and (25). Important
simplifications occur because of the minimization
condition:
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Pp(r; r,) 1 PU(r; r.)
p 3 N

F
& )(,)

(q) dq
( )3m, q' ' sr, e(q)' '

The results obtained by the variational method
will be presented and discussed in the following
section. Here, we only wish to point out that the
ratio I"/F decreases as q~, (i.e. , r, or Z) in-
creases (see column 2 of Tables III-V), as one
would expect since the effective charge reduction
becomes gradually more important with an increase
in electron screening. On the other hand for
fixed values of qr, , , the ratio I"/I' depends only

weakly on l .

V. RESULTS

This section is devoted to a systematic compari-
son of the results, obtained by the methods intro-
duced in Sections II-IV, with the existing data of
other workers. In a first set of tables we compare
our results, obtained variationally or by the per-
turbation expansion, to the Monte Carlo (MC)
data of De Witt and Hubbard" and the hard-sphere
variational results of Ross and Scale. ' This com-
parison is limited to Z = 1, r, ~ 1, and the Lind-
hard dielectric function. In the range r, & 1 on
the other hand, we compare the results obtained
with different dielectric functions.

A few preliminary remarks must be made con-
cerning the hard-sphere calculations of Ross and
Scale; their variational parameter is the hard-
sphere packing fraction q. However, the free
energies which they obtain cannot be considered
as true upper bounds to the free energy of the
screened ionic plasma for two reasons. First,
they use the analytic Percus-Yevick approxima-
tion~ for the structure factor of the hard-sphere
fluid to calculate PF, /N. This is an excellent
approximation for q ~ 0.3; above that value the
"exact" structure factors, based on computer
simulation results, " should be used. We have
checked that this modification leads to small,
but no entirely negligible corrections to the cal-
culated thermodynamic properties. The second,
more serious approximation in the work of Ross
and Scale is their modification of the "exact" hard-
sphere free energy" by an additional term -q,
which has no theoretical justification, but has
been added empirically to improve the agreement
between the variational and "exact" free energies
of a number of fluids. " We have repeated the
variational calculations without including this
empirical modification of the hard-sphere free
energy, to obtain an "exact" upper bound to the
free energy of the screened ionic fluid. The

results obtained with both methods are listed in
the tables: heading HS1 refers systematically
to our "exact" hard-sphere calculations, whereas
HS2 refers to the results obtained by the empiri-
cal method of Ross and Scale.

In Tables III-V we compare the thermodynamic
properties calculated by the perturbation expan-
sion (Pert. ), the q~, expansion, the variational
methods based on the OCP (Var. OCP) and the
hard-sphere reference systems (Var. HS1 and HS2)
to the MC data of De Witt and Hubbard, "for
r, =0.1, 0.5, and 1, and Z =1; the Lindhard dielec-
tric function is used throughout. For each value
of I' we have successively listed the deviations
b, ('p+/N), b, (QP/p), and 6(pU/N) of the excess free
energy, equation of state, and internal energy
from their OCP unscreened values. The results
from perturbation theory are listed only under
conditions where the RPA term (22) is real. The
optimum parameters, I' and q„which minimize
the free energies based on the OCP and hard-
sphere variational methods are listed in columns
2 and 3. The unscreened OCP results are listed
in column 4. Inspection of the listed results calls
for the following remarks:

(i) At r, = 0.1, where the perturbation expansion
converges well, it predicts thermodynamic pro-
perties in good agreement with the Monte Carlo
data and with the OCP variational results. The
relative inaccuracy of the MC data is apparent
at low values of I', where the MC free energies
lie above the OCP variational results which repre-
sent nearly exact upper bounds, since they are
based on the very accurate MC data of the un-
screened OCP. '

(ii) For r, = 0.5 and r, = 1, the perturbation ex-
pansion is much less useful, as expected; it con-
verges only for low values of I', and predicts
free energies which are systematically lower than
the MC data and the variational results. As in
the case r, = 0.1, the MC free energies lie slightly
above the variational results for l ~ 50, indicating
a small systematic error in the MC results of
De Witt and Hubbard; the difference between their
total free energies and the variational results
based on the OCP reference system is less than
the estimated error of the MC results (2/p) for
r- 5.

