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The fluctuation properties of a cw dye laser, pumped by an argon-ion laser, have been investigated by photon-
counting and two-time correlation measurements. The results show significant departures from the usual single-
mode laser theory in the region of threshold and below. However, there are indications that the departures
may be due to extraneous rather than intrinsic effects, and when these effects are subtracted out, the results
are in substantial agreement with the predictions of the usual theory.

I. INTRODUCTION

The development of the tunable, continuous-
wave dye laser' has provided us with a powerful
tool that is increasingly being applied to the in-
vestigation of atomic and molecular systems.
However, with few exceptions, the study of the
dye laser itself, and particularly of its fluctuation
properties, has received little attention. " In a
recent theoretical treatment of the dye laser by
Schaefer and Willis' it has been suggested that
because of losses to the triplet states the statisti-
cal behavior of a dye laser may not follow the
usual laser theory, "'which has been confirmed
in numerous measurements performed on He: Ne
and other lasers, ' under all working conditions.
Moreover, because of the coherent optical pump-
ing to which a cw dye laser is normally subjected,
it may be expected to be especially sensitive to
small pumping fluctuations when it is operating in

the neighborhood of the oscillation threshold.
For all these reasons we felt it desirable to in-

vestigate the fluctuation and correlation properties
of the light emitted by a dye laser by photoelectric
counting techniques, for various working points
of the laser. Our measurements indicate that there
are indeed significant departures from conventional
laser theory in the behavior of the dye laser, but
that these departures appear to be connected with
the manner in which the laser is normally operated.
rather than being fundamental. When suitable cor-
rections for the extraneous effects are made, the
measurements are in substantial agreement with
the usual laser theory, "and no evidence for any
significant departures is found.

II. EXPERIMENT

The dye laser used in these experiments was
similar to one described by Schuda et al. ' The
optical arrangement is illustrated in Fig. 1. The
dye, consisting of a soap and water solution of
rhodamine 6G, was made to flow continuously

through a pumping cell that was illuminated by
5145 A light of a Spectra Physics 164 argon-ion
laser. The ion laser was stabilized by its own
internal feedback arrangement. At the same
time, the long-term drift in the dye-laser out-
put intensity was held to a fraction of 10' by
another feedback loop, as previously described. '
This second feedback loop allowed the working
point of the dye laser to be controlled from well
below to well above threshold. We found that by
optically pumping with one spectral component
(the 5145-A line) of the argon laser, we were able
to achieve improved output stability.

Single-mode operation of the dye l.aser was
achieved through the insertion of three tilted glass
etalons into the laser cavity. The dye-laser fre-
quency could be varied over a wide range by tilt-
ing the output mirror shown in Fig. 1, and over
a small range with the help of a piezoelectric
crystal that moved the output mirror normally to
its face. For the purpose of these experiments,
the dye laser was operated at a wavelength of 5815
A, and had a linewidth less than 1 MHz. In the
course of one experimental run, the frequency
suffered a typical thermal drift of about 150 MHz,
which could be compensated by a frequency stabil-
ization circuit when the laser was operated well
above threshold. ' However, in the threshold re-
gion, where most of our measurements were
made, the frequency stabilization proved to be
less satisfactory and was not used

The output beam from the dye laser was split
into several beams with the aid of 45' haU-silvered
mirrors, as shown in Fig. 2, and two beams
were allowed to fall on two photomultiplier tubes.
The photoelectric pulses emitted by the detectors
were amplified and shaped by discriminators,
and were then sent via electronic gates to various
counters under the control of a PDP 11/40 com-
puter, as indicated in Fig. 2.

For the purpose of the fluctuation measurements,
only one of the two detector channels was used.
The number of pulses, n, received in a succession
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of l- @sec-long counting intervals separated by
200-500 IL(.see was registered, and the information
was stored in the memory of the computer in such
a may that the number of times, X„,that n events
mere counted could be directly displayed. This
number provided a measure of the probability
distribution p(n) . through the relation

fol. lal ge zV„, fl om wh. lch the various moments ol
factorial moments of n can be calculated via the
equations

(n") = V' n"p(n), t ~=1,2, ~

I-0

(n'"", = Q n(n —1) (n —~+ l)p(n) „
x=1 2 ~ ~

}

The correlation measurements depend on the
use of both plmtodetectors ln tmo channels that we
designate as the "staxt" pulse and the "stop" pulse
channels, 1 and 2, respectively. As has been
shown, ' the joint twofold probability density of
photoelectric detection, P, (t, t+ T), by the two
detectors at time 7 and at tin1e (+ 7' is related to
the instantaneous light intensities I, (t) and I,(t) at
the tmo detectors by the formula.

