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Starting with Bohr's semiclassical stopping-power equation, a set of stopping-power equations has been
deduced for both partially and completely stripped heavy ions. Each of these equations is valid in a particular
ion-energy region depending upon the ion-medium combination. A simple evaluation of fed s(dE/dx)s '

with the values of (d E/dx)E from the appropriate stopping-power equation valid in a particular ion-energy
region gives the total range of a heavy ion. We have compared the available energy-loss data from other
workers with the corresponding calculated values for a variety of heavy ions in different media ("C, "N, ' 0,
' F, and Ne ions in Al; Be ions in Al and Au; ' B and "B ions in Al; ' C ions in Ar and N„Ar ions in Ar
and N, ; "C, "N, and "0 ions in Si; and ' B, "B, "C, "N, ' 0, and ' F in oxygen). In general the agreement is
very good.

I. INTRODUCTION

Because of its wide applications in various
fields, the energy loss of heavy ions in matter
still. constitutes a topic of substantial interest
to many investigators. ' ' The first theoretical
formulation of the problem, by Bohr, " led to the

following stopping-power equation:

dE 4nz e n 1.123m V'
Z ln

dx mV

where dE/dx is the energy lost per unit path
length by a particle of velocity V and ionic charge
ze, e and m are the electronic charge and mass;
+ is the number of atoms of the medium per unit
volume; Z is the atomic number, and (d is the
geometric mean cyclic frequency of the orbital
electrons of the medium.

The quantum-mechanical formulation by Bethe"
yielded a stopping-power equation which is very
similar to Eq. (1),

features of Eq. (2),

E& tv!fx) *) g&(n'. —" ),

in which t), =2V/U, and g =2z V,/V, U, being the
orbital velocity of the sth electron of the medium;
the other symbols were defined earlier. The
quantities within the square brackets, if less than
unity, should be replaced by unity.

Mukher j i and Sr ivastava" have s hown rec ently
that in the case of partially stripped heavy ions,
such as fission fragments, for which neither g»1
nor g«1 holds, Eq. (3) may be used appropriately
to obtain stopping powers which are in good agree-
ment with the corresponding experimental data.

In the present work we have investigated the
applicability of Eq. (3) in the cases of both par-
tially and completely stripped heavy ions, par-
ticularly under conditions where Eq. (1) and Eq.
(2) are not expected to be rigorously valid.

dE 4gz2e n 2m V2

dx m V' I (1 —P') (2)

in which the additional parameter I represents
the mean excitation potential of the medium and
P= V/c, c being the speed of light. Bohr" has
shown that the conditions for the validity of Eq.
(1) and Eq. (2) are given, respectively, by y»1
and y«1, where g=2z V,/V, V, =es/h. These
two equations thus represent two extreme and
limiting cases; over a broad energy region of
the ion, as it slows down from its initial high
energy at which Eq. (2) is valid, neither of these
equations is usable and no effective means of
computing the total range of an ion seems to be
available. In 1948, Bohr" put forward a stopping-
power equation which combines the classical
features of Eq. (1) and the quantum mechanical

II. STOPPING-POWER EQUATIONS

In Eq. (3), [1/t), ] ' = 1 as long as lt/ti, (1 or
U, -2' '. Hence the summation terms may be
written

-j.
lng g + ln q'

S S ls
U' 2y -1

= E & hcfd *)~ Q i n,*
U=0

S U =0S

=J, +J, +J,.

U II

+ Q In(qs, g ')
U =pv)t

(4)

The lower limit of U, =0 is an approximation by
Bohr" and the upper limits U,' and U," correspond
to those values of U, at which the logarithmic
terms in Eq. (4) become zero. These upper cutoff
values signify that physically no negative energy
loss is possible. For the sake of convenience,
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the three summation terms figuring in the right-
hand side of Eq. (4) will be henceforth designated

by the symbols Jy J2 and J„corresponding to
the order in which they are written. In order to
obtain a set of general stopping-power equations
one has to evaluate the summation terms cor-
responding to different physical conditions de-
termined essentially by the values of y, z, Z, and

V.