(iii) The variational free energies based on the
hard-sphere reference system lie systematically
above the variational results based on the OCP.
The Ross-Scale empirical modification lowers the
free energies somewhat, but their results still
lie substantially above the OCP variational free
energies. This is not unexpected at r, = 0.1, but
remains true even at y, =1, where the screening
corrections to the free energy are important.
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TABLE III. Comparison of results of various theories, for Z=1 and r, =0.i. For each value of I', the first line lists
the results for the deviation 4PF/N of the free energy from its OCP value (which is given in column 4), the second line
lists the corresponding deviation &PP/p of the equation of state, and the third line the deviation &PU/N of the internal
energy. The Monte Carlo data are listed in column 5, the results of the qTF expansion [Eqs. (30)—(32)] in column 6,
the results of the perturbation expansion in column 7, the variational results based on the OCP reference system in
column 8, and the variational results based on the hard-sphere reference system in columns 9 and 10. HS1 refers to
the "exact" hard-sphere results, and HS2 to the values obtained by the method of Ross and Scale. 7 The optimum val-
ues of the variational parameters, I' and g&, are listed in columns 2 and 3. The Lindhard dielectric function is used
throughout.

OCP
Monte
Carlo

&TF
expansion Pert. Var. OCP Var. HS1 Var. HS2

10

20

1.710

5.400

9.062

18.220

0.068

0.167

0.220

0.294

-1.065
-0.444
—1.332

-3.972
-1.530
-4.590

-7.109
-2.663
-7.990

-15.299
-5.554

—16.661

-0.031
0.002

-0.026

-0.074
0.006

-0.055

-0.108
0.009

-0.081

-0.183
0.014

—0.141

-0.059
0.007

—0.031

—0.105
0.014

—0.057

—0.139
0.018

-0.079

—0.210
0.024

—0.130

-0.060
0.006

-0.038

-0.105
0.014

-0.057

-0.140
0.018

-0.082

—0.212
0.024

-0.136

-0.058
0.008

-0.028

—0.101
0.013

—0.055

—0.135
0.016

—0.078

—0.206
0.022

—0.133

0.225
0.106
0.193

0.450
0.144
0.223

0.566
0.165
0,237

0.732
0.201
0.253

0.147
0.074

—0.110

0.274
0.105
0.127

0.338
0.125
0.136

0.431
0.160
0.149

40

70

36.420 0.368

63.500 0.425

-32.232
—11.414
—34.243

—58.133
-20.270
-60.811

-0.316
0.020

-0.257

-0.503
0.026

-0.427

-0.330
0.032

—0.228

—0.494
0.039

-0.370

-0.338
0.034

-0.237

-0.512
0.039

-0.408

—0.329
0.030

-0.230

—0.493
0.040

-0.366

0.899
0.245
0.239

1.017
0.290
0 ~ 187

0 ~ 526
0.205
0.138

0.589
0.252
0.089

100 90.500 0.460 —84.293
-29.157
-87.473

-0.684
0.030

-0.595

—0.649
0.044

—0.510

-0.686
0.048

-0.578

—0.646
0.047

—0.499

1.069
0.321
0.109

0.606
0.284
0.014

120 108.260 0.478 -101.815
—35.092

—105.275

-0.802
0.032

-0.706

—0.751
0.047

—0.603

-0.803
0.043

-0.732

-0.744
0.052

-0 ~ 583

1.082
0.336
0.047

0.602
0.301

—0.046

140

160

126.200 0.492

143.820 0.504

-119.381
-41.031

—123.093

-136.982
—46.974

-140.923

—0.919
0.034

-0.817

—1.036
0.036

-0.928

-0.850
0.049

—0.696

—0,949
0.051

—0.788

-0.924
0.052

-0.854

—1.056
0.026

—1.106

—0.841
0.055

—0.670

—0.936
0.060

-0.752

1.083
0.350

—0.019

1 ~ 075
0.361

—0.091

0.589
0.315

—0.110

0 ~ 569
0.327

—0.181

Moreover, the free-energy derivatives (HAPP/p
and CPU/N), calculated with the hard-sphere
reference system, differ considerably from the
MC data and the OCP variational values.

(iv) The predictions of the expansion in powers
of qT, , (up to qTF) are in surprisingly good agree-
ment with the MC and OCP variational results,
even at r, = 1 (where q» = 1.56). The agreement
for qT, , & 1 is certainly accidental, and the ex-
pansion should only be used in the range q,F &1.
In particular, the fact that the qT, . expansion pre-
dicts a small negative correction to the pressure

at low l and large r, is probably spurious, since
the qT, , term in Eq. (32) is then larger than the
q', term.

The most important results of this systematic
comparison are summarized in Figs. 2-6.

