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The single-mode laser model as formulated by Haken and co-workers is considered. Within the approximation
which takes into account only the interaction (at all orders in the coupling constant) between the mode and

the single atoms, this model leads to a linear time-evolution equation for the Glauber quasiprobability
distribution P(P, P», t) of the field mode, containing derivatives of all orders in P and P». This equation is

solved exactly in the stationary situation. Thus the quantum effects due to the terms with derivatives of order

higher than the second one are fully taken into account. It is shown that these terms have a shrinking effect
on the stationary distribution above threshold, counteracting the broadening effect due to the second-
derivative term. The photon and photoelectron distributions are given. Exact relations are deduced, which

allow the calculation of all the moments of the steady-state distribution from the first one. This distribution is

compared with the stationary solutions of Risken's equation, of P. Mandel's equation, and with the stationary
distribution deduced by Weidlich, Risken, and Haken. The connection with the single-mode laser theory of
Scully and Lamb is analyzed in the high-intensity region. The complete Scully-Lamb master equation is

translated into the Glauber representation, yielding a linear equation for P(P, P», t) containing derivatives of all

orders in P and P», Suitably connecting the parameters A, B, and C of the Scully-Lamb equation with the

parameters of the model of Haken and co-workers, it is shown that there is perfect agreement between the

strong-signal Scully-Lamb steady-state distribution and that of Weidlich, Risken, and Haken for all values of
the pump parameter.

I. INTRODUCTION

A great deal of the recent progress concerning
the laser system has been obtained via the serni-
classical approach. ' On the other hand, a variety
of fully quantum-mechanical treatments also have
been elaborated on in order to deal with fluctua-
tions. ' Among them we consider the laser model
as formulated in Ref. 1(b), which describes the
dynamics of the coupled system atoms plus radia-
tion field in terms of a suitable master equation.
This model has been analyzed in the single-mode
case" under the approximation of considering
only the interaction between the mode and the sin-
gle atoms (i.e. , taking the atom-field interaction
at all orders but neglecting multiatom correla-
tions). This analysis shows that the Glauber quasi-
probability distribution' P(P, P*, t) of the field mode
obeys a suitable linear time-evolution equation
containing derivatives of all orders in P and P*.
P. Mandel' has simplified this equation by neglecting
all terms with derivatives of order higher than
second, thus obtaining a Fokker-Planck equation
which generalizes Risken's equation' to the case
of high-intensity lasers. This neglect has been
justified by a well-known scaling argument, ' based
on the fact that the number of photons at threshold
is large. Essentially, this approximation amounts
to assuming a quasiclassical behavior for the laser
above threshold: in fact, an equation similar to
the Fokker-Planck equation of Ref. 3 has been
previously set up by Schmid' on the basis of serni-
classical arguments.

In this paper we consider the full equation for
P(P, P*, t), taking into account the quantum effects
arising from the terms with derivatives of order
higher than second, and solving exactly this equa-
tion in the stationary situation. In such a way we
can also test the validity of the aforementioned
scaling argument. The steady- state distribution
that we get agrees very well with the stationary
solution of Hisken's equation in the threshold
region. On the other hand, it turns out to be
sharper than the stationary solution of Mandel's
Fokker-Planck equation when the laser is suf-
ficiently above threshold. Hence the terms with
derivatives of order higher than second introduce
a shrinking effect which counteracts the typical
broadening effect of the second-derivative term.
Such a shrinking effect vanishes at threshold and
becomes more important the higher the laser is
above threshold. We deduce an exact relation
which allows us to calculate all the moments of
our steady-state distribution from the first one;
the first moment is calculated within a negligible
error by approximating the exact steady-state
solution by a distribution which is Gaussian in in-
tensity.

In Sec. II we recall the single-mode laser model
and the time-evolution equation for P(p, p", t) de-
duced in Ref. 4. In Sec. III we find the steady-state
solution and in Sec. IV we list the exact results
which can be deduced from it, including the photon
distribution and the photoelectron distribution.
The Gaussian approximation of the steady-state
distribution is discussed in Sec. V. Sections VI—
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VIII are devoted to a comparison of this distribu-
tion with the stationary solution of Risken's equa-
tion (Sec. VI), of Mandel's Fokker-Planck equa-
tion (Sec. VII), and with the stationary distribution
deduced by Weidlich, Risken, and Haken (WRH)
(Sec. VIII).'