P, (t, t + r) = q,q, c~S,S,(I, (t)I, (t+ r)) .

where q, and q, are the quantum efficiencies and

S, and S, the illuminated surface a.reas of the two
detectors. The correlation function in Eq. (4) has
been written as a, classical correlation, but the
same expression would hold in quantum electro-
dynamics if it mere written in normal order. It
follows that me can determine the intensity cor-
relation function by recording the distribution of
arrival times 7. of stop pulses following the receipt,
of a start pulse. A digital technique for auto-
Inatically doing so ha, s previously been described. "
%e have illlproved lt by placing the cox'relatol

I'IG. 2. Block diagram of the apparatus for photo-
electric counting and t~vo-time correlation measurements.

under the control of the computex', and incorporat-
ing a, number of computer checks to test the
stability of the system and the validity of 'he data
being received. Counting data that showed a, drift
of the mean light intensity of more than j.% were
automatically discarded.

A number of corrections to the moments calcu-
lated from Eqs. (2) or (3) need to be made before
the results can be compared with theoretical pre-
dictions. In the first place, a correction has to
be made for the dead time of the counting elec-
tronics follov ing each count. This results in cor-
rections to the measured factorial moments (n'"')
given by Eq. (3), which have been calculated by
Chang et al. ,

' and were expressed by them as a,

power series in the ratio 5 of the dead time to
the counting- time interval. Secondly, allowance
has tobe made for photoelectric counts contributed
by background light and by thermionic and other
emissions from the photocathode. %'e measured
the contribution from these sources directly by
keeping the pumping llgjlt intensity constant and
tilting one of the etalons until the dye laser was
extinguished and only the fluorescence remained.
If ps(n) is the probability distribution for counting
n pulses due to these unwanted sources, and P~(n)
the corresponding probability distribution for the
light from the dye laser alone, then the measured
probability distribution p(n), containing contribu-
tions from both sources, is related to P~(n) and
ps(n) to a first approximation by

p(n) = Q p~(m)ps(n —m) . (5)

The required probability pz(n) can therefore be
extracted from the measured quantities p(n), p (n)
by a nurnex'ical deconvolution. Jn practice, the
background correction is very small when the la.-
ser is operating well above threshold, but it may
become significant in the threshold region or be-
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low.
Finally, the measured counting fluctuations may

require correction for the possibility that the
light intensity is not constant within one counting
interval. This correction becomes significant only
when the counting interval T is not very small com-
pared with the natural correlation time T, of the
light- intensity fluctuations, which we determined
directly from correlation measurements. In that
case the factoria. l variance (n"') —(n)' of the photo-
electric counts is no longer directly proportional
to the variance of the light fluctuations, as is ex-
pected from the considerations below. Instead,
we have the more general relation, "

(6)

Evidently, if T is sufficiently short that we may
replace X(r) by X(0) under the integral in Eq. (6),
we obtain

((n "') —(n)')/(n)' = ((&I)')/(I)', (6)

which shows that the variance of the light fluctua-
tions is directly proportional to the factorial vari-
ance of the photoelectric counts. But when this
approximation is not adequate, and X(r) has the
form

z(r) = g C„e'~', (9)

we find from Eqs. (6) and (9)

(r&(2)) (n)2 2 a C„ 1 e "&r

()
X, T (X, T)'

)
(10)

))ate shall see shortly that x(r) given by Eq. (9) is
indeed a reasonable approximation to the mea-
sured correlation function. Where necessary, the
various corrections described have been applied
to the data presented below.