A similar comparison is made, at r, = 0.5, for
Z =2 and 6 (qT, =1.39 and 2.01, respectively) in
Tables VI and VII. No MC data are available for
those cases, and the perturbation theory fails
since we are in strong screening situations.
Hence, we compare only the OCP variational
results to their hard-sphere counterparts, in the
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TABLE IV. Same as in Table III, but for &,=0.5.

OCP
Monte
Carlo

&V'F

expansion Pert. Var. OCP Var. HS1 Var. HS2

1.002

3.858

6.642

0.045 -1.065
—0.444
—1.332

-3.972
—l.530
-4.590

-7.109
—2.663
—7.990

-0.158
0.009

—0.131

-Q.396
0 ~ 031

-0 ~ 275

-0.540
0.046

-0.403

-0.211
-0.007
—0.157

-0.443
0.028

-0.283

-Q.613
0.048

—0.393

-0.242
0.003

-0.188

-0.469
Q Q44

—0.291

-0.646
0.060

-0.430

—0.235
0.017

-Q.139

-0.436
0.039

—0.262

—0.599
0.051

-0.382

-0.083
0.088

-Q.007

—0,119
0.161

-0.073

-0.177
0.19S

-0.157

—0.133
0.066

-0.056

—0.249
0.118

—0.161

—0.354
0.153

—0.249

20 13.440 0.240

40 26.530 0.315

—15.299
-5.554

-16.661

32 232
-11.414
-34.243

—0.913
0.069

—0.706

-1.581
0.099

-1.286

-0.966
0.080

-0.650

-1.567
Q.118

-1.138

-1.039
0.094

-0.761

-l.785
0.154

-1.517

-0.948
0.074

-0.653

-1.555
0.109

-1.149

—0.345
0.269

-0.347

-0.719
0.349

—0.761

-0.593
0.214

—0.456

—1.040
0.289

—0.882

70 45.330

100 63.440

120 75.200

0.375

0,431

0.446

-58.133
-20.270
—60.811

—84.293
-29.157
-87.473

-101.815
-35.092

-105.275

-119.3S1
-41.031

-123.093

—2.517
0.127

—2.135

—3.420
0.148

-2.974

-4.011
0.160

-3.531

—4.597
0.170

-4.086

-2.386
0.154

-1.850

-3.164
0.179

-2.551

-3.670
0.193

-3.016

-4.170
0.205

-3.479

-3.096
0.122

-3.929

2 ~ 37S

0.150
—1.848

-3.151
0.185

-2.522

-3.649
0.206

-2.962

-4.139
0.226

-3.399

—1.310
0.426

-1.395

-1.918
0.482

-2.036

-2.329
Q. 513

—2.465

-2.742
0,539

-2.897

-1.690
0.373

—1.500

2 %334

0 ~ 431
-2.135

-2.763
0.462

-2.564

-3.192
0.489

—2.995

160 98.130 0.459 -136.9S2
-46.974

-140.923

-5.179
0.1.80

-4.639

-4.664
0.216

-3.940

-4.621
0.245

-3.831

-3.159
0.562

—3.331

-3.621
0.513

—3.428

"exact" (HSl) and Ross-Scale (HS2) versions.
Because q~~ is significantly larger than one we
also list, in the last column of both tables, the
OCP variational results based on the Geldart-
Vosko" dielectric function. For g = 2, the OCP
variational free energies still lie significantly
below the hard-sphere results, and the pressure
corxections calculated by both methods differ con-
siderably.

The influence of the assumed form of the dielec-
tric function on the thermodynamic properties
(compare columns 2 and 5) is not negligible. As
expected, this influence is even larger at Z = 6
(Table VII). In the latter case the deviations of
the thermodynamic properties from their OCP
values are very large (over 50/q on the free and
internal energies). The results based on the OCP
and hard-sphere systems are in good agreement,

but the differences between the results based on
the Lindhard and Geldart-Vosko dielectric func-
tions are quite sizeable (= 10/p at high I'). Note
that the screening corrections to the pressure
are negaji 8e in this case.

The influence of the choice of dielectric function
is also illustrated by Table VIII, where we com-
pare the corrections to the thermodynamic px'o-

perties, obtained with three different dielectric
functions, at y, = 1.5 and for Z = 1. The dielectric
function of Toigo and %oodruff" is probably the
most reliable and we have added, for comparison,
the variational results based on the hard-sphere
reference system and this same dielectric func-
tion (two last columns). It is seen that even at
y, =1.5, the OCP model yields the lowest varia-
tional free energies, but the results obtained by
both variational methods agree xather closely,
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TABLE V. Same as in Table III, but for r~= l.