Another point that we analyze in this paper is the
connection with the quantum- mechanical single-
mode laser theory of Scully and Lamb""'" in the
high-intensity region. In fact it is well known that
Risken's equation is essentially equivalent to the
Scully-Lamb master equation in the so-call. ed cubic
approximation (i.e., fourth order in the coupling
constant). On the basis of the closed equation for
P(p, p*, t), deduced in Refs. 3 and 4 from the mod-
el of Ref. 1(b), we can now study the connection of
this model with the Scully-Lamb strong-signal
equation. Using a quite straightforward procedure
we translate in Sec. IX the complete Scully-Lamb
master equation (formulated in the photon-number
representation} into the Glauber representation,
obtaining a linear equation for P(P, P, t) contain-
ing derivatives of all orders in P and P*. From
this equation the strong-signal Scully-Lamb
steady-state distribution in the Glauber represen-
tation is immediately obtained. Again we find
that by neglecting the terms with derivatives of
order higher than second, one obtains a broaden-
ing of the stationary distribution above threshold.

Finally, in Sec. X we connect the parameters
A, B, and C of the Scully-Lamb equation with the
parameters of the model of Haken and co-workers,
obtaining relations which generalize to the high-in-
tensity region the relations given by Arecchi and
DeGiorgio. " Using this connection, we show that
there is perfect agreement between the strong-
signal Scully- Lamb steady-state distribution and
that deduced by WRH.

II. TIME-EVOLUTION EQUATION FOR P(P, P*,t )

Let us first recall the basic features of the sin-
gle-mode laser model as formulated by Haken. ' b'

For our purposes we can limit our considerations
to a "tuned" laser, i.e. , a single-field mode of
frequency (d interacting with N two-level atoms
whose transition frequencies are exactly ~. The
system field plus atoms (F+A) is described in the
interaction picture. The time evolution of the sta-
tistical operator W(t) is then given by the following
master equation:

a,x= (2.2)

A„,= ,'y, (—[r„X-r;]+ [r. ;X, r. ,]}.
+ 2 y)([r', , Xr,.]+ [r', X, r,.].)
—

& q ([r,. r', ,Xr; r, ] + [r', r, X, .r, r', ]);
furthermore, for any X

L~rX= [Hxr)X],

where II» is the interaction Hamiltonian, obtained
in the dipole and rotating-wave approximations,
with a coupling constant g independent of the atoms
(running wave);

a„r=g Q (br;+ b' r, ) . (2.3)

In Eqs. (2.2) and (2.3), b is the annihilation field
mode operator, obeying boson commutation rules;
x,' are the spin-flip operators for the ith atom,
satisfying fermion anticommutation rules; k is the
damping constant of the field mode; y&, y&, and

g are the atomic transition rates connected to the
transverse (y~} and longitudinal (y, )) relaxation con-
stants and to the unsaturated inversion (o,) as fol-
lows:

y, = '(y~+y, -+n), y„=y~+y, ,
(2.4)

o.=(yi —y, )l(y)+ y, )

In the laser the experimentally detected system
is the radiation field. In Ref. 4 the problem con-
sidered was to deduce from Eq. (2.1) a closed
time-evolution equation for the reduced statistical
operator p(t) of the field mode alone:

p(t) = Tr„W(t) (2.5)

(Tr„stands for the partial trace over the atomic
Hilbert space} or equivalently for the Glauber
quasiprobability distribution function' P(p, p*, t)
associated with p(t}:

P(t)= f &.()&(P ()', &)(())(l)(. (2 5)

the field damping and the atomic pump and spon-
taneous decay processes via the operators A~ and

A„, which have the form

ArX=k([bX& b ]+[b,Xbt]),

L= L„+zA +zA
(2.1)

where the Liouville operator L takes into account

The analysis of Ref. 4, which follows the general
method of treating open systems developed by one
of us, " leads to the following equation for
p(p, p*, t):
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»(P~P'~f) AJ, (P P* f)
Bt

jg+ —P+ ~P+ — —P+ q
P+— (2.7)

x g ~ -4 P
' P —P* '+ P

&~'&. y &(. (2 (()

By this approximation, the losses of the field enter
into the final equation (2.7) only via the linear
term k[(((/((P) P+ (s/8 P *)P *].

(c) The Markoff (or adiabatic) approximation. "
Approximations (a) and (b) are automatically

contained in the usual semiclassical equations.
Furthermore, we stress that approximations (a)-
(c) are contained also in the Scully-Lamb theory. "

Equation (2.7) has been obtained through the fol
lowing approximations:

(a) Consideration of only the interaction of the
field mode with the single atoms, neglecting all the
interaction processes in which the mode interacts
with two or more atoms successively. This ap-
proximation has the consequence that the operator
A in Eq. (2.7) is simply proportional to the number
of atoms K.

