
PHYSICAL REVIEW A VOLUME 14, NUMBER 2 AUGUST 1976

Coherent tvvo-photon resonance and Doppler-free population inversion*
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Doppler-free population inversion induced by coherent two-photon resonance is calculated analytically for a
two-photon analog of the hyperbolic-secant pulse and numerically for a Gaussian, linearly chirped pulse. The
numerical calculations are carried out for a two-photon resonance of a chirped ruby laser line with the

6S„,~9D3j2 transition in Cs. Complete inversion is found when the fractional change in frequency during the
pulse lies between 6 X 10 ' and 2 X 10 '. The coherent two-photon resonances are described by optical Bloch
equations which are derived from a multiple-time-scale perturbation theory.

I. INTRODUCTION

The inversion of level populations by a one-
photon coherent resonance is a familiar idea, es-
pecially in the context of the adiabatic-following
approximation. ' In this connection Grischkowsky,
Loy, and Liao' have recently described an ex-
tension of adiabatic following to the case of two-
photon resonances, and Grischkowsky and Loy'
have pointed out the possibility of self-induced
adiabatic rapid passage which is unique to the two-
photon case. In the presentpaper two-photon induced
population inversions are considered in the special
case of counterpropagating beams. This provides the
well-known' advantage of reducing or eliminating
Doppler broadening. This feature has possible
applications in syectroscopy, 4 selective control
of chemical reactions, ' "' and isotope separation. '

In this paper the theory of the two-photon co-
herent resonance is derived from the multiple-
time-scale (MTS) perturbation theory described
in a previous publication' (hereafter referred to as
WGE); the terminology and notation of WGE will
be used here. The essential assumption of the
WGE method is that there are several widely sepa-
rated time scales in the problem. In the present
application there are two basic time scales: the
fast scale defined by the laser oscillation period
and the slow scale given by the Rabi oscillation
period of the target system. The small parameter
of the theory is the ratio X of the Rabi frequency
to the laser frequency; it represents the dipole
coupling strength. The formalism yields the wave
function as an expansion in A. with coefficients
whose time dependence also involves A. . This pro-
vides a systematic means for extracting the co-
herent effects of single- and many-photon reso-
nances that are not correctly treated by conven-
tional perturbation theory. It was shown in WGE
that this expansion satisfies conservation of proba-
bility (unitarity) order by order in X.

According to the WGE method the conditions for
a two-photon coherent resonance are that the frac-

tional yulse width and fractional detuning, near the
yulse maximum, should both be of order A. '; the
more stringent conditions of the adiabatic-following
approximation are not required. In the absence of
one-photon resonances, the leading approximation
replaces the many-level system by an effective
two-level system with an interaction Hamiltonian
whose matrix elements include the effects of non-
resonant levels. An added advantage of the WGE
method is that it can also be used in the presence
of resonances with intermediate states. Examples
of such use will be presented elsewhere.

The general problem of developing approximate
theories for situations involving widely separated
time scales has been approached in many different
ways for applications in ylanetary orbit theory, '
nonlinear mechanics, "nonlinear optics, "~ fluid
mechanics, " and the derivation of kinetic equa-
tions. "'~ The WGE method is an adaptation of a
technique employed in deriving kinetic equations
from the hierarchy of equations for reduced dis-
tribution functions in statistical mechanics. In
applications to statistical mechanics and quantum
mechanics, two difficulties must be surmounted:
the presence of secular terms (unbounded as t-~)
and quasisecular terms (containing small energy
denominators). The standard references on the
multiple-scales method" show how to avoid secu-
lar but not quasisecular terms. A satisfactory
solution of the quasisecularity problem in statis-
tical mechanics is given by Sandri, "and a sorne-
what different technique is used in the WGE treat-
rnent of the Schrodinger equation. '

The special problem of the two-photon resonance
has also been approached in several ways. ""
The theories of Belenov and Poluektov" and Tak-
atsuji" reduce a general multilevel system to an
effective two-level system consisting of the reso-
nantly coupled levels. This result requires two
assumptions: (1) All intermediate levels are far
off resonance. (2) The fields are adiabatic with
respect to the intermediate states; i.e. , ~ s8/st