0.942

2.795

0.033

0.091

OCP

-1.065
-0.444
—1.332

—3.972
-1.530
—4.590

Monte
Carlo

-0.315
0.017

-0.263

-Q.739
0.063

—0.550

AF
expansion

-0.297
-0.077
—0.315

-0.761
—0.006
-0.566

Pert.

-0.416
-0.020
-0.368

-0.867
0.053

-0.599

Var. OCP

-0.380
0.008

-0.252

-0.787
0.040

-0.522

Var. HS1

-0.300
0.061

—0.172

-0.590
0.145

-0.385

Var. HS2

-0.337
p p44

-0.207

-0.690
0,101

—0.464

10 4.770 0.131 -7.109
—2.663
-7.990

-1.080
0.091

-0.806

-1.102
0.035

-0.786

-1.242
0.084

-0.922

-1.098
0.066

-0.738

-0.835
0.197

—0.581

-0.975
0.146

—0.670

20 9.712 0.196 -15.299
-5.554

-16.661

—1.827
0.138

—1.411

-1.807
0.098

—1.300

-2.129
0.159

-1.827

-1.779
0.100

-1.280

-1.386
0.283

—1.058

—1.589
0.226

—1.151

40 18.830

70 31.260

100 42.710

120 50.002

0.265

0.325

P.360

0.379

—32.232
-11.414
—34.243

—58.133
—20.270
-60.811

—84.293
-29.157
—87.473

-101.815
-35.092

—105.275

—3.163
Q.197

—2.571

-5.035
0.255

-4.270

—6.840
0.297

—5.949

-8 ~ 023
0.320

—7.062

-3.011
Q.174
2 y 2 77

-4.648
0.245

-3.700

-6.203
0.296

-5.103

-7.216
0.324

-6.032

-2.977
0.154

-2.280

—4.616
0.221

-3.697

-6.166
0.280

-5.069

-7.169
0.315

-5.970

—2.398
0.403

-1.961

—3.843
0.506

-3.323

-5.250
0.599

—4.644

-6.177
0.643

-5.533

—2.670
0.334

—2.070

-4.172
0.444

—3.419

-5.639
0.501

—4.710

—6.561
0.572

—5.664

140 56.850 0.394 —119.381
—41.031

-123.093

-9.195
0.341

-8.171

—8.215
0.348

-6.958

-8.156
0.351

-6.858

-7.098
0.685

—6.416

-7.497
0 ~ 613

-6.522

160 63.540 0.408 -136.982
-46.974

—140.923

-10.358
0.360

-9.279

-9.204
0.370

-7 ~ 881

-9.130
0.385

-7.741

-8.013
0.721

-7.300

-8.425
0.650

—7.404

0.0

1.O ~ I i I i I i I

0. K. 80 120. 160.r
FIG. 2. Deviation of the Helmholtz free energy from

the OCP value, as a function of I', along the isochore
r, = 0.1. Full curve: variational results based on the
OCP reference system; dots: expansion (30); crosses:
Monte Carlo results (Ref. 11).

I i I i I

FIG. 3. Same as Fig. 2, but for the deviation of the
internal energy.
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.08

.30

.04.

.20

.10

I I I I I I I I I

0. K. 80 120. 160.

.00 i I i I i I i I

0. 4Q 80. 120. 160.r

FIG. 6. Same as Fig. 5, but for the equation of state.

FIG. 4. Same as Fig. 2, but for the deviation of the
equation of state.

except for the pressure.
Finally we show in Fig. 7 the corrections to

the equation of state, calculated by the OCP vari-
ational method, along the isotherm T = 104 'K for
Z = 1 (H), which is typical of Jovian interior con-
ditions. Since T is fixed, r, is inversely propor-
tional to I'. Three different dielectric functions
are used: Lindhard, Geldart-Vosko, and Toigo-
Woodruff. The results are seen to differ greatly
below 1 = 60, i.e. , r, ~ 0.5. The equation-of-state

0

—10 i l i l i I i I

0. 40. 80. 120 160

FIG. 5. Deviation of the Helmhol. tz free energy from
the OCP value, as a function of 1, along the isochore
r, = 1. Full curve: OCP variational results; dashed
curve: hard-sphere variational results (HS1); dots: ex-
pansion (30); crosses: Monte Carlo data (Ref. 11).

corrections, which are considerably smaller than
the free- and internal-energy corrections, are the
most sensitive to the choice of dielectric function.
This is also quite clear from Fig. 8, where we
show the variations of LpF/N, npU/N, and r pP/p
as a function of r„ for a fixed 1' (1 = 50), using
the Lindhard and Toigo-Woodruff dielectric con-
stants.