(b} Neglect of Ar with respect to A„, on the basis
of the assumption j3=e'~'P, e=i6f/Ny„, (2 9)

where &'~' is essentially the inverse of the mean

photon number at threshold and is therefore a
small number (-10 ~). Then one evaluates

~P~'=«~ '"), P, , P*—,P, =«"). (2.»)

On the basis of Eq. (2.10), one neglects the term
P(s/sP)+P*(s/BP*) with respect to 4~P~' m the de-
nominator of Eq. (2.7), thus obtaining Mandel's

Fokker- Planck equation":

Mandel' has previously obtained an equation more
complicated but essentially equivalent to (2.7)
through a much more cumbersome procedure using
the Zwanzig projection technique. " In order to
get a Fokker-Planck equation (i.e. , an equation
with first- and second-order derivatives in P and

P*) for P(P, P*, f), Mandel simplified his infinite-
order equation by a well-known scaling argument'
which, when applied to Eq. (2.7), goes as follows:
I.et us introduce the normalized field variable

BP(P, P*,t) s s ~ g'N&r, 4g Zoo (P(
sf 8P 8P * y ~ y~y „1+(4g'/y~y „)

~
P

~

'

sP *sP y, y', y „1+(4g'/y, y„) (P(' (2.11)

Equation (2.11) is directly linked to the semiclas-
sical equations. In fact, neglecting the diffusion
term, such an equation can be solved by the meth-
od of characteristics; it turns out that the resulting
characteristic lines coincide with the semiclassi-
cal trajectories. Thus the term

2

(2.i2)

in the denominator of Eq. (2.7) is a purely quan-
tum-mechanical effect. Risken's equations is im-
mediately obtained from Eq. (2.11) by (i) neglecting
(4g'/y, y„) ~P~' with respect to 1 in the denomina-
tor of the drift term, and (ii) keeping only the term

+g' ( '"} ' f (PP*,f}. (212)8PBP*

Approximation (i) holds only for o, —o,„,«o,„,,
where o,~ is the threshold inversion per atom,

o,„,=Ay~/Ng' . (2.14)

(

g'N(l+ o,)/y~ in the diffusion term. One thus ob-
tains

s&(p~ p*~t)
Bt

9 8 + gazoo 4g Neo
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III. STEADY-STATE DISTRIBUTION

The advantage of the method used in Ref. 4 is
that it allows one to find the exact stationary solu-
tion of Eq. (2.7) without resorting to any scaling
argument to simplify the equation. Thus we can
fully take into account the effect of the quantum
term (2.12) in Eq. (2.7). Equation (2.7) has been
obtained in Ref. 4 from the two coupled equations

We note that the term & dW&&'t&(r)/(f& in Eq. (3.6}
comes from the quantum-mechanical term (2.12)
in Eqs. (2.7) and (3.2).

If dW&&'t&/dr is derived from Eq. (3.5) and sub-
stituted into Eq. (3.6), the semiclassical terms
2rgP"t&(&) —2W&&"&(t)] are exactly canceled, so
that Eq. (3.6) take the simple form

W'"(&) = [-,'(1+ o,}—(2k!Ny )r']P'"'(&) . (3.7)

»(P, fi*, f)
8t

= k+ —I3+ p* P p p* t
gN 8 8

8P 8Pg

2g N 8 8 82

gP
~+ 8P+ P*-8P8Pg ~i P~P*~t y

If we now introduce the intensity va.riable

and set

Z=Ny„/4k, z =Z(o, ot„,), z=Z(1+ o,);

(3.6}

(3 9)

(3.1}
we easily get from Eqs. (3.5) and (3.7) the equa. —

tion for P""(z):
2

—, e, , P*- 2( I+2~P~') W, (P, f&*,f)
~1~{i (z —z) = 2(z+ -' —z)P'"(z)dP"'&(z

dz
(3.10)

, ' e (dl'})'O), d*O, (t t,)
II

by simply eliminating Wt(p, p s, t) between Eqs.
(3.1) and (3.2). Wt(P, P*,f) is an atom-field cor-
relation function which is directly linked to the
population of the upper level per atom; in fact the
mean value of the quantity (bt}&bst'& (where r'r
refers to any one of the atoms} is given by'

at')'e"' -)= }'d.d(d )'d" s,(d, d .e). (t.t)

As shown in Ref. 4, Eqs. (3,1) and (3.2) can be con-
sidered as the operator analog in the Schrodinger
picture of the semiclassical equations.