~

«
~ g ~

b.v, where A+ is the minimum detuning for
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the intermediate states. These conditions are not
required by the general WCE method; however,
this makes no practical difference for the present
paper since the specific application presented does
satisfy both conditions. Thus, the effective Bloch
equations used in Sec. III may be derived from the
WGE theory, as in Sec. II, or from the Takatsuji
theory, as in the work of Grischkowsky, Loy, and
Liao. '

A different approach is found in the work of
Brewer and Hahn" and Beterov and Chebotaev. "
These authors discuss three-level systems irradi-
ated by two laser beams, each being approximately
resonant with one of the transitions joining the in-
termediate state to the initial and final states. In
certain cases exact solutions (of the rotating-wave
approximation) were found.

The same equations are obtained in the lowest
approximation of the WGE method; in that language
they would be said to describe coupled one-photon
transitions. This distinction is more than a matter
of convention since the solution of this problem ex-
hibits oscillations with frequencies 0-O(a) cu,

where ~ characterizes the laser fields; e.g. , w

might be the average of the input frequencies. On

the other hand, the strictly two-photon transitions,
for which the intermediate states are virtual, yield
oscillation frequencies &d-O(X') (d. The next ap-
proximation in the WGE method gives a modu-
lation of the coupled one-photon solution by fre-
quencies of this order.

In Sec. II the relevant results from WGE are
used to obtain the effective two-level Hamiltonian
in the absence of resonances with intermediate
levels. In Sec. III the corresponding optical Bloch
equations are presented for the case of counter-
propagating beams. An exact analytical solution
for the effective two-level system is constructed
from the known solution for the hyperbolic-secant
pulse in the one-photon problem. Some features
of the chirped-pulse technique which are peculiar
to the two-photon case are pointed out.

In Sec. IV the theory of Sec. III is applied to a
hypothetical experiment in which a ruby laser is
chirped through the two-photon resonance fre-
quency for the transition 6$,~,-9D,~, in Cs, For
given values of pulse intensity and duration, es-
sentially complete inversion is attained for a range
of values of the chirp rate. These pulses are
roughly adiabatic, but the solutions clearly deviate
from the small-angle adiabatic-following model.

II. TWO-PHOTON COHERENT RESONANCE

The target atom or molecule will be represented
by an N-level system with energies E~, eigen-
functions @„, and interaction Hamiltonian

H, = —g(t) ~ d, where d is the dipole operator. Let
g =Z, +g„where

8, (t) = ,'S-co[Go(t)e '"~'+ c. c],
G~(0) = 1, and the Fourier transform G, ((d) is peaked
at e =0. The width 5~, of G, must satisfy 5~,
~O()() (d, where ur is the frequency characterizing
the laser; otherwise the pulse duration 7., 1/5-u„
would satisfy r~«()((d) ' and the pulse would be
over before anything could happen on the time
scale of the Rabi period ()(ur) '. The interaction-
picture Schrodinger equation is ()1 = 1)

)(H (n ( $) @ H (O ( f) ei t HOH ( f)e -(t Ho
84
Bt j.

(2.1)

where IIO is the unperturbed Hamiltonian and X is a
dimensionless parameter representing the dipole
coupling strength. For estimation purposes A, is
defined by A. =pod/m, where So=max~ 8(t)~, Z is
a representative value for the dipole matrix ele-
ments and u is the characteristic frequency for
g(t). With this definition of )(, H, should be re-
placed by

H', =- ((u/h, d ) 8 ~ d,

but this distinction will be ignored since, at the
end of the calculation, the factors A. and H', can
always be recombined to recover II,.