III. RESULTS OF COUNTING MEASUREMENTS ANO

COMPARISON WITH THEORY

Because of the scaling problem that arises in

making comparisons between experiment and
theory, we find it more useful to concentrate on
the normalized factorial moments derived from
the counting measurements than on the probability
distribution t)(n) itself. According to the Scully-

in which X(r) is the normalized autocorrelation of
the light- intensity fluctuations dd(t),

!).(r) = (aI(t) ar(t-+ r))/(I)'.

Lamb' theory of the single-mode laser, the prob-
ability distribution P(m) for the number of photons
m within the laser cavity is given by the express-
ion

P(m) =K,
m A/C

(11)
r=0

where A and C are parameters representing the
gain and loss mechanisms, respectively, B is a
parameter arising from the nonlinearity or satura-
tion of the system, and K, is a normalizing con-
stant. If each photon has some probability g of
escaping from the cavity and registering a count
at the photodetector, we may readily relate the
measured counting distribution t!)(n) to the photon
distribution P(m) within the cavity through a con-
volution with a Bernoulli distribution of param-
eter q, in the form'

(12)

A/B: N' A/C =——e' ~ (13)

where N, is a large number and a is a positive or
negative number of absolute value not very much
greater than unity, we may rewrite Eq. (11) in the
form

P(m) =K, NO e' t~ 0/(No+ m)!, (14)

in which K, is another normalizing constant, and
the factorial is to be understood in the sense of a
I function. Since N, is a large number we use the
Stirling expansion for the factorial in Eq. (14), and
discard terms of order m/N', in the exponent.
We then find

P(rn) =K, xpe[- ~(m/N, —a/v 2 )'], (15)

where K, is another constant. If we think of the
ratio m/N, as an almost continuous variable
characteristic of the light intensity, and put

V2 m/N, =I, — (16)

we arrive at the following probability distribution
for the light intensity I:

&(I) = const&& e '

which contains only one parameter and is pre-
cisely of the form derived from the semiclassical

As we show in the Appendix, the factorial variance
(n~2)) —(n)' of the number of photoelectric counts
is proportional to the factorial variance (m"')
—(m)' of the photon number.

Generally the ratio A/B in Eq. (11) is a very
large number, whereas A. and C are comparable.
If we put
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FIG. 3. Values of the relative intensity fluctuations

((AI) )/(I)2 derived from counting experiments. The
vertical error bars correspond to statistical uncertainty
of one standard deviation. The solid curve gives the

theoretical values derived from Eqs. (18) and (19).

The mean number of counts, (n), registered in

the counting measurements is, of course, pro-
portional to the mean number of photons, (m),
which in turn is proportional to (I), and, as we

pointed out earlier [cf. Eq. (8)], the factorial vari-
ance is proportional to ((nI)'). In the semiclass-
ical limit the parameter N, no longer enters. N,
is actually related to the mean number of photons
present at threshold through the relation (m),„„,„M
=N, (2/v)"'.

The results derived from the measurements for
the ratio ((hl)')/(I)' are plotted against the pump
parameter a in Fig. 3, for several different work-
ing points of the laser both below and a.bove thres-

laser theory. ' a is the so-called pump parameter,
which is positive above threshold and negative be-
low threshold. Equation (17) leads to the following
expressions' for the first two moments of the

light intensity I:
(I)=a+2e ' '/v v [1+erf(—,.' a)), (18)

2ae g2/4 4e- a2/2

((&I)') = 2-
Ww [1+erf(2 a)] v[1+ erf(2 a)]

(19) v, NS/vz„vz
P(m) = const && P D(r)

K 2rS
D(r) = 1+ +vz„vz„(1+2rS/ )ve

TKsrv, N/vgvg„vzi
1+ 2T(1 —P)r/v»

(20)

(21)

Here K~~ is the upper singlet level to lower triplet
level crossover rate, v» and v~„aredecay rates
from the lower triplet level and the upper singlet
level to the lower singlet ground state, S is the
stimulated emission rate from upper to lower sing-
let states and T is the absorption rate for transi-
tions from lower to upper triplet states, v» is the
fast nonradiative decay rate of the levels within

hold. In order to relate the measurements to a
and to the values derived from Eqs. (18)and (19),
we needed to know the constants q and N, that
relate photoelectric counts to photon numbers and

photon numbers to the scaled light intensity I.
These parameters are difficult to determine ex-
perimentally with accuracy, and we therefore
resorted to curve fitting. This is a straightforward
procedure when there is good agreement between
theory and experiment, but is less trivial when

there is disagreement. Our data indicated general
agreement between theory and experiment well
above threshold, and the scaling factor was there-
fore chosen to reflect this. However, as the curve
in Fig. 3 indicates, with this choice of scaling
factor there is unmistakable disagreement in the
region of threshold and below, where the mea-
sured fluctuations a,re much larger than those pre-
dicted by Eq. (19).