A. X)I

1. V-p ZVpg. Since g&1, J, would include all
values of U, up to the vel. ocity of the K-shell
electron, which may be taken as ZV„ if V--,'ZVpy.

Writing 3i', = (2V/U, )' = 2m V'/I „where the ion-
ization potential I, of the sth orbital electron
of the medium is given by I, = zmU', , one obtains
for J,

from the drawbacks that it does not yield the cor-
rect values for the velocities of the outermost
or the innermost electron of an atom and that it
does not satisfy the normalization condition

ZVp

d n(U, ) = Z.
S

Mukherji" has attempted to avoid this difficulty
by assuming that Eq. (10) is valid for all of the
electrons of the medium except the two K-shell
electrons. Since J, does not include the velocities
of the K-shell electrons, one can apply Eq. (10)
and write

2VX' '
ln dn(U, )

"U =0 S

f(Z) "3v3 2VX
ln — 4U,

0 0 s

J, = Q ln(3l3 [ X] ') = Z ln
2m V

s= 1 I y'

where the mean ionization potential I is defined

by

Z lnI = lnI, . (6)

4f(Z)x 'V
Vp

Similar ly,

~VX '
J = ln — dnU,

S

(12)

s=l

As far as J, is concerned, since we have set
the condition V-2ZVpg, the upper limit 2VX '
already corresponds to U, =ZV, . Hence

J2= In —= ln
™V=Zln

s=0

Furthermore, since the lower limit for U, in

J, corresponds to the maximum possible value
for U, , J, becomes redundant. Thus

d, +d3 +d3 = 2Z ln(2m V'/I X). (6)

n(U, ) =f (Z) U, /V„ (10)

where f (Z) = 0.28Z~ for Z ~45.5 and f (Z) = Z'/

for Z~45. 5. Equation (10), however, suffers

2. —,'ZVpg& V- —,'ZVpg'~'. Since V&-,'ZVpg, the
value for U,' in J, is 2' ', J, being negative for
U, &2' '. Adopting Bohr's" procedure, one can
replace the summation by an integral,

J — E 1 ( )
~VS=2VX -j

2 V&-1
ln dn(U, ),

Us 0 S

where n(U, ) is the number of orbital electrons
with velocities less than a given velocity U, .
Mukherji and Srivastava'4 have shown that for a
medium of atomic number Z, n(U, ) is given by

4f (Z) X '(1+ lnX) V

Vp

Considering J„ the maximum value for U, would

be the upper cutoff value U,"=2' 'f', and since
we have set the condition V -&Z Vpg' ', one can
write

U"

ln(3)! X ')
Us 2

(14)

Since Eq. (10) is not applicable in the case of the
K-shell electrons which happen to be included
in J„one may separate the contributions of the
outer (Z —2) electrons from that of the two K-
shell electrons and write

f (Z) (z 3)vp/f(z) 2 V 3

0 "Us=2V)( U. X"'

+2 ln(2V/ZV, X' ')'.

The upper limit U, = (Z —2) V,/f (Z) in the integra, l

above represents the velocity of the (Z —2)th or-
bital electron and is taken from Eq. (10). An in-
direct justification of this artificial separation
lies in the fairly good agreement between the ex-
perimental values of the mean excitation potential
of the el.ements and the corresponding values cal-
culated using the above procedure. " Evaluation
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of the integral leads to

3f (Z) (Z - 2) VD

(Z —2) V, (Z —2) V,x'~'

f(Z) 2vf(Z)

2V
+ 6 l.n —21nx .