In the stationary situation [i.e., for dP(P, P*,f}/df
= 0 in Eq. (3.1)] the steady-state distributions
P "' and W~"' are functions of the modulus of P
only. Then introducing the polar coordinates

(3.4)

one obtains from Eqs. (3.1) and (3.2} the following
coupled steady-state equations:

(
N 2 Ny+ g &p&st&(&) g &W&st&(&)

VJ

1 g'N dW&&st&(r)
(3 )dt'

W &st&(&e) oP&st&{ )
1+o

1 2

Equation (3.10) has the following normalizable so-
lution:

P&s t&(z)—
6fess(z —z)s&z" ' for O~z~z

0, for z~zy

(3.11)

where X is a suitable normalization constant, i.e. ,
one has

dz P'"(z) = 1

3I=[e"2 s&*="y(2(z -z) 2z)] ' (3.12)

&d(«; x) being the truncated y function defined as

y( ; e) efe 'e de=' '

As one sees, solution (3.11) vanishes for z ~ z
and is therefore a nonanalytic function of z. We
show in the Appendix that taking the field heat bath
with finite temperature P ' [instead of zero tem-
perature as in Eq. (2.2)] one actually gets an
analytic stationary solution, which for P- ap-
proaches the nonanalytic function (3.11).

Distribution (3.11) has one maximum at

(3.13)

2+sP& t&(&) s4 +2 W & st &(&)
~L~(l 0'() ~ oto —1/2Z . (3.14)

d ee""(e)
)+r 1 Since {2Z) '«ot~ [see Eqs. (3.9) and (2.14)], the

threshold condition (3.14} essentially coincides
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with the usual one, and the position of the maxi-
mum (3.13) coincides with the semiclassical value
of the intensity above threshoM z =z.

IV. EXACT RESULTS

A. Photon distribution

where 3f is given by Eq. (3.12). Furthermore, if
we multiply both sides of Eq. (3.10) by z" ' and

integrate from 0 to z, we get

&z")= [2 —,'(n - 1)]&z"-')+-,'(n -1)z &z"-'}, n &1;

(4. '(}

Let us consider the photon distribution function

p(n), given by

in particular, for g = 2

(z') =(z- —,')(z)+-,' z. (4.8)

One has from Eq. (3.11)

$(2{a- z), 2(z - z)+ n+ 1;—z)
P(2(Z —z), 2(z —z)+ 1;-2z) '

(4.1)

(4.2)

Relations (4.7) a,nd (4.8) allow one to calculate all
the moments from the first one. The moments
(n') of the photon distribution (4.2) can be com-
puted by taking into account that (z') coincides with

the kth factorial moment of the photon distribution.
For example, one has

&n)=(z), &n')=&z')+&z), «c.

D. Stationary inversion per atom
where P(a, c;x) is the confluent hypergeometric
function. The P in the denominator comes from
the normalization constant (3.12), recalling that
y(a; x) = a 'x'(b(a, a+ 1; -x).

From Eq. (3.3}we find that the mean inversion
per atom &xz)(t} at time f is given by

8. Photoelectron distribution

I,et us assume that the time interval T during
which the photoelectrons emitted as a consequence
of the arrival of laser light are counted is small
with respect to the relaxation times of the la,ser.
Then the probability p(m, T) that m photoelectrons
will be released in a time interval T is given by""

P{in, T) = dz
)

e 'P'"'(z)(oTz)
0

where n takes into account the quantum efficiency
of the detector, etc. Using Eq. (3.11), we obtain

I"(2(z —z) + 1)
p{ T) (aT)z) zz)z lz rz

P(2(z —z), 2(z —z)+m+ 1;(aT —2)z)
P(2(z - z), 2(z —z) + 1; —2z)

(4,4)

(4.10)
Using Eqs. (4.10) and (3.V)-(3.9) we obtain the
stationary inversion per atom,

(4.11)

Equation (4.11) gives an exact relation between
the stationary values of inversion and of photon
numbers. Below threshold (z) «Z, so that
&);)„-cr,; sufficiently high above threshold, as
we shall see in Sec. V, (z)-z; hence by Eq. (3.9}
&),)„-at„„,in agreement with the semiclassical
result.