In this connection, we note that in a recent theo-
retica. l treatment of the photon statistics of a dye
laser, Schaefer and Willis' have given an ex-
pression for the probability distribution P(m) of
the photon number m that differs significantly
from Eq. (11). Their laser model is based on

four sets of energy levels for the dye molecule.
There is a lower and an upper set of singlet levels,
between which laser action takes place, and a
lower and an upper set of triplet levels, displaced
from the former, with a spacing comparable with
the singlet- level spacing. Because of crossover
transitions from the upper singlet states to the
lower triplet states, from which molecules may be
excited to the upper triplet states by absorption of
laser radiation, the presence of the triplet states
represents a loss mechanism for the dye laser.
By incorporating the probabilities for transitions
between the various levels to take place, Schaefer
and Willis' arrived at the following expression for
the probability distribution P(m) of the photon
number m:
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the lower singlet band to the ground state, v, js
the ground state to upper singlet excitation rate,
and v„is the photon loss rate of the laser mode.

P is the fraction of excited triplet-state molecules

that return to the lower triplet states and N is the

number of dye molecules that participate in laser
action. According to Schaefer and Willis, ' the

ratio S/vs, is very small, so that the term 1+2rS/

vsj in Eq. (20) can be effectively replaced by unity.

When the singlet-to-triplet crossover rate K~ ~

vanishes, Eq. (20) then reduces to the form of the

Scully- Lamb equation (11). However, even when

K» is not zero, the two equations are structurally
similar when 2T(1- 8)r/vrj «1, as we show below.

The values of some of the dye-laser parameters
that enter into Eq. (20) have been determined by

Tuccio and Strome" and Snavely, "

0.1&T&14 sec ',
from which it follows that

2T(1 —P)/v r, & 10 ' .

(23)

1
1+2T(l —P)r/vr,

2T(1 —p)r 2T (1 p)r
vrs

~ ~ ~

(25)

When P is very close to unity, this upper bound for
2T(1 —p)/vr, may be further reduced by several
orders of magnitude. Let us suppose that
2T(1 —p)r/vr, in Eq. (20) is small, so that we may
use the binomial expansion to write

v -2 x 10'sec ',
v»-3 x 10'sec ',
g»-1.6 x10'sec ',

(22)
and then identify the parameters as follows:

vu NS/vsuv jj
1+Ksr/vsu+ TKsrv, N/VRvsu rj

although the measurements possibly refer to dif-
ferent solvents for the dye. These values of v»
and K» are also consistent with cross sections
determined by Peterson et al." Schaefer and
Willis' give the following range of values for T:

2S/vs„—2(1 —P) T Ks rv, N/v jjvs„vr, / (1+Ksr/vsu+ TKs r vuN/vjjvsuvrj

Ksr T/S vrj = Q .

Equation (20) then becomes expressible in the form

A/CP' '=-"""II 1"B/A. 4 (1 p) (A/C)(T. /~„)~.~ ~ ~
(2't)

Apart from the terms in r', r', etc. , whose co-
efficients are very small according to Eqs. (22)
and (23), with

a (1 —p)'(A/C) T'/v r, & 2 x 10 ", (28)

IV. RESULTS OF CORRELATION MEASUREMENTS

In an attempt to explore the possibility that the
observed excess fluctuations might not be an in-
trinsic feature of the dye laser, but might be con-
nected with its mode of operation, we examined

this equation for P(m) is identical in form with the

Scully-Lamb formula (11). The predictions of the
Schaefer and Willis theory for the photon statistics
therefore become indistinguishable from the usual
simple-mode laser theory when n(1 —p)'(T'/v rj)
(m)' is sufficiently small and when B/A is positive.
Moreover, the effect of a small contribution from
these extra terms is to lower somewhat the rela-
tive second factorial moment of m [or the ratio
((b.I)')/(I)'] near threshold. The large values of
((M)')/(I)' that we observed near threshold are
therefore not accounted for by the probability dis-
tribution (20) any more than by Eq. (11).

