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Close-coupling cross sections for the electron-impact parity-unfavored transition *P(2p)*— 'S (1s)? in helium
are calculated in an integral equation approach. At an energy 0.11 eV above threshold the present formalism
yields a cross section of 1.55 X 10~*a 3 which is in good agreement with experiment. Our calculated slope at
this energy is 6 X 1072° cm?/eV against an experimental value of 4 X 10~%° cm?/eV. The present cross sections
satisfy the threshold law for parity-unfavored transitions. A Born-Oppenheimer (BO) calculation is also
performed, and it is found that near threshold BO cross sections are too small in comparison with
experimental results. The dependence of BO cross sections on the choice of atomic wave functions is also

examined.

I. INTRODUCTION

The electron-impact 3P (2p)?~ S (1s)? transition
in helium was first studied by Becker and
Dahler.”? They examined this transition process
in the Born-Oppenheimer (BO), distorted-wave
(DW), and close-coupling (CC) methods and ob-
served that of the three methods, the last two
gave identical cross sections and that the BO
cross sections were in substantial agreement with
those obtained from the more sophisticated DW
and CC methods. Recently, Burrow® applied the
trapped-electron method and measured cross
sections for the above-mentioned transition near
threshold. He remarked that at an energy 0.11
eV above threshold, the cross sections obtained
from the calculations of Becker and Dahler? dif-
fered greatly from his measured values. Since
Becker and Dahler? adopted for the doubly excited
eigenstate an eigenenergy which differed con-
siderably from the experimental value, their
calculated cross sections are unlikely to be re-
liable near threshold. So with the availability
of experimental results in the vicinity of thresh-
old, there is clearly a need to look at this prob-
lem again from a critical angle.

The present paper reports the results of the ap-
plication of the integral form of the close-cou-
pling approximation?~® to the electron-impact
3p (2p)% - 1S(1s)? transition in helium. This in-
tegral form of the close-coupling approximation
differs from the conventional form® of CC in
that instead of integrodifferential equations one
solves here integral equations with the boundary
conditions automatically incorporated. Since
our main purpose is to evaluate reliable cross
sections close to threshold, we have used in the
present calculation accurate energy eigenvalues
for the target eigenstates. Only two bound states,
namely, the initial and final states of the target
atom, are included. For the initial state Hartree-
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Fock atomic orbitals are adopted, whereas for
the final state we have chosen hydrogenic orbitals.
The close-coupling equations are solved by an
algebraic method.>® The resulting cross sections
are compared with the corresponding theoretical
and experimental values. Simple BO calcula-
tions'™ ! are also performed using different
atomic wave functions, and the dependence of
cross sections on the choice of wave functions is
examined. Furthermore, threshold behavior of
cross sections for this parity-unfavored trans-
ition'? is reported.

In Sec. II the integral form of the close-coupling
method is formulated for the present case of
double excitation of helium. The explicit ex-
pressions for the close-coupled equations are
given. Section IIl contains an analysis of results.
Concluding remarks are made in Sec. IV. The
Appendix deals with the evaluation of partial-
wave matrix elements which appear in the coupled
equations. Atomic units are used throughout the
paper.

II. THEORY

The integral method of the close-coupling ap-
proximation has been described in detail in a
number of papers.*® In this section we present
a brief formulation of the above method as applied
to the 3P (2p)?— 1S(1s)? transition in helium. In
the present formalism only the initial and final
states of the target wave function will be retained
in the expansion of the total wave function of the
system consisting of the scattering electron and the
target. The antisymmetrized total wave function'?
may then be written as

¥(1,2,3)= 3 [6,.(1, 2)F1.(3)x (1,2 3)

+¢,_(1,2)F,_(3)x.(1,2;3)]. (1)

Here F,,(3) and F,_(3) denote the wave functions
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for the scattered electron, which are associated
with the initial and final states, respectively. o¢,.
and ¢,. refer to the coordinate wave functions of
target atom, and x, and x _ are the appropriate
spin wave functions.!*!® The signs + and — denote
symmetry and antisymmetry, respectively. The
symbol 3 . stands for a permutation operator
which ensures that ¥(1, 2, 3) is antisymmetric with
respect to the interchange of any pair of electrons.