VI. DISCUSSION

We have presented detailed calculations of the
thermodynamic properties of a one-component
ionic plasma in the presence of a responding
degenerate electron background, over a wide
range of physical conditions. All our calculations
have in common the use of the unscreened one-
component plasma (OCP) as a reference system.

In the high density or weak screening limit (qT, :
&1) characteristic of white-dwarf matter, we have
derived a simple expansion in powers of q» . The
analytic expressions (30), (31), and (32) for the
free and internal energies and the equation of state
allow a quick computation of the thermodynamic
properties in that limit, for any ionic species,
i.e. , any value of Z. In the very-high-density
range, we have taken care of relativistic effects
in the electron gas, by using the relativistic
counterpart of the Lindhard dielectric function.

In the intermediate screening range (qT~ = 1)
characteristic of the interior of Jupiter, and
possibly of metallic hydrogen, the perturbation
theory which leads to the q»-. expansion, breaks
down, and we have introduced a powerful varia-
tional method, using the effective reduced ionic
charge as a parameter to minimize the free
energy. Our results are in good general agree-
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TABLE VI. Variational results for APE/&, &PP/p,
and &PU/&, for a helium plasma (Z=2) at x~=0.5. In
columns 2, 3, and 4 the results of the three variational
methods, using the Lindhard dielectric function, are
compared. In the last column we list the OCP variation-
al results based on the Hubbard-Geldart-Vosko dielec-
tric function.

TABLE VII. Same as in Table VI, but for Z=6.

—1.566
—0.169
-1.342

—1.556
-0.161
—1.327

—1.567
-0.167
-1.337

—1.679
—0.165
-1.452

I Var. OCP (1) Var. HS1 Var. HS2 Var. OCP (2)

I' Var. OCP (1) Var. HS1 Var. HS2 Var. OCP (2)
-4.043
—0.384
-3.535

-4.013
-0.360
-3.498

-4.041
-0.377
-3.520

—4.362
-0.280
-4.380

10

20

40

70

100

120

140

—0.518
0.000

-0.371

—1.153
0.018

-0.855

-1.693
0.030

-1.293

-2.917
0.038

-2.353

—5.178
0.048

-4.388

-8.387
0.062

-7,342

-11.492
0.076

-10.240

-13.529
0.084

-12.153

—15.545
0.093

-14.057

-0.456
0,047

-0.302

-0.987
0.114

-0.730

-1.451
0.161

—1.119

—2.528
0.220

—2.098

—4.578
0.275

—4.038

-7.593
0.276

—7.000

-10.593
0.244

-9 ~ 985

—12.592
0.211

-11.989

-14.592
0.176

-13.996

-0.487
0.029

-0.337

—1.074
0.079

-0.790

—1.577
0.112

-1.201

-2.716
0.165

-2.187

-4.839
0.205

-4.152

-7.917
0.207

-7.114

—10.959
0.173

-10.106

—12.979
0.146

-12.103

—14.997
0.110

-14.111

—0.543
0.006

-0.390

-1.209
0.036

-0.893

-1.772
0.056

—1.345

-3.042
0.081

-2.440

-5.384
0.117
4 543

-8.704
0.169

-7.592

-11.915
0.219

—10.582

—14.019
0.252

-12.557

-16.102
0.285

-14.520

10

20

40

70

100

120

140

160

-6.339
-0.579
—5.618

-11.788
—1.026

-10.657

-22.218
-l.923

—20.563

—37.516
-3.434

-35.505

-52.676
-4.899

-50.370

-62.733
-5.859

-60.244

-72 ~ 760
—6.811

-70.099

-82.763
-7.758

-79.940

-6.285
-0.542
-5.560

—11.696
—1.001

-10.613

—22.126
—1.941

-20.604

—37.441
-3.349

-35.483

—52.585
-4.749

-50.294

-62.626
-5.676

—60.140

-72.636
-6.602

-69.974

-82.622
—7.537

-79.808

-6.326
-0.568
-5.592

-11.767
-1.045

—10.665

-22.240
—2.003

-20.682

-37.596
—3.408

-35.557

-52.765
—4.815

-50.372

-62.819
-5.737

—60.211

—72.840
—6.667

-70 ~ 047

—82.835
—7.595

-79.870

—6.849
—0.532
—6.090

-12.76Q
-0.931

—11.568

-24.077
—1.679

-22.284

-40.591
-2.804

—38.198

-56.880
—4.048

-54.099

-67.699
—5.171

—64.890

—78.504
-6.090

-75.560

—89.288
-6.974

-86.197

160 -17.546
0.102

-15.952

-16.594
Q.133

-16.012

—17.014
0.070

-16.124

-18.169
0.317

-16,475

ment with the MC data of De Witt and Hubbard;
in particular, they exhibit the linearity of the
screening corrections in y„up to y, —1. In the
same density range our variational free energies
are systematically lower than the results based on
the hard-sphere reference system, and the
derivatives agree much better with the MC data.