The multiple-time-scale method involves the
extensions

(~o~ 4~ (2~ ~

yn
a

" a

Bt &t„
n=o

going(n)(f

f )
n=o

The extended time derivative is the directional
derivative along the line t„=)("t (the physical line);
at the end of the calculation an approximate solu-
tion of (2.1) is obtained by evaluating@(" on the
physical line. An infinite set of equations for the
4 " 's results from substituting the extended forms
(2.2) into (2.1) and equating equal explicit powers
of A. on both sides. These equations are not suf-
ficient to determine the+ " 's; furthermore,
straightforward integration yields two kinds of
troublesome terms: (1) secular terms, propor-
tional to some t, and (2) quasisecular terms, con-
taining energy denominators of order A. . In Sec. II
of WGE a general prescription was given for im-
posing subsidiary conditions which eliminate the
secular and quasisecular terms and also allow the
+)'s to be completely determined. The results
of this prescription applied to the present problem
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are given below.
The lowest-order approximation in which reso-

nant two-photon effects can occur requires the
evaluation of + ' as a function of t„ t„and t,. The
~I (n ~ 1) and the dependence of qz(o) on t„t„.. .
can be neglected. The explicit A. on the right-hand
side of (2.1) guarantees that 4~) is independent of

tp but the t, and t, dependences must be obtained
from the auxiliary conditions which eliminate tp

and t, secularities. The first of these is given by
Eq. (2.11) of WGE:

In second equation 5' is a projection operator that
selects the static and low-frequency parts of its
operand. The exact definition is

(PA(t~) =(A)~+ (I)(I),'(d' —(d )[A'((d)]oe ' '),

where A' =A -(A)~, (d is a suitable frequency unit;
e.g. , the average frequency of the pulse, a cir-
cumflex (") denotes the Fourier transform, [B]o is
an instruction to delete any part of B which is of
order X or smaller, and

1 T
(A)~—= lim — (it~A( t~)

g-+OO T p

is the static part of A. The parts of A that appear
in 6'A are precisely those that would lead to secu-
larities and quasisecularities in conventional per-

turbation theory. The matrix elements of II ' are

H"' = —,'(V, ) e" ~()[G„(t)e '"))'+ c.c.],
-1

(2.3)

@(p) H(2; 2)y (0). 8

'Bt,

H" "(f,) =(Px'-'(~ 'f, ),

X"'(I,) =(P[H"'Z"'"](~ 'I,),
d(uH") (uJ(1 0)(f ) p ( ) -(rat 0
2g (d

(2 4)

(2.5)

(2.6)

where P stands for principal value. Substitution
of (2.3) into (2.5) and (2.6) yields

where E~&=E -—E() and (V))} ()
———$)0 d (). With

the help of the condition 5(d~ ~ O(X)(d, it is not dif-
ficult to show that O'H('(i) ——0 unless

~

E (i
+ (d„~

=O(X)(d. In other words H"'" vanishes unless one
of the fields is in resonance with some transition
in the target. " The general formalism in WGE can
deal with the simultaneous presence of one- and
two-photon resonances, but the example consid-
ered in Sec. IV involves no one-photon resonances;
therefore, the condition ~E ~+(d~~ »O(I))(d will be
assumed from here on.

The absence of one-photon resonances consid-
erably simplifies the auxiliary condition determin-
ing the t, dependence of O'' '. The condition is
given by Eq. (2.25) of WGE:

X"'() )=tP P — xP( (.y.)) )P('; *)-' "* "."' "'-'""}
X [G&((d (d +E z (d&)+G), ( (d+(d E z (d&)+]

x [Gf ((d +Ez8 —(df ) + Gf (- (d —Ez() —(df) P ] ~ (2.7)

A

This expression separates into four terms corresponding to the products G~G, , etc. Since the 0' operation
discards any low-frequency term which is O(I() or smaller, a given product can contribute to (2.7) only if
the arguments of both G functions are small. The combination of this consideration with the restriction
~(d

~

—I)(d leads to three conditions for a nonvanishing contribution to (2.7}: (a) ~E~f) —((d)+(d, )
~