I

the intensity fluctuations of the pumping beam from
the argon-ion laser. Figure 4 shows a photograph
taken from a double-beam oscilloscope in which
the top trace represents the light-intensity varia-
tion of the ion laser and the bottom trace the simul-
taneous variation of the dye laser. Despite the fact
that the argon laser intensity fluctuates by no more
than 0.2%, there is a strong indication that these
small fluctuations are reflected in greatly am-
plified fluctuations in the output of the dye laser.
However, this phenomenon does not account for
all the observed excess fluctuations. Below thres-
hold, the dye laser will even turn off at times that
appear not to be correlated with downward fluctu-
ations of the light output from the argon laser.
It is possible that these effects are connected with
the transit of particles in the dye solution through
the pumping focus, or they may have some other
origin. In any case, as Fig. 4 shows, the time
scale for these phenomena appears to be signifi-
cantly longer than the time scale for the natural
or intrinsic laser fluctuations.

In order to explore this question further, we
measured the two-time correlation function of the
dye-laser intensity, as described in Sec. II. A
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. I msec

FIG. 4. Photograph taken from a double-beam oscil-
loscope display, showing (a) (top trace) the variation of
the light intensity of the argon-ion laser, and g) (bottom
trace) the variation of the light intensity of the dye laser.
The fractional intensity fluctuations are 0.002 for the
argon laser and about 0.6 for the dye laser.

logarithmic plot of the number of recorded counts
corresponding to the excess of (I,(t) I, (t+ r)) over
(I,)(I,) [which is proportional to A{r)] shows that
there are contributions to the correlation func-
tion from tmo very different time constants, of
which one (- V psec) is probably to be attributed to
the intx insic laser fluctuations, whereas the other
one (-90 psec) can probably be associated with
the extraneous effects. The amplitudes of the re-
spective contributions from these two sources can
be readily extracted from the data. Figure 5 shows
the result of fitting a correlation function of the
form given by Eq. (9) (with R = 2) to the data. by a
least-squares procedure, from which the con-
stants C„C„~„andX, can be extracted. Then
the fraction of the intensity fluctuations of the dye
laser attributable to intrinsic causes is given by
the ratio C,/(C, + C,), if 1/X, is the shorter time
constant.

By making a succession of such correlation mea-
surements for various working points of the laser,

and deriving parameters by the same least-squares
procedure, we mere able to determine the cor-
rection factors C,/(C, + C,) for values of the pump
parameter a below about a = 3. The results are
given by curve B in Fig. 6. For values of a greater
than about 3, the intensity fluctuations become so
small that the time necessary to obtain data with
sufficient statistical accuracy for curve fitting
becomes prohibitively long. Fortunately, it is not
too difficult to extrapolate curve B for larger val-
ues of a, where the correction factor is in any
case near unity. %e then used curve B to correct
the values of ((AI)')/(I)' shown in Fig. 8 by multi-
plymg by C1/(C~+ C2), so as to extract the llltrlnsic
intensity fluctuations.

The results of this procedure are shown in Fig.
6. The extracted values of the intrinsic intensity
fluctuations ((&I)')/(I)' are plotted against the
pump parameter a, with the help of the relation
(18) connecting a with the mean light intensity (I),
and with the best choice of scaling parameter for
all the data. Also shown is the theoretically pre-
dicted curve A derived from Eqs. (18) and (19) on
the basis of the usual single-mode laser theory.
The error bars shown corxespond to a statistical
uncertainty of one standard deviation, and no un-
certainties associated with the correction pro-
ceduxe have been folded in. The correlation mea-
surements used to correct the counting measure-
ments mere actually performed on different days,
and there is some indication that the dye-laser
characteristics changed gradually. Still, despite
slight uncertainties in the method of corxection,
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values of ((& I) )/(I) ~ derived from the
counting measurements, after correction for extraneous
fluctuations as described in the text, plotted vs the pump
parameter a. Curve A corresponds to the results pre-
dicted by Eq. (3.9) from the conventional laser theory.
Curve B gives the correction factor C