We have extended the calculations to the range
r, &1, where no MC data are yet available. How-
ever, at such relatively low densities, the results
are very sensitive to the assumed form of the di-
electric constant of the electron gas. As is well
known, the I indhard function, which ignores ex-
change and correlation effects, becomes very in-

adequate in that range. The results obtained with
the widely used Hubbard-Geldart-Vosko function
and the more recent Toigo-Woodruff dielectric
constant, differ significantly for r, & 1.

To conclude we would like to point out two
striking features of our results. First, it is
remarkable that the deviations of the calculated
thermodynamic properties from their unscreened
(OCP) counterpart are relatively small, even in
the range where qT„.= 1. The relative importance
of the corrections decreases as I' increases. This
can be qualitatively understood by noting that
there is a competition between the screening of
the ions themselves, characterized by an ionic
screening length A.„and the screening due to the
polarized electron background, which is character-
ized by the Thomas-Fermi length XT„=1/qT~. For
F «1, X, is roughly equal to the Debye length
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'TABLE VIII. Comparison of thermodynamic properties (ApF/N, 4pP/p, ~pU/N) obtained by variationally by for a
hydrogen plasma, at r, =1.5, using three different dielectric functions: Lindhard (1), Hubbard-Geldart-Vosko (2) and
Toigo-Woodruff (3). The variational results based on the OCP reference system are listed in columns 5-7; the re-
sults obtained by both hard-sphere variational methods (HS1 and HS2) are listed for the Toigo-Woodruff dielectric func-
tion only, and should be compared to the data labeled OCP (3). The optimum values of the variational parameters,
corresponding to the Toigo-Woodruff dielectric constant, are given in columns 2 and 3.

OCP Var. OCP (1) Var. OCP (2) Var. OCP (3) Var. HS1 Var. HS2

10

20

40

70

100

120

140

160

0.703

1 ~ 750

2.722

5.437

10.752

17.070

22.012

24.812

27.320

29.570

0.027

0.077

0.090

0.136

0.190

0.239

0.268

0.284

0.297

0.308

-1.065
-0.444

1+332

-3.972
-1.530
-4.590

-7.109
-2.663
-7.990

-15.299
-5.554

-16.661

-32.232
—11.414
—34.243

-58.133
—20.270
-60.811

-84.293
-29 ~ 157
-87.473

-101.815
—35.092

-105.275

-119.381
-41.031

-123.093

-136.982
-46.974

-140.923

-0.506
-0.005
-0.356

-1.090
0.029

-0.755

-1.554
0.059

-1.086

-2.550
0.102

-1.871

-4.307
0.165

-3.354

-6.723
0.259

—5.461

-9.015
0.353

-7.502

-10.501
0.415

-8.841

-11.964
0.478

-10.168

-13.408
0.541

-11.485

—0.544
0.002

-0.385

-1.173
0.054

—0.812

-1.670
0.101

-1.158

-2.724
0.175

-1.970

-4.570
0.275

-3.516

-7.101
0.418

-5.714

-9.497
0.561

-7.838

—11.049
0.656

—9.231

—12.576
0.751

—10.661

-14.082
0.845

-11.980

-0.567
0.007

-0.406

—1.231
0.072

-0.859

-1.757
0.133

-1.224

-2.867
0.236

-2.072

-4.808
0.373

—3.696

-7.468
0.567

-6.008

-9.988
0.760

—8.244

-11.621
0.887

-9.711

-13.227
1.014

-11.165

-14.812
1.140

-12.607

-0.388
0.078

-0.234

-0.780
0.198

-0.504

-1.633
0.241

—1.158

-2.700
0.416

-1.993

-4.569
0.678

-3.553

-7.136
0.966

-5.813

-9.578
1.229

-8.001

-11.167
1.377

—9.452

—12.733
1 ~ 519

-10.892

-14.282
1.653

-12.325

-0.420
0.059

-0 ~ 269

-0.865
0.155

-0.568

-1.730
0.193

—1 ~ 220

-2.843
0.347

—2.069

—4.767
0.591

-3.638

—7.380
0.876

-5.891

-9.852
1.123

-8.086

-11.456
1.270

-9.535

-13.035
1.404

-10.977

-14.595
1.521

-12.419

X~ = 1/(3I"}"'.Electron screening effects will be
important, if XT, &A.D. For I'&1, the concept of
a Debye length loses its significance because of
the appearance of short-range order. " Under
these conditions, A, is roughly equal to the mean
interionic spacing, i.e. A, , = 1, and electron
screening effects are expected to be important
only if ~T, &1, i.e. qTF