Following Drukarev'® we obtain in the present
case a pair of coupled integrodifferential equations
describing the scattering of electrons from atomic
helium,

(E —EY) =T )F,,(3) = ViiF1.(3) + VisF,_(3), (2)
(E-E® —T)F,.(3) =V F,.3)+V;F.(3). (3)

In a compact notation, Egs. (2) and (3) can be
expressed as

2
(E=E%, , ~T)F o, (3)= 3 VigdaF,, (3).

(4)

Here E is the total energy of the system, T, the
kinetic energy operator for electron 3, E(g?aa, the
energy of target atom in state a’, a,r denotes the
symmetry (+ or =) of the target eigenstate, and
V stands for an operator in atwo-body Hilbert
space. The operators V’{’;, V;z, sz , and V5

are defined as follows:

Vii= j dr,dr, $1.(1, 2) (— 2, ——) 01,(1,2)

Y3 Va1

- J’ Ardt, 051, 2)(H —E)$,.(2,3), (5)

pis= 31/2f drydt, 51, 2)(H —E)é,_(3,2), (6)

Vo= J' dr,dr, o) .(1, 2)<_ % + ;2—> $,.(1,2)

31

- [ dndr o1, D -B)e,.2,9), ()

V=32 [ dt, v 0 (1, D(H - E)90(2,9) . (8)
The Hamiltonian H is given by

H=T,+T,+T,
_Z<l+i+—1->+—l—+L+—l—‘—E. (9)

Following Sloan and Moore,* the close-coupling
equations (4) can be converted into equivalent in-
tegral equations and the three-body transition
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amplitude can be written

&'a’|Tka) = &'a’| Blka)

- (k'a"Bk"a ”)(k”a”lT\ka}
o 3 J e R

(10)

Here T and B are the three- and two-body
operators, respectively, and <k' '|7ka) denotes
the amplltude fpr transition from state a to state
a’, with k and k’ the initial and final momenta. «
is characterized by the principal quantum number
n, the orbital-angular-momentum quantum num-
ber I, and the projection quantum number m, of
the target atom. The summation over o” stands
for the two states, namely, the initial state 1 and
the final state 2, which are retained in the ex-
pansion of total wave function of the system. E»
is given by

Etn=3k"*+E%),

where E ) is the energy of target atom in state o”.
We express the two-body transition amplitude
as

k’a’|Blka) = - (1/4n2)f8, (&', k), (11)
where

a & 3V2
walk’ k) =5

f dF,dT,dT, ¢ X (F,, T)e~ T3

X (H=E) o(Ty Ty)e ity (12)

On the energy shell, 3.,
scattering amplitude.’

In the present calculations we have used two
different forms (form A and form B) of approxi-
mate atomic wave functions. These are as follows:

Form A.

(k', k) becomes the BO

p (2}?)2: wrm)(lz)
= 2 C(ly 1: 1; v,m -V, m)wzlu('y’ l)d)zl.m-v('y’ 2) ,

'S (15)%: ,(23)
=N[100(at, 2)¥100(8, 3) +Py0(a, 3)¥100, 2)] .
Form B. 3P (2p)?:y™(12) is the same as in form
A
1S (18)%: 95(23) = ¢o(75) do(7s)
where
Do(r) =(41)V2(Ae~ " +Be M)
Form A consists of hydrogenic wave functions

as adopted by Becker and Dahler,? while in form
B the ground-state wave function of helium is
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taken to be the Hartree-Fock function of Byron and where fa.a(ﬁ’, k) represents the scattering ampli-
Joachain.? tude.
The three-body matrix element is expressed in Now we make the partial-wave expansion of the
the same way as (12): three-body transition amplitude,
&' a'|T|ka) = - (1/47%)f o ol B, B) (13)