0
(16)

(ii) x'1, zZv. x'V-zZv. x":
dE MeV cm

3(Z —2) + 3(Z —2) 1
A V (Z —2)VQ

2V 2f(Z}V+6ln +
V

—ZlnX .
ZV, Vx (23)

From Eqs. (12), (13), and (16) we get

J, +J, +J, = 3(Z —2) + 2f (Z) V/VOX

+3(Z —2) Ln[f(Z)/(Z —2) Voj —Z lnX

(iii) X&1, V&zZV~'I'.

dE MeV cm' 12.68f (Z)z'
dx mg AV (24)

—6 ln (Z V, ) + 3Z 1n (2 V). (17) (iv) X 1, V- —,ZV, :
3. V&&ZV,X'~'. In this case, both J, and J,

would require appropriate cutoff values U,' and

U,". This has been considered in detail by Bohr, "
and the general expression is given by"

Jg+ Ja+J3 =[2f(Z)/V. l(3X "+X ') V. (18)

B. x(1

1. V~-, ZV, . Equation (3) is expected" to yield
Eq. (2), excluding the ln(1 —p') and p' terms, if
X&1 and the velocity of the particle is such that
it is capable of ionizing even the innermost elec-
tron of the medium. The maximum velocity im-
parted by a heavy ion of velocity V to an electron
is 2V, and if the velocity of the K-shell el.ectron
is taken as ZVO, then the second condition men-
tioned above is fulfilled if V~-,ZV, . For X&1, both
J, and J, become identical. and J, becomes re-
dundant. " Thus

dE MeV cm 63.65z~Z 11.39V'
dx mg A. V' 'o Ilog1O (25)

dE MeV cm' 50.6f (Z)z'
dx mg AV (27)

In all of the above equations both V and V,
(=2.184&&10'cm/sec} are expressed in units of
10'cm/sec, I is in eV, A and Z are the mass
number and the atomic number of the medium,
and ~e represents the ionic charge of the particle.

At relativistic energies of the ion, Eq. (25) should
be identical with Eq. (2),

63.65' Z 11.39V P
dx mg A V' "I(1 —P ) 2 303

(26)

(v) X&1, V& —,ZV:

2yyg V~
J, +J, +J, =2 ln — =2Zln

s=1 s
(19) C. Values of z andI

and

ll

s
(20)

V& —,'ZV, . In this case, an appropriate cutoff
value U,' is needed for J, or J„since al. l. of the
electrons are not able to participate in the energy-
loss process. Since the logarithmic term in J,
or J, becomes zero if U', = 2 V, we have"""

In order to calculate the stopping powers from
the above equations, one must specify the values
of z and I zin Eq. (3.) stands for the ionic charge
number (the actual ionic charge being ze) and is
defined as the effective charge of the ion at a par-
ticular velocity V. Using Bohr's" idea that the
effective charge is given by the number of orbital
electrons of the ion whose velocities are less than
the ion velocity V, it has been shown" that

J, +J, +J, = 8f (Z) V/Vo. (21) z =f (Zi) V/ Vo, (28)

dE MeV cm' 63.65&'Z 11.39V'
2 g10dx mg A V' ' IX

(22)

After substitution of the values of J, +J, +J, from
Eqs. (8), (17)-(19), and (21) in Eq. (3), conversion
into proper units, and simplification, one obtains
the following stopping-power equations valid under
the stated conditions:

(i) x'1, vo--,'zv. x.-

y' = (~/Z, )' =1 —1.85e -"~~&, (29)

where Z, is the atomic number of the ion and

f (Z1 ) assumes the values 0.2 8Z,~ at Z, ~45.5
and Z,'~' at Z, =45.5. Equation (28), however,
is inapplicable if the ion is more than half strip-
ped, "i.e. , z= —,Z, . Thus ~ cannot be evaluated
from Eq. (28) at velocities above V = Z, V, /2f (Z, ).
To calculate z Northcliffe" used the relationship
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FIG 1. Variation of the effective charge parameter
y (= &/&)) with ion velocity, expressed in the form

f(ZI)V/Z, VO. Open circles are the experimental data

for 0 from Northcliffe Ref. 18.