—O())(d))
(b) ~E 8

—2(d,
~

~O(X(d}, and (c) ~E, —((d, —(d.)
~

~ O(I((d). Condition (a) evidently corresponds to absorption
(or emission) of one photon from each beam; condition (b) indicates absorption (emission) of two photons
from one beam; and condition (c) for k4j, o(AP represents coherent Raman scattering. Note that (c) is
trivially satisfied for a =P, k =j. The counterpropagating problem considered in Sec. III corresponds to
(a); therefore it is assumed that only (a) and the trivial version of (c) are satisfied. More specifically,
suppose that two states Q, and &f&f are connected by a two-photon resonance: Ef, —((d, +(d,)~O(X)(d. Then
the only off-diagona. l elements of X"' are Xf,"=X(f~), and (2.7} gives

I

Xf,"= —e '" '(I).8 (I('(d' —A. '(d') G, (X(d —(d' +Ef6 —(d, )G, ((d' + Ea —(d, )2r

1 (V, )f()(V,)(), (,)f()( ()(), (1 2)
8 (d2 +ps (d

&
—E

(2.8)

In deriving this expression the denominators u' and u —~' have been evaluated at the peak of the product
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A A

G,G„ this is permitted because the error terms are of order X or smaller and are eliminated by the + op-
eration. In addition a change of variables e- A. (d has been made in order to display the t, Fourier trans-
form explicitly. Equation (2.4) gives

(2.9)

It is convenient to change the integration variable (d-(d/X before inserting (2.8) into (2.9) to get

H", "= —exp -i—,t, 8 X'v'- (d' 8 X'~'-(d' dv'
G ()(u —(d'+Efs —(d))G2((d'+EB, —(d2)

(V)}fs(V2)Bs (V2)fs( ))BS (I 2) (2 10)
8 (d2 —EBs CO, —EyB J o

In order to get a nonvanishing contribution it is necessary to impose new restrictions: 5(d2=0(X )u and

Ef, —(((), +(()2) =O()(2)(d. If these conditions were violated the ())' integral would be at most O(X) and the

[ ], operation would set the right-hand side of (2.10) to zero W.ith the new restrictions in force, the
constraint

~

(d
~

« )('(() on the (d integral can be relaxed; the G functions will have the same effect except for
small errors which are eliminated by the [ ~ ~ ], instruction. The frequency integrals can then be per-
formed, by means of the convolution theorem, to get

t, , X t, exp t(2;2) 2 f ~2 2fl) )Bs (I 2) G (
-2

)G (
-2

) fs ) 2

Bs
(2.11)

A similar calculation yields the diagonal elements

2

eu (E )2 ~2 2 2~G ()( 't ) ~' (2.12)

Since Hf,'" and H,'f'" are the only nonvanishing
off-diagonal matrix elements, the N-level system
has been effectively replaced by a two-level sys-
tem described by the Hamiltonia. n H„"2" (n, p= s,f).
The effects of nonresonant levels are included in
the sums over intermediate states in (2.11) and

(2.12).

III. COUNTERPROPAGATING BEAMS

Let two pulses propagating in the + z directions
be described by

$,(t) = S,S(t + (1/c)z) cos [(dBt + (I /c}(d sz

+ (t)(t + (1jc)z)],

where S and (I5 are respectively the pulse shape
and frequency modula. tion, normalized by S(0}=1,
(t)(0) =0. A target system wigh velocity v experi-
ences the total field h = g)+(() 2 with 822 =(g„
(d, =(1+p)(BB, a.nd

G (t) =S((1+J3)t +t,) exp[+i(d t, +i/((1+P}t at, )],

where the lower (upper) sign corresponds to k = 1

(k = 2). The parameters P and t, are given by I3

= v2/c and t, =z,/c, where z, is the location of the
target at t =0. The maximum overlap of the pulses
occurs at t=0, z=0. Since the shape functions are
evaluated at + t, when t = 0, only targets having

~
t,

~

«r, where 7 is the pulse length, will interact

1 Q(2EB Ef EB)(v}fs(V)s
s ( s —Es.)(~B —Efs)

E.s I (V).s I2

2 (E„s)' —~2~ '

(3 I)