J

&n'tm}|T|knil,) = (kkl\,]) > th > WU mI LMY Yy (R VT k' U 1; k1, X Umm, | LM) Y1 (k) , (14)
Ly I'm* Im

with N’ =1/2r. Here T (k'n'I'l’; knll,) are the conveniently normalized partial-wave T -matrix elements,
and the m are the orbital angular momentum and magnetic quantum numbers, respectively, of the free
particle, L is the total angular momentum of the system consisting of the scattering electron and the
target, and M is its z component. Y,M(E) and (I l,mm,|LM) denote, respectively, the spherical harmonic
and the Clebsch-Gordan coefficient.

Let us denote, for convenience, the set of quantum numbers (nll,) as 7. Now using an expansion similar
to (14) for the two-body transition amplitude, substituting (14) into Eq. (10), and utilizing the orthogonal
properties of spherical harmonics and of Clebsch-Gordan coefficients, the three-dimensional integral
equations can be reduced to one-dimensional equations,

THR'7';kT) =BE(R'T'; BT) +N' Z J’ dk"k" (E +ic —E.») 'BX(R'T'; R"T")TH(R"T"; kT) . (15)
—
We divide the pole term into a 6-function part and a principal-value part,
(E+i€~E,n)'==in6(E =E.»)+P(E =E.»)"". (16)

Equation (15) then becomes
TH(k'7';k7) = B*(R'T'; kT) —inN" Y BE(R'T';RnT")T (R, T"; kT)
L

1
+PNI 2 J’ dkllkll %(kz’, _knz) BL(kITI;kIITII)TL(k”TII;kT)’ (17)
T T

with
k2, =k%+2(E® - E®). (18)
E® and E®) are the energies of the target in the ground and 7” states, respectively.
In the present case of double excitation, only one partial wave? (I=1' =L =1) contributes to the cross
section. A detailed explanation is given in Appendix.
The close-coupled equations are then written
T'(k',2,1,1;k,1,1,0)=B %", 2,1, 1;k,1,1,0)~irN'[B'(k', 2, 1, 1; Ry, 1,1, 0)T (%, 1,1, 0;, 1, 1,0)
+BY k', 2,1, 1;k,, 2,1, )T R, 2,1, 15k, 1,1,0)]

1
+PN’J‘dk”k” (—————— Bk’ 2,1, 1;k", 1,1, 00T (", 1,1,0;k,1,1,0
i B2 )TX( )

1
+ ——
%(kg _k”2)
T, 1,1,0;k, 1, 1,0)=B’, 1,1, 0;k,1,1,0) -inN’[B‘(k’, 1,1,0;k,,1, 1, 0)T*(,,1,1,0;2,1,1,0)
+BYk’,1,1,0;k,, 2,1, )T (k,, 2,1, 15k, 1,1, 0)]

Bk’ 2,1, 1,7, 2, 1, DTHR", 2, 1, Lk, 1, 1, o>> . (19)

+PN’ J‘ dk" k" (L(kz—lkﬂ—z) Bl(k', 1,1,0;2",1, I,O)Tl(k", 1,1,0;£,1,1,0)
2 1~

1
+ T B'(',1,1,0;k",2,1,1)T'(%",2,1,1;k,1,1,0)).
Z(kz‘k )

(20)
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The differential cross section (9, ¢) for the trans-
ition process 3P (2p)%- 'S (1s)? can be obtained from
the relation (13) by using the partial-wave ex-

pansion (14). A simple algebraic calculation gives

1(6, ¢) = (9/8k%)|T k', 2,1, 1;k, 1, 1,0)| sin6.
(21)
The total cross section o(n’, I, - n, 1,) is given by
0(2,1-1,0) = (37 /k3)|T ', 2, 1, 1;k, 1,1, 0)|2.
(22)
III. ANALYSIS OF RESULTS
A. Born-Oppenheimer calculation