z =Z, [1—cexp(-2V/Z', ~'V, )]'~', (30)

where c is a constant and Z', 'Vo represents the
Thomas-Fermi velocity for the ion, we have used
the following relationship:

z =Z, [1—c exp(-2f(Z, )V/Z, V,)]'~', (31)

where y stands for the fractional effective charge
z/Z, and V, is the velocity of the K-shell electron
of the ion. From the point of view of practical
usefulness, Eq. (29) should have a smooth con-
tinuity with Eq. (28) at the lower velocities. Equa-
tion (29), however, fails in this respect, since
at V =Z, VO/2f(Z, ), at which Eq. (28) predicts
z = &Z„ for "0 it yields a negative value for z.
Following Northcliffe's" suggestion that ~ should
be calculated from an expression of the type

8 I2 I6 2P 24

THICKNESS X (mg/cm2)
28

FIG. 2. Energy-loss curves for ~Be in Al and Au along
with the experimental data from Hower and Fairhall,
Ref. 19.

where c is a constant. For an ion with Z, ~45.5,
Z, V, /f (Z, ) gives the Thomas-Fermi velocity
Z',~'V„while for fons with Z, ~45.5, Z, V,/f(Z, )

stands for something analogous to the Thomas-
Fermi velocity in the ease of the heavier ions.
Imposition of the constraint that both Eqs. (28)
and (31) should match at the velocity V = Z, V, /
2f (Z, ), at which Eq. (28) predicts z = 2Z„ leads
to the following expression:

z = Z, [ 1 —2.03 exp(- 2 Vf (Z, )/Z, Vo)] '~'. (32)

Figure 1 shows a plot of y (=z/Z, ) vs f(Z, )V/Z, V,
using Eqs. (28) and (32), and it can be seen that
there is indeed a region of overlap followed by

l0
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I I I I I I I I I I I I I I I

EO.

2.'
4

LLJ
CL

2

lX
UJx
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O
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02 GAS THICKNESS X (rnglCm )

B

70 80

FIG. 3. Energy-loss curves for ' B, "B, C, N, 0, and ' F in oxygen. Experimental data are from Roll. and

Steigert, Ref. 20.
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FIG. 4. Bange-energy curve for the ~2C ion in Al.
Exper i mental data are from Northc1 iffe (He f. 18), Bur-
cham (Bef. 21), and Oganesyan (Hef. 22).

a smooth transition. Furthermore, Fig. 1 also
shows a comparison between the values of y pre-
dicted by Eq. (32) and those obtained experimental-
ly by Northeiiffe'~ in the case of "0 ions. The
excellent agreement between the two allows one
to use Eq. (32) with some degree of confidence.

Thus the values of z in Eqs. (22)-(27) would be
given by Eq. (28) if V ~Z, Vo/2f (Z, ) and by Eq.
(32) if V~Z, VO/2f(Z, ).

The values of X have been obtained from the
following equation proposed by Mukherji":

Z inT = (Z —2) InI 13.6[ (Z —2)/2. 717f(Z)] 'J

+ 2 ln(13.6Z'),

where I is in eV and f (Z) has been defined earlier.

III. RANGES

As a heavy ion initially at p&1 starts slowing
down, the energy-loss rate would be given by the
appropriate equation chosen from Eqs. (22)-(27),
depending upon the instantaneous ion velocity V.
The particular sequence in which the stopping-
power equations must be used depends upon the
ion-medium combination under consideration. The
total range A corresponding to an initial ion energy
&0 is given by

hE OE

(dE/dx), , (dE/dx)2

5E
(d E/dx)„'

where &E is a small but finite amount of energy
loss (e.g. , -0.01 MeV). In the energy region
&,-&, a particular stopping-power equation is
valid and (dE/dx), represents the values of the
stopping powers to be obtained from that equation

at intervals of 6& until. the ion energy comes down
to &„ after which the computation would continue
with another stopping-power equation which is valid
in the energy region E,-&„and so on. The final
energy E„ corresponds to a velocity V, =e'/5,
since at V& V, large-angle scatterings" due to
nuclear collisions lead to insignificant additions to
the total penetration depth in the beam direction.
The values of the ranges and energy losses pre-
sented in Sec. IV have been obtained by the aid
of a computer (IBM 7044) into which the relevant
information in the form of the stopping-power

FIG. 5. Energy-loss curves for OB, 'B, 60, and 4"Ar in Al„along with the experimental values from Northcliffe,
Bef. 18.
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FIG. 8. Energy-loss vs incident energy of ~ "C, N,
and 16O ions in 94.6 p, m of silicon. Experimental data
are from Kelley et aL. , Ref. 8.