&1.
The second striking feature is the fact that the

calculated deviation of the equation of state from
its OCP value is consistently smaller, by an order
of magnitude, than the corresponding deviations
of the free and internal energies, and is of oppo-
site sign, at least as long as q» &1. There

seems to be no obvious explanation for this sys-
tematic behavior.
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80 120

FIG. 7. Deviation of the eguation of state of ionic hy-
drogen from its OCP value, as a function of I', along the
isotherm T =104'K. The full, dashed, and dash-dotted
curves correspond to the Toigo-Woodruff, Hubbard-Gel-
dart-Vosko, and Lindhard dielectric functions. Note
that r, varies with I' according to x, =31.55/I .

APPENDIX

Here we give a brief outline of our method for
calculating the structure factor of the OCP, start-
ing from the pair-distribution function g(r) ob-
tained by the Monte Carlo simulations of Ref. 2.
S(q) is tabulated as a function of q for 9 values
of I' in Table Ix. If x =r/a and q=ak, the struc-
ture factor is derived from g(r) by the Fourier
transform:

Qo

S(q) =I+3 j [g(x) —I] x'dx.
0 kx

However, since the simulated systems are of
finite size (a few hundred particles in a cubic
volume, with periodic boundary conditions) g(x)
is determined in the MC calculations only in the
range g ~ —,'I, where I. is the cube edge, which is
typically of order 5. At large values of r, g(x)
has pronounced oscillations which are not yet
sufficiently damped for g = —,'L„so that large
truncation errors occur in the evaluation of (Al).
Consequently an extrapolation scheme is needed
to obtain accurate values of g(x) in the range
x& ,I,. Our p-roemlure is inspired by a. similar
scheme devised by Verlet" in the study of simple
liquids, and is based on the observation, that the
Ornstein-Zernike direct correlation function c(x)
approaches rapidly its Debye-Huckel limit

c,„(x)= —r/x

0.25

~o~ ~~
o

0 Rs

irrespective of the value of I'. The MC calcula-
tions have shown that c(x) differs from c»(x) by
less than I /O already at distances of the order of
the mean interionic spacing (x= 1.6). For x&~&1„
the difference between c (x) and its asymptotic
form is completely negligible. Consequently,
we obtain g(x), for x&-,'L, by solving the set of
equations:

2.5

-5.0

g(x) =g„,(x), x&-', 1.

c(x) = c,„(x), x & ', f. -
(A3)

(A4)

supplemented by the Ornstein-Zernike relation
between g(x) and c(x):

FIG. 8. Deviations of thermodynamic properties of
ionic hydrogen from the OCP values, at constant
I' P'=50), as a function of ~, calculated by the OCP
variational method, using the Lindhard (curves), and
Toigo-Woodruff (dots and crosses) dielectric constants.
Upper part of graph: APJ'/p. Lower part of graph:
Helmholtz free energy gull and crosses) and internal
energy (dashed curve and full circles). Note the differ-
ence in scale above and below the t', axis.

(A5)

In (A3), g„c(x) denotes pmr-distribution function
calculated by the MC method for x&-',I. Equations
(A3), (A4), and (A5) form a closed set, which can
be solved iteratively like the usual integral equa-
tions in the theory of liquids. This was done for
about 20 values of I' in the range 2&I" & 160. The
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TABLE IX. Structure factor of the OCP, as a function of q=ak, for 9 values of I'.

q=ka I =6 I =10 r=20 r=40 I =70 I =100 I'= 130 I'= 160

1.0
1.4
1.8
2 ' 2

2.6
3.0
3.2
3.4
3.6
3.8
4 0
4.2

4 4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.4
6.8
7.2
7.6
8.0
8.4
8.8
9.2
9.6