BO cross section (Table I) are evaluated from

the formulas given by Becker and Dahler? using
two different forms of approximate atomic wave

functions. In. Fig. 1 are displayed these cross
sections of present calculations, together with
those of Becker and Dahler.? Curve A shows the
cross sections of Becker and Dahler calculated
using hydrogenic wave functions (form A) and
theoretical eigenenergies. Curve B of the present
calculations differs from curve A in that ex-
perimental eigenergies are used here. Curve C
gives the present cross sections computed from
the Hartree-Fock and hydrogenic wave functions
(form B) for the ground and excited states, re-
spectively, of helium (experimental eigenenergies
are used). Hereafter, calculations yielding curves
A, B, and C will be referred to as calculations
A, B, and C, respectively.

We have recalculated the BO cross sections of
Becker and Dahler for 3P, (2p)*~ 'S, (1s)? transition
in helium. Apparently, there is an error in the

TABLE 1. Cross sections for the electron-impact 3P (2p)2-1S(1s)? transition in helium, in

units of ag.

Energy Present work
(eV) BO? BO® BOC cc Experiment 9
59.65 0.1772(-4) ¢ 0.6995(=7) 0.9271(-"7) 0.352(-5)
59.67 0.1896(—4) 0.3535(—6) 0.4760(—6) v
59.70 0.2083(-4) 0.9870(—6) 0.1335(-5)
59.72 0.2212(-4) 0.1523(-5) 0.2043(-5) e
59.74 0.2342(—4) 0.2117(-5)  0.2843(-5)  0.134(-3) te
59.75 0.2409(—4) 0.2432(-5) 0.3276(-5) 0.155(—-3) 0.157(-3)
59.76 0.2474(-4) 0.2766(—5) 0.3734(=5) 0.178(-3) e
59.78 0.2608(—4) 0.3478(—5)  0.4686(—5) te
59.80 0.2744(-4) 0.4238(-5) 0.5705(—5) A
59.85 e e 0.8516(—5) 0.418(-3)
60.0 0.4188(—4) 0.1386(—4) 0.1866(—4) e
60.5 e 0.4747(—4) 0.6375(—4) v
61.0 e 0.8754(—4) 0.1173(-3) 0.127(-1)
61.6 0.1787(-3) 0.1385(-3) 0.1853(-3) b
62.0 0.2130(-3) 0.1726(-3) 0.2305(-3) 0.657(-1)
62.6 0.2621(-3) 0.2222(-3) 0.2959(-3) v
63.0 0.2929(-3) 0.2537(-3) 0.3372(-3) 0.561(-1)
63.5 0.3289(-3) 0.2908(-3) 0.3857(—3) t
64.0 0.3619(-3) 0.3253(-3) 0.4304(-3) 0.162(-1)
65.0 0.4191(-3) 0.3856(—3) 0.5078(-3) tee
67.0 0.4996(-3) 0.4727(-3) 0.6162(—3) 0.134(-2)
70.0 0.5519(-3) 0.5336(—3) 0.6846(—3) T
72.0 0.5547(-3) 0.5407(-3) 0.6865(—3) v
75.0 0.5295(-3) 0.5205(—3) 0.6503(—3) 0.123(-3)
80.0 0.4507(-3) 0.4466(-3) 0.5438(-3) cee
90.0 0.2844(-3) 0.2828(-3) 0.3285(—3)
100.0 0.1666(—3) 0.1669(—3) 0.1863(-3)
120.0 0.5661(—4) 0.5686(—4) 0.5966(—4)
150.0 0.1246(—4) 0.1253(—4) 0.1240(—4)

4 Calculation A (see Sec. IIIA); BO cross sections of Ref. 2.
b Calculation B (see Sec. IIIA); present BO cross sections using form-A wave functions.
¢ Calculation C (see Sec. IITA); present BO cross sections using form-B wave functions.

d Experimental cross section of Ref. 3.