V. GAUSSIAN APPROXIMATION

Let us approximate P(z) by a Gaussian peaked
at z=z:

C. Moments of the distribution (3.11}
P(zt)(z) 3f z- (z-z)z/q (5.1)

Let (z"}be the nth moment of the distribution
(3.11):

(4.5)

(z) = z+ —,'zP™t)(0)=z+ ,'3fz" ', — (4.6)

%e deduce now some exact relations concerning
these moments. I.et us integrate both sides of
Eq. (3.10) form 0 to z; performing an integration
by parts we obtain

q'=z —z=Z(1+crt„,) . (5.3)

Thus it turns out that the width of the Gaussian
approximating distribution (3.11) is pump inde-
pendent. As we have seen in See. IV, the second

where X is the normalization constant

31 =(—'v t( q [1+sgn(z) erf(~z
~ /q)]] ' . (5.2)

Distributions of type (5.1) have been used exten-
sively in the laser J.iterature. """

From Eq. (3.11) we easily have
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(z') =z'+-,' (z —z)

1
A2

+ (z ——,')q 1+ sgn(z) erf( I z I/q)

(5.5)

On the other hand, using the Gaussian approxima-
tion (5.1}, directly one obtains

(z)' =z'+ p(Z- z)

1 -z2/q2

v w 1+ sgn(z) erf( lz I /q) ' (5.5')

clearly the difference between Eqs. (5.5) and
(5.5') is immaterial. When the laser is suffi-
ciently above threshold, i.e., for (z'/q2)» 1,
Eqs. (5.4) and (5.5) show that

(n) —z«1, (z') =z'+ —,'(z —z) . (5.6)

Hence from Eqs. (4.9) and (5.6) the mean-square
deviation 42 of the photon distribution is given by

n' = (n') —(n) ' = —,'(z+ (n) ) = —,
'
[Z(1+ a,) + (n) ]

(5.7)

and higher moments of the photon distribution can
be calculated from the first one using Eq. (4.7).
The first moment can be easily calculated using
the Gaussian approximation (5.1):

~ z2/q2
n =z+ 1+ sgn(z) erf( I z I /q)

' 5.4

One can verify that the Gaussian is indeed a good
approximation for distribution (3.11). For exam-
ple, if one substitutes Eq. (5.4) into the exact re-
lation (4.8) to calculate (z'), one obtains

From Eqs. (2.14), (3.9), and (5.3) we see that in
the region of validity of Risken s equation, i.e.,
ao —a,„,«a,„„the two distributions (5.1) and (6.1)
coincide. On the other hand, as one might expect,
the two distributions become different beyond this
region. In fact, (i) z depends linearly on a„
whereas z does not; for Oo» o,~, z «2, and
(ii) distribution (6.1) shrinks with increasing a„
whereas distribution (5.1) does not.

In the literature [see, e.g. , Ref. 1(b)] one often
finds Risken's equation written in a form different
from (2.13); namely, the ao in the nonlinear drift
term and in the diffusion term is replaced by 0,„,.
This is quite correct in the region oo —o,hr«o, ~,
but of course it changes the situation when one ex-
trapolates distribution (6.1}beyond this region, as
we have done before. Curiously enough, per-
forming the replacement one obtains z ~= z and

q z =q, so that distributions (5.1) and (6.1) be-
come identical for all values of cr, . However,
this coincidence is completely casual. In fact,
Eq. (5.1) is the Gaussian approximation of dis-
tribution (3.11), which incorporates the saturation
effects arising in high-intensity lasers; these ef-
fects are completely neglected in Risken's equa-
tion.

VII. COMPARISON WITH MANDEL'S STATIONARY

SOLUTION

The steady-state solution of Mandel's equation
(2.11) is given by'

Pz(z) =3fz 1+ z e '"thr[z+ zat~]"thr + thr
4g 2

J. II

1+ (4g'/y, y„)z
z 1+ a, + (4g'/y, y„)z

Taking into account that by Eqs. (3.9) and (5.6)
Z = (n) /(a, —a,„,), we conclude that X e 2zothr Z + ZO' 26~(z+ zethr

thr y
(7.1)

&' =-'[(1+a,)/(a, —a,„,)+ 1]&n& . (5 8)

VI. COMPARISON WITH THE RISKEN OR "CUBIC"
SCULLY-LAMB STATIONARY SOLUTION

The stationary distribution of Risken's equation
(2.13) is given exactly by a Gaussian:

Pz(z) =X„e " (6.1)

with

We see that high above threshold 62 becomes of
the order of magnitude of (n), as expected. How-

ever, the distribution does not become a perfectly
Poisson one even for very high pumping; in fact,
for a = 1, one has from Eq. (5.8) &'/(n) = z.

tt( )

qtt = Z(1+ ath )(a /at ) ~

(7.2)

where X„and X„' are suitable normalization con-
stants. The last step in Eq. (7.1) is expla. ined a.s
follows: The factor in brackets has one maximum
at z=z; this maximum is very slightly shifted by
the other factor

1+ (4g'/y, y„)z
1+ a, +(4g'/y, y„)z

Neglecting the latter, slowly varying factor, the
Gaussian approximation of distribution (7.1) is
given by

z „=(y, y„!4g'a.)(a. —a„,),
q' =Z(1+ a,)(a, /a, ) . (6 2)

One sees that (i) for ao- a„thdistrib tui osn(5. 1)
and (7.2) coincide, and (ii) for ao» a,„„distribu-
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tion {7.2) gets broadened, until for ao= 1 one has

q~=Z(1+a, „,)/o, „,» Z(1+a~,) .
Therefore the quantum term (2.12) has mainly the
effect of eliminating the broadening that appears
in distribution (7.2). Hence the scaling argument
(2.10) seems more valid in the threshold region
than in the region far above threshold.

VIII. COMPARISON KITH THE KRH STATIONARY

SOLUTION

%HH' have treated the single-mode laser model
(2.1) without using approximations (a) and (b) de-
scribed in Sec. II, but introducing a suitable fac-
torization ansatz which assumes that the atoms
are completely uncorrelated. This ansatz trans-
lates the original master equation (2.1) into a set
of four nonlinear equations. Within this approach, it
is practically impossible to obtain a closed equation
for the field distribution such as (2.7). However,
as WHH have shown, ' in the stationary situation
these equations become linear, so that one ean
discuss them fully. In fact these authors have ob-
tained, via suitable approximations, the following
steady-state solution:

0, ICp Q JE
y

where X~„ is the normalization constant.
The Gaussian approximation of distribution (8.1)

is given by
2I was(~) = 5fwaa~

(8 2)
(I wRH Z(1 oo+ 2othr)

One verifies that (i) distributions (5.1) and (8.2)
practically coincide for all values oo«1, and (ii)
for o, -1, distribution (8.2) gets sharper until for
a, = I one has (I )Na„=2Zo, ~«Z(1+a,h,).

Curiously enough, for ao =1 the value of q2~„
coincides with the width q2~ of the extrapolated
Risken distribution [cf. (6.2) for a, = 1]. The
shrinking of distribution (8.2) for extremely strong
pumping (i.e., a, -1) leads within an excellent ap-
proximation to a Poisson photon distribution. e

In conclusion, distributions (3.11) and (8.1) differ

Let us consider the Scully-Lamb master equa-
tion'~'~

dp„& AX„'„,
1+ (B/Z)5I„„. P""

(nn')' 'A

1 (B/A)5I„

+ —,'C (2 [n+ 1)(n'+ 1)] ' t'p„„„,„-(n+n') p„„,],
(9.1)

where p„„, are the matrix elements of the statisti-
cal operator of the field in the photon number
representation, &, &, and C are the so-called
gain, saturation, and loss parameters, respec-
tively, and

51'„„,= —,'(n+ 1+n'+ 1)+ —
() (B/A)(n —n')',

5I„„.= ,'(n+ 1—+n'+1)+,(B/A)(n —n')' .
Introducing the auxiliary quantities

W„„,(t) = [1+ (B/4) X„„,j 'p„(t),

(9.2)

{9.3)

one sees that Eq. (9.1) is equivalent to the fol-
lowing coupled equations:

~' = -A[ 2(n+ 1+n'+ 1)W„~

+ '(n —n'—)2(B/A)W . —(nn')'~2W„„, ]

+ &C {2[(n+ 1)(n'+ 1)'~'p„„„.„—(n+ n')p„~),

(9 4)

[1+ —'(n+ 1+n'+ 1)(B/A)

+,-', (n —n')'(B2/~') ] W„„,= (a„„,. (9.5)

Using the relationship

a..(()= f d.()~ "' ~ &-„, (()() ), ( . ,)",

one easily translates Eqs. (9.4) and (9.5) into the
Glauber representation, obtaining"

appreciably only in the extremely high pumping
region o0-1.