&
j(C&+C &) obtained

from the correlation measurements as a function of
pump parametex a.
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the results give no indication of any substantial de-
parture of the intrinsic fluctuations from the con-
ventional single-mode laser theory. Of course,
this conclusion does not rule out the possibility
that some of the slower fluctuations, which we

labeled extraneous, may yet prove to be funda-

mental, although they are presently of unknown

origin.
It is interesting to speculate under what con-

ditions the extra terms in the Schaefer-Willis
equation (27), corresponding to the triplet losses,
might become significant and lead to changes in the
observed counting statistics. As we show in the
Appendix, when this happens the probability dis-
tribution P(m) no longer scales in such a, way that
the measured moments become independent of the
absolute number of photons present in the laser
cavity. Since the product a(1 —P)'T /v'r, involves
the parameter v» to the third power in the de-
nominator, a decrease of v» or a lengthening of
the lower triplet-state lifetime would seem to be
the obvious way to try and reveal the predicted de-
partures. It has been suggested that this might
be done by reduction of the quenching agent, which,
in our case, is the soap solution. However, there
are technical problems to be overcome which are
connected with the flow of the liquid and the ef-
fective optical pumping efficiency. We have oper-
ated our dye laser under conditions that are usual
for reasonable conversion efficiency. Whether it
can be operated under very different conditions
in order to reveal the predicted effects is a ques
tion that remains to be explored.

p(n) = ga(n~m)P(m).
m=n

From Eqs. (Al) and (A2) we readily find for the
factorial moments of the photoelectric counts n

(A2)

( &'&) = g Qn(n —1) ~ ~ ~ (n —r+ I)a(n ~m)P(m)

mt
),

.
), q"(I g).-"P(m)

= Pg m(m —1) ~ ~ ~ (m —r+1)q'
m=r P"-0

&&,
(

', g(1 —q)" "'P(m)(m r)!

= g q"m(m —1)~ ~ ~ (m —r+ I)P(m)

~r(m(r))

It follows as a special case that

&n) =@(m)

(A3)

(A4)

(n(n 1)} (m(m 1))
(n) (m)

When (m) is a large number, as is normally the
case, and x is not too large, we may approximate
Eq. (A3) and write

If P(m) is the probability that there are m photons,
and p(n) the probability that n photoelectric pulses
are registered, then evidently
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APPENDIX: RELATION BETWEEN THE FACTORIAL
VARIANCE OF THE PHOTONS AND THE PHOTOELECTRONS

If each photon of the laser mode within the cavity
has some probability q of escaping from the cavity
and giving rise to a photoelectric pulse at the de-
tector within some short time interval, and if these
elementary processes are independent of each
other, then the probability B(n

~
m) that n photo-

electric pulses will be registered when there are
m photons in the cavity is given by the Bernoulli
distribution

P(m) =f(m/IV, ) f (m/p7, ) .
m=

Then it follows from Eqs. (A6) and (A7) that

(A7)

( („))2, (em/IV, )"f(m/IV, )

Z.",f(m/X, )

We now show that under certain circumstances
the distribution of the observed counts n may be
independent of the size of the laser cavity and
therefore of the mean number of photons, (m),
within it. In general, when the active medium is
confined to a very small region, (m) is expected
to be proportional to the length of the laser cavity,
and g is inversely proportional to the length. Let
N, be a parameter proportional to the cavity length
and therefore to (m). Let us write q=q/IV„and
suppose that the probability P(m) of m depends only
on the ratio of m to N„orthat P(m) has the form

W
~

)=(™n 0-nl" (Al) J.dy (e3)"fb)
f.dvf (y)

(A8)
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This is independent of N„sothat the observed
counting probability P(n) is independent of the

length of the laser cavity, when the photon prob-
ability P(m) scales as in Eq. (A7). If N, were
proportional to N„then, since the Scully- Lamb
formula can be reduced to the form of Eq. (15),

it would satisfy the scaling condition (A7), and the
same would hold true for the Schaefer-Willis form-
ula (20) or (27) whenever the terms in r', r', etc.
are very small. However, when these additional
terms assert themselves, condition (A7) will not
hold in general.
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