FIG. 6. Energy-loss curves for '"N, F, and Ne ions
in Al. Experimental data are from Northcliffe, Ref. 18.

equations [ i.e. , Eqs. (22)- (27)] and their res pec
tive regions of validity, as well as Eqs. (28) and

(32) for the calculation of the effective charges
and Eq. (33) for the calculation of mean ionization

potentials, have been fed; calculations were per-
formed with dE = 10 KeV in Eq. (34).

IV. COMPARISON WITH EXPERIMENTAL DATA

The ranges and stopping powers corresponding
to different initial ion energies have been obtained

for the following ions in the specified media:
'Be ion in Al and Au; ' B, "B, ' C, ' N, "0, and

F 'n 0 OB 11B 12C 14N 160 19F 2ON
27 9 7 ) 7 )

Ar in Al; ' C, ' N, and "0 in Si; ' C in N, and

Ar; 4 Ar in N, and Ar; and ' C and "0 in Cu. For
comparison with experimental data presented in

the form of ion energy & against the thickness
X of the medium, we have plotted the ion energy
E against R(E,) —R(E), where R(E„) is the com-

e l20-
X

80—
iJJz
UJ

puted total range corresponding to the initial ex-
perimental ion energy E, and R(E) is the com-
puted range corresponding to a particular energy
E of the ion. Figure 2 shows a comparison be-
tween the theoretical energy-loss curves for 'Be
in Al and Au and the experimental ones of Hower
and Fairhall. " Figure 3 shows a similar com-
parison in the case of ' B, "B, '-C, "N, "0, and
"F ions in oxygen gas, using the exper imental
data of Roll and Steigert. ' Figure 4 snows a plot
of the range R against the ion energy E in Al in

the case of "C compared with the experimental
values of Northcliffe, "Burcham, "and 0ganes-
yan. " In Fig. 5 are shown the theoretical energy-
loss curves for "B, "B, "0, and "Ar in Al and
their comparison with the corresponding experi-
mental values in the cases of "B, "B, and "0
from Northcliffe. ' Figure 6 shows Northcliffe's"
experimental energy-loss values for "N, "F, and
' Ne ions compared with the corresponding theo-
retical curves. Figure 7 shows the theoretical
range energy curves for "C, "N, and "'0 ions
in Si. In Fig. 8 we have plotted the theoretical
values of the energy loss &E suffered by "C, "N,
and "0 ions in passing through 94.6-p, m-thick
Si at different incident energies E,. and compared
them with the corresponding experimental values
from Kelley et al." The value of &E at a given

E, has been obtained from Fig. 7 as follows: A

TABLE I. Calculated and experimental values of the
stopping power of ~ Ne ions in aluminum.

z 40—
0 Energy

(MeV)
(~~~d&) calc

'
(MeV cm~/mg)

(6P /dx)„-~pt
'

(MeV cm~/n&g)

0 l0 20 30 40 50 60 70
RANGE IN SILICON R (mg/cm2)

18.4
16.9

9.46
9.0,",)

9.4*0.6
N. 6 18

FIG. 7. Theoretical range vs energy curves for C,
~ N, and ~~O ions in silicon.

' This work.
"Shane and Seaman, Reference 9.
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FIG. 9. Energy-loss curves for ' C in Ar and N2 and Ar in Ar and N2. Experimental data are from Martin and
Northcliffe, Ref. 23.

TABLE II. Calculated (R,&, ) and experimental (R,„p,)
ranges of various ions in aluminum and copper.