IX. GLAUBER REPRESENTATION TREATMENT OF THE
SCULLY-LAMB STRONG-SIGNAL MASTER EQUATION

s&(pp+ t) A ) s 9 ~ 8 1 B 9 8

et
' = T ap

p' sp+
p*

p+sp'sa4sp p ap+
p*

p+ p+ Q p pQ
C 8 9 (9.7)
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Eliminating W(p, p, f) from Eqs. (9.7) and (9.8) one obtains the Scully-Lamb equation in the Glauber
representation:

SP(P, P', f) A S S Ss 1 B S S

Bt 2 BP
~ BP~ P BP* BP 4 A gP

P BP* P

B 1 B2 B B———p- p*
2A BP BP* 16 A' BP BP*

"&0),P", &) ~
2

—, 0 ~ „P ) P)))P", t) .C B B
(9.9)

Treating Eqs. (9.7) and (9.8) exactly a.s we have
treated Eqs. (3.1) and (3.2) we get the strong-
signal steady-state solution of the Scully-Lamb
equation in the Glauber representation (z = PPs):

3I ez(As/BC —z) s z «A /BCP„(z)= y

0, z %As/BC,

(9.10)

with

A BC ~ 'B ' BC

qs~=2A/B . (9.12}

If we neglect the terms with derivatives of order
higher than second in Eq. (9.9), replacing by
[1+(B/A) ~P ~'] the denominator in Eq. (9.9),
we obtain instead of (9.10) the following steady-
state distribution:

X 1+As exp — z —
BC

A C

(9.13}

Since the factor 1+Bz/A varies slowly, we see
that distribution (9.13) is broader than (9.12) when
A &C, i.e., when the laser is above threshold. Thus
we have found again that the quantum terms with

p being the confluent hypergeometric function.
Again, the presence of derivatives of all orders
in P and Ps in Eq. (9.9) produces a steady state
which is a nonanalytic function of z.

Furthermore, by the same procedure which has
led to Eq. (4.7) we can deduce the following rela-
tions, which allow one to calculate all the mo-
ments of distribution (9.10) from the first one:

A2 A(z") = ———(n —1) (z" ')
BC B

A2
+ (n —1)(z" s), n& 1 . (9.11)

The Gaussian approximation of distribution (9.10)
is given by

[z —(A/BC)(A —C)]'
Psr. (z) =3isr. exp — s

9 sL

I

derivatives of order higher than second have a
shrinking effect on the stationary solution, and
that this effect vanishes at threshold.

X. CONNECTION BETWEEN SINGLE-MODE LASER
MODELS

To connect the Scully-Lamb equation (9.1) with
the model of Haken and co-workers we must ex-
press the parameters A, B, and C in terms of the
parameters k, g, Z„y„, and o, . Since the de-
scription of the pumping mechanism underlying
Eq. (9.1) is different from that underlying Eq.
(2.1), such expressions cannot be found on the
basis of the microscopic definition of A, B, and
C given in Refs. 1(a) and 10. Hence the connection
must have a phenomenological character, and
must be based on the comparison between the
predictions of the two theories. " Specifically,
we impose the following conditions.

(a) Let us consider the linear regime of the
laser (i.e., cs«o,s„A«C). In such a, situation,
Eqs. (2.7) and (9.9) reduce to standard Fokker-
Planck equations with constant coefficients [ob-
tained by keeping only the terms up to second
order in g in Eq. (2.7), and putting B = 0 in Eq.
(9.9) respectively]. We require that the coeffi-
cients of both the drift and the diffusion terms in
the two Fokker-Planck equations coincide, ob-
taining the two relations

(A/BC)(A —C) = Z(as —o,~);
from Eq. (10.1) we obtain

(10.2)

B = (8gsk/y)) y,)(1+e,)/(1 —os+ 2o,s } . (10.3)

The values (10.1) of A and C coincide with those
given in Ref. 11; the value (10.3) of B reduces to

s(A —C}=g Nos/y~ —k,
A= (gsN/y~)(1+ crs)~C = (gsN/y, )(1 —o + 2c,~) .

(10.1}

(b) We require that the two models predict the
same value for the mean photon number in the
stationary state above threshold. This condition
gives
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that of Ref. 11 when os- oth, (A- C}. Using the
values (10.1) and (10.3) we immediately see that
apart from the —1 in the exponent distributions
(9.10) and (8.1) coincide. Such a. perfect agree-
ment may seem a bit surprising if one remembers
that the stationary solution of WRH is obtained via
approximations quite different from those used in
the derivation of the Scully-Lamb equation; how-
ever, one must also take into account the phenom-
enological character of the connection established
by relations (10.1) and (10.3).
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APPENDIX

In Eq. (2.2) the field has been assumed to have
zero temperature. Now we remove this hypothesis
and look for the stationary solution in the more
general case of finite inverse temperature P; of
course, such a solution must be shown to approach
distribution (3.11) for P- ~.