(3.2)

where t, has been evaluated on the physical line
t, =~2t. The quantities I' and & are respectively
the width of the two-photon resonance and the
optical Stark shift of the level u. The absence
of Doppler effects is useful only in the case that
the Doppler shift and width are large compared
to the width I'-0(&')~z, , therefore it is natural
to require P»~2. This condition supports the
assumption that the resonance conditions (b) and

(c) of Sec. II are not satisfied.
Now set 4 ') =Qf-, C „(t)(t)„and write the two-

l.evel Schrodinger equation as

strongly with the fields. Thus the active region
has a length L «e7'. For targets in this region t,
may be neglected in the arguments of S and P;
when this is done, it is easy to check that the ma-
trix elements H,"B", given in (2.11) and
(2.12), are even functions of )8. Consequently, the

P dependence of the matrix elements can be neglec-
ted with an error of order P'. The detuning Ef,
—((d)+(d2) =Ef, —2(()~ is independent of P and can be
set to zero with no loss of generality. In this ap-
proximation [neglect of O(P') terms] all Doppler
effects are eliminated from the effective Hamilto-
nian which is given by

H(2; 2) P 2S( ) te2( lb (t)
fs

H"'" =2A S'(t)
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s —C = H" Ca n8 8~
8

(3 3)

where o. , P = s,f and A.
' has been reabsorbed into

the matrix elements. The optical Bloch equations
are obtained as follows: Set C, = &' B, , C& = e '

B&,
and define

u =ByB, +B~B, ,

v= —i,(B~yB, —B~BB~),

where ~f, =&f —4, is the optical Stark shift of
the resonance frequency.

One advantage of the Bloch equations is that
any known solution of the one-photon problem
can be used to construct solutions for the two-
photon problem. For example the sech pulse"
which corresponds to the effective field

[1+(vT) ]0= sech —,0, vtanh—
T 7' T

Then r =(u, v, w) satisfies the optical Bloch equa-
tions" in the "rotating frame":

d r /d t = 0 x r, Q = (21'S', 0, —2 Q + 2b,z, S'),

(3.4)

ensured by imposing the adiabaticity condition

dt
(3.6)

the vector r is then supposed to follow 0 adia-
batically. In the present problem (3.6) is not
sufficient to ensure complete inversion since
Q3 may change s ign mor e than onc e during the
pulse. Thus r, which is adiabatically following

5, would experience a decrease in the inversion
w during part of the pulse. The various possi-
bilities, which depend on the value of p, are shown
in Fig. 1. Inspection of the graph shows that there
is a critical value p. , such that for p, &p.„Q3
changes sign exactly once during the pulse. Thus
if the adiabatic-following assumption (3.6) were
satisfied for some p, & p, , (corresponding to line a
in Fig. 1), complete inversion would be attained.
On the other hand for p & p,, complete inversion
can fail even when adiabaticity is satisfied for
most of the pulse. In this case 0, changes sign
three times (line b in Fig. 1). During the part
of the pulse in which the first two sign changes
occur, r can follow 0 adiabatically. The inversion

leads to an exact analytical solution of (3.4). This
solution can be used for the two-photon ease by
setting

2r =[I+( ~v)'] "~'/r,

S(t ) = [ sech(t /r)] ' ',

P(t) = ——,vtanh(t/ ) 76+, fesch(t/r)

With the initial conditions u = U = 0 and w = —1,
the solution for w is

w =tanh(t /7),

(3.5)

The constant term in Q guarantees that the fre-
quency has the correctly shifted value at pulse
maximum. The effective field 0 is

2 T2 7~0 = (21"e ' ~', 0, —2p, t 2b+,,z —26,&e
' ~' ).

In the one-photon case complete inversion can be

which explicitly exhibits the complete popula-
tion inversion of the two levels. Thus in the
two-photon case what is needed is a sech' '
pulse with an extra term in the frequency mod-
ulation to account for the time-dependent op-
tical Stark shift.

Essentially complete inversion can also be
achieved for other pulse shapes of greater ex-
perimental interest, such as a Gaussian pulse
with linear chirping given by

$(t) =e ' /", Q(t) =p. t+6&,.