Energy &exp~ &chic
'

Ion Medium (MeV/amu) (mg/cm ) (mg/cm )

1ip
12C

l6O

20Ne

4'Ar
12C

Al
Al
Al
Al
Al
CQ

10.4+ 0.2
10.4+ 0.2
10.4 + 0.2
10.4+ 0.2
10.4+ 0.2

4.33
5.5
5.79
4.7
6.03

82
62.6
49.4
42.4
34
18.9
27.1
32.0
18.8
27.1

82.5+ 1
63.5+ 1
50 + 1.5
42.5+ 1
33 +1

20.0
28.5
30.9
19.0
25.0

' This work.
Reference 24.' Reference 22.

thickness of 94.6 p, m of Si corresponds to 22.05
mg/cm of Si. From Fig. 7, the range 8, cor-
responding to the incident energy E,. is first read
out and then the emergent energy E, corresponding
to the range 8,. —22.05 is obtained from the same
curve. The difference between E,. and &, repre-
sents the energy loss &E at the incident energy
E; . Finally, in Fig. 9 are shown a comparison
between the theoretical energy-loss curves for
"C in N, and Ar and Ar in N2 and Ar and the
corresponding experimental values from Martin
and Northcliffe. "

In Table I are listed the experimental stopping

powers from Shane and Seaman' in the case of
Ne ions in Al, along with the corresponding cal-

culated values from Eq. (24). Table II lists the
theoretical and experimental ranges of "C and
"0 ions in Cu and the theoretical and experimental
ranges of "B, "C, "0 "Ne, and "Ar in Al"

V. DISCUSSION

An examination of Figs. 2-6, 8, and 9 shows
that except in the cases of "B and "B in 0, and
'Ar in Ar, the agreement between the theoretical-

ly calculated energy loss and the corresponding
values from literature is general. ly very good.
Since the experimental values of the energy loss
of "B and "B ions in Al are in excellent agree-
ment with the corresponding theoretical values
in Al, as Fig. 5 shows, and the same holds in the
case of the other ions (i.e., "C, "N, "0, and
"F) in O„one cannot ascribe the difference be-
tween the theoretical and experimental values in
the cases of ' B and "B in 0, (Fig. 3) to any sys-
tematic error in the formulation of either the
effective charge of the ion or the mean ionization
potential of the medium. Since the theoretical
energy loss of "C in Ar and of ' Ar in N, are in
excellent agreement with the corresponding ex-
perimental values shown in Fig. 9, the large de-
viation in the case of "Ar in Ar is not easy to
explain. The energy-loss curves for several ions
in Ni provided by Roll and Steigert' are in con-
siderable disagreement with our calculated values
and are not shown here. Table II shows, however,
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that the experimental. ranges of "C and "0 in Cu,
which is close to Ni, is in fair agreement with
the corresponding calculated values, although
neither the detailed experimental. procedure used
by Oganesyan" nor the method of assigning the
experimental. errors are clearly stated. Further-
more, the excel. lent agreement of the calculated
ranges in Al with the corresponding experimental
values of Brustad'4 is particularly satisfying,
since the experimental ranges were obtained by
a direct recording of the ion current, instead of
by extrapolation from the energy-loss curve.
Finally, the excellent agreement between the cal.-
culated and experimental' values of the energy
loss of "C, "N, and '"0 in silicon, shown in. Fig.
8, possibly lndlcates that ~' correction' "'may
not be necessary for energy-loss calculations.

The only available tables of computed values
of ranges and stopping-powers for heavy ions are
those of Northcliffe and Schilling. " Although the
approach is empirical. , these tables are very use-

ful for fairly-high-energy heavy ions but are not
sufficiently accurate at lower energies at which
the ions are incompletely stripped, and the total
range would ref l .ct this uncertainty to some ex-
tent. The ..: '. t; work provides a reasonable
l.ogical basis for the computation of the stopping
powers and ranges of heavy ions which is free
fr om empiric is ms and ad justab le parameters.
Further work on the computation of ranges and

stopping poweI s of heavy ions in complex media,
such as nuclear emulsions, and solid dielectric
media, such as mica and plastics, is in progress.
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