The effect of thermal excitation is simply taken
into account by considering the damping operator
A„'~', which in the Glauber representation is given
by

d2P&st)(r} b dP&st)(r)

di f' df

where

+ (c+ dr')P'"'(r) =0, (A5)

a2 2 =', b1 y„—2+ 2k-

Now Eqs. (A3) and (A4) yield the following second-
order differential equation for the field stationary
distribution P""(r):

(g) 9 8 Q

A~ X=k
~p

P+ ~p~
P*+2n

~p~~p X, (A1) (A6)

where n is the mean photon number at temperature
p

l.
c=—2-y, —', — ', d=- —.

n =1/(ee" —1) .
Thus we have only to add a further term; i.e.,

(A2)
If we put

P'"'(r) = e'" g[ —(1/n+ 2)r'] (A7)

~*s (s,s's),
ap* ap

we get from Eq. (A5) a. hypergeometric confluent
equation for g[ —(1/n+2)r'], which gives

P""(r)= es" (&t) (D, E; —(1/n+ 2)rs)+ )&( (1/n+ 2)rs)' '&t)(D —E+ 1, 2 —E; (1/n+ 2)rs))—, (A8)

where

1
2 —y y„1+2' y &

Let us now pass to the limit P - , i.e., n -0, in
Eq. (A8), In such a limit one has

D 1 s ys (yt /gs+N/k) —= —[2(z —z) —1 ]
E= 1 —(y„N/2k)[ot~+ (1+os)/2n],

and where in order that P(r) -0 for r-~, the
constant A. must take the value

)& = —[ r(E)/r(E —D)]r(1 —D)/r(2 —E) . (Alo)

y()N 1+ oo z

1=+2 r —-=r2 ~ 2

n n n

(A11)



QUANTUM EFFECTS IN THE SINGLE-MODE LASER

[see Eqs. (3.8), (3.9)].
Then from Eq. (All) it follows that

Q(D —E+ 1, 2 —E; —(1/2+ 2)r 2)

for the function (A13'); i.e. ,
+ + ~ O~)

0(, c;*)= const xf extfg 1(1 f)c g I P

~"Q(-E -E —z/n)

=e '~"-0, for n -0, (A12)

and in this limit the constant A. given in Eq. (A10)
vanishes too; therefore Eq. (A8) reduces to

f '"'(z)=e"y(-[2(Z z)-1], -z/ri; z/n)-.

(A13)

The study of the limit T-0 for the function

y( —[2(Z-2) -1], zln; -z/-n) =-y(a, c;x)
(A13')

is performed in two separate steps.
Irl fact, in the case z & z we find a situation

where a is finite, c,x-, and ~x/c~ & 1, and
whose asymptotic approximation is therefore~

y(a, c;x)- (1 —ix/ci) '=(1 —z/z)"*=" '.
1 —5 & —ln6. (A18)

Then if we consider the temperature-dependent
part

(A16)

where the symbol (1', 0', 1,0 ) indicates that the
integral must be taken along a path which starts
at any point between t = 0 and t = 1, turns around at
both these points for two times with the prescribed
order and sense, and at last returns to the starting
polQt.

When n-0, by Eq. (A13') we have in Eq. (A16)

ex' a 1(1 f)c-a-1 8 (e/n)t-f-2(x-s)(1 f)-i/z (A1 7)

The integration path in Eq. (A16) can be chosen as
composed by the segment on the real axis from
f =+ e to f = 1 —6, e, 6 & 0, and the two circles

~

f
~

~

1 —f
~

=-6, with e infinitesimal and 6 such
that

(A14)

Combining Eq. (A13) with Eq. (A14) we get in the
limit P-~ the expected result

I'(t; n) = exp[-(z/n)t —(z/i) ln(1 —f)],
we have from (A18) that

(A19)

P""(z)= const x e"(z —z)"z "', z &z. (A16)

In the case z «Z, the above argument does not
hold, but one can use the integral representation"

~Z(f;e)
~

=e~[-(zin)Re(f) (z/V)1 jl-f[]
0

y
for tl~0y 8 «Z. (A20)

Therefore also in the case z =z the zero-tempera-
ture result (3.11) ls regained.
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