2

t/T

FIG. 1. Contributions to 03 vs time in units of the
pulse duration ~. The solid curve is 27.A,&e

' ' and
the straight lines are (- 2 p t + 2b, ~&) ~ for different values
of p. In each case 03 is the difference between the
straight line and the curve. The dashed line represents
the critical value of p, while the solid lines a and b

correspond respectively to supercritical and subcritical
values.
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increases between the first and second sign
changes and decreases between the second and
third. At the third sign change the field is weak
so that 0 is small. and the adiabaticity condition
(3.6) is violated. Thus r cannot follow 0, and

inversion cannot be restored.

IV. DOPPLER-FREE INVERSION IN Cs

A convenient example of two-photon resonance
is the absorption of ruby laser light by atomic
Cs. This experiment2~ has been performed (with
an unchirped pulse) using the transition 6$,&~

-9D3&2 (s-f in the notation of Sec. Iff), with reso-
nance energy 2&~ =28860 cm '. The intermediate
states involved in (3.1) and (3.2) are restricted
by dipole selection rules to npI', &„npI',&„and
nf F,&, , the sums were carried out to n = 14. The
necessary energies and dipole matrix elements
were kindly provided by J. H. Scofield. 2' The
shift and width are

I'/~ =0.495 A'=1. 414&&10 "I(W/cm2),

&q, /+~ = —2.038 & = —5.823&&10 '~I(W/cm'),

where A =1.7&&10 '[I(W/cm~)]'I'. The value of
A. is obtained from the definition A. = Sod /v~, where
d is a representative value of the dipole matrix
elements; in the present case d =5D.

Now consider the Gaussian, linearly chirped
pulse (3.5) with strength A. = 0.002 (I = 1.4x 10'
W/cm') and duration uz r = 2.5 &&10' (7'=0.98 nsec).
The corresponding Rabi period is rs =x/I'=0. 62
nsec. These numbers have been chosen so that
the intensity is below the dielectric breakdown
value, and ~~ =—7«T, =—35 nsec, where T, is the
estimated lifetime of the D,&, state under the ex-
perimental conditions quoted in Ref. 24.

The excited-state population resulting from a
numerical solution of the Schrodinger equation
(3.3) is shown in Fig. 2 for two values of g7/~z ..
2.5@10 ' and 6.25~10 '. The former value is
subcritical; it corresponds to line b in Fig. 1.
The adiabatic ity condition is well satisf ied for
most of the pulse (j Q~/~ Q[' —= 0.1 at t=2.27), but
inversion fails completely. The trouble is that
0, has the wrong sign for most of the pul. se; it
regains the correct sign only after the field has
become very small. The larger value of p. is
supercritical, and essentially complete inversion
is attained. Note that the oscillations in popula-
tion for this case correspond to a large preces-
sion angle of r about 0 so that small angle adia-
batic following is definitely violated. The result
for the critical value p. v/~~ =5&10 ' (not shown
in Fig. 2) is a partial inversion with a final upper-
level population of 0.6. For values of p, much
larger than the critical value complete inversion

fails again owing to the excessively nonadiabatic
character of the pulses. It was found that com-
plete inversion is possible for a range of p, values:
6&&10 'sg7/&u~ &2&10 '. The dimensionless
parameter p. T/w~ is convenient because it is the
fractional shift in fr equency dur ing the chir ped
pulse. Thus the important experimental question
is the feasibility of generating chirped pulses
in the range indicated above.

V. SUMMARY

The AGE theory was applied to nonmonochro-
matic radiation and specialized to excitation by
two counterpropagating chirped pulses. It was
shown that, in the abs enc e of competing one-pho-
ton resonances, a multilevel system is reduced
(in first approximation) to an ecluivalent two-level
system. Qualitative differences between one- and

two-photon pulse excitations are that for the latter
(1) Doppler broadening can be eliminated and (2)
population inversion can fail even with adiabatic
following. Population invers ion was exp lie itly
computed for the 6S«, -9D,&, two-photon tran-
sition in Cs, Almost complete inversion resulted
for chirp rates satisfying 6~10 '&p. 7//e~ &2&10 '.
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