10.0
10.8
11.6
12.4
13.2
14.0
14.8
15.6
16.4
17.2
18.0
18.8
19.6
20.4

0.157
0.289
0.437
0.582
0.709
0.809
0.848
0.882
0.909
0.931
0.949
0.963
0.974
0.983
0.989
0.994
0.998
1.000
1.002
1.003
1.004
1.005
1.004
1.004
1.003
1.003
1.002
1.002
1.001
1.001
1.001
1.000
1.000

0.059
0.122
0.215
0.340
0.498
0 ~ 673
0.760
0.839
0.910
0.967
1.010
1.041
1.057
1.066
1.066
1.062
1.056
1.047
1.039
1.031
1.024
1.012
1 ~ 004
0.999
0 ~ 996
0.995
0.996
0.997
0.998
0.998
0.999
1.000
1.001
1.001
1.000
1.000

0.036
0.078
0.144
0.245
0.393
0.590
0.702
0.814
0.919
1.007
1.073
1.116
1.136
1.138
1.128
1.110
1.089
1.067
1.047
1.029
l.014
0.994
0.985
0.984
0.986
0.990
0.994
0.997
0.999
1.000
1.001
1.001
1.000
1.000

0.019
0.042
0.081
0.144
0.253
0.439
0.575
0.739
0.920
1.094
1.229
1.303
1.315
1.283
1.229
1.168
1.111
1.061
1.020
0.989
0.966
0.943
0.943
0.957
0.977
0.995
1.006
1.011
1.012
1.009
1.005
1.000
0.999
0 ~ 998
0.999
1 ~ 001
1.001
1.000
1.000

0.010
0.021
0.042
0 ~ 079
0.151
0 ~ 297
0.423
0.604
0.853
1.154
1.438
1.598
1.591
1.474
1 ~ 324
1.188
1.080
0 ~ 999
0.942
0.903
0.880
0.868
0.894
0.943
0.996
1.032
1.044
1.039
1.026
1.009
0.994
0.998
0.994
1.000
1.004
1.001
1 ~ 000
0.999
0.999
1 ~ 001
1.001
0.999
1.000
1.000

0.005
0.012
0.025
0 ~ 047
0.092
0 ~ 194
0.293
0 ~ 457
0.727
1.141
l.638
1.957
1.908
1.647
1.375
1.163
1.013
0.910
0.843
0.803
0.784
0.797
0.861
0.952
1.039
1.092
1.095
1.064
1 ~ 021
0.984
0.964
0.974
1.001
1.015
1.007
0.996
0.996
0.998
1.001
1.002
l.000
0.999
1 ~ 000
1.000

0.004
0.009
0.018
0.034
0 ~ 066
0.143
0.222
0.361
0.616
1.073
1.747
2.260
2.168
1.759
1.386
1.123
0.949
0.836
0.766
0.727
0 ~ 715
0.752
0.851
0.975
1.081
1.139
1.130
1.069
1.001
0.955
0 ~ 938
0.969
1.017
1.026
1.002
0.990
0.991
1.002
1.004
1.002
0 ~ 999
0 ~ 998
1.000
1.000

0.003
0.007
0.014
0.026
0 ~ 052
0.113
0.179
0.298
0.530
0.993
1.803
2.534
2.378
1.809
1.360
1.074
0.897
0.786
0.720
0.686
0.676
0.722
0.838
0.987
1.117
1.186
1.157
1.064
0.979
0.929
0 ~ 916
0.972
1 ~ 032
1.032
0.996
0.981
0.993
1.007
1.007
1.000
0.996
0.999
1.001
1.001

0.002
0.005
0.011
0.021
0.043
0.096
0.153
0.261
0.475
0.929
1.808
2.714
2.537
1.858
1 ~ 354
1.048
0.862
0.749
0.682
0.648
0.641
0.698
0.833
1.004
1.145
1.215
1 ~ 177
1.061
0.959
0.904
0.898
0.979
1.045
1.037
0.988
0.975
0.994
1.013
1.008
0.997
0.995
0.998
1.002
1.002

results obtained by this procedure are considerab-
ly more accurate than the original data, tabulated
in Ref. 2, which were based on a direct evaluation
of the statistical average:

(A6)

where p- is defined by (3). For q» 1, the calcu-
lated values of S(q) are indistinguishable from
their exact long-wavelength limit":

1
(A7)3«'+X'r Xr

'

where X'/X is the ratio of the ideal-gas compres-
sibility over the compressibility of the OCP,
which can be easily calculated by taking the sec-
ond derivative of (46) with respect to 1. Conse-
quently, we have omitted the low-q values of the
structure factors in Table Ix. Finally, for 1 ~1,
S(q) can be calculated quite accurately by solving
the HNC integral equation. "
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