€ The number in parentheses denotes the power of 10 by which the preceding number is to

be multiplied.
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expression for f,(8, ¢; *P,) in Ref. 2 [Eq. (4), p.
A75] due to transcription, because the reported
results are consistent with the correct expression,
which is 1/k times f,(6, ¢; °P,), appearing in their
paper. At an energy 0.11 eV above threshold the
present calculations B and C yield, respectively,
cross sections of 2.43x 10-%2 and 3.28 x 10~%2,
which are much too low compared with the cor-
responding experimental value of 1.57x 107%g2

of Burrow,® whereas the BO calculation of Becker
and Dahler gives a cross section which is smaller
than the measured value by only a factor of about
7 and which appears to be better than ours. At
this point we wish to remark that the cross sec-
tions of Becker and Dahler are not reliable in

the vicinity of threshold, because they have adopted
energy eigenvalues which are not close enough to
the corresponding experimental data. On the other
hand, in spite of our adoption of experimental
energies, we find that near threshold the present
cross sections are too low compared to the ex-
perimental results,® which are reported to be
uncertain by a factor of 2. In Table II the BO
slopes near threshold are given. It is seen that
the present BO slopes are also very small in com-
parison with experiment. Therefore we conclude
that the BO method is incapable of predicting re-
liable cross sections near threshold. Further-
more, Becker and Dahler observed that the cal-
culated cross sections are independent of which

of the two different sets of hydrogenic wave func-
tions they used. But it is seen from Fig. 1 that
the cross sections are sensitive to the wave func-

80
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FIG. 1. Total cross sections for the electron-impact
3p@2p)?—15(1s)? transition in helium. Curve A refers
to the BO calculation of Becker and Dahler (Ref. 2).
Curves B and C display the results of present BO cal-
culations using form A and form B, respectively, for
the atomic wave functions (experimental eigenenergies
are used).

tions we used (curves B and C) in the immediate
vicinity of threshold.

B. Close-coupling calculation

The close-coupled equations (19) and (20) are
reduced to a set of linear simultaneous algebraic
equations using the method adopted in Refs. 5 and
6. The resulting equations are then solved by the
matrix inversion method. In this calculation we
have adopted for the atomic wave functions form B
and used experimental energies for the target ei-
genstates. The partial-wave matrix elements
BE(k'T’; kT) occurring in the close-coupling equa-
tions are calculated using the method published
by Lyons and Nesbet.’®*!® The details are de-
scribed in the Appendix.

Figure 2 shows a comparison of the results of
present close-coupling calculation (curve 1) with
those of Becker and Dahler? (curve 2) calculated
using a one-parameter ground-state wave function
for helium. Near threshold our cross sections
rise steeply, in sharp contrast to the findings of
Becker and Dahler. At an energy nearly 15 eV be-
yond threshold, the two calculations give cross

3
10
o S0 + Experiment
L ‘2 30
- s
o 10
2 59-64 5974 59-84
10 F E (eV)
— L
No -
5
« -
1
o
- -
~
b
10
L
1
58 60 65 70 75

E (eV)

FIG. 2. Total cross section vs incident electron energy
for the electron-impact *P (2p)2+ IS (1s)? transition in
helium. Curve 1 represents the present close-coupling
(CC) cross sections; curve 2 displays the CC results of
Becker and Dahler (Ref. 2). Inset: Comparison of
present CC results with experiment (Ref. 3) in the im-
mediate neighborhood of threshold. The experimental
result (Ref. 3) is reported to be uncertain by a factor
of 2.
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TABLE II. Comparison of experimental slopes Ad/AE in units of cm?/eV with the theoreti-
cal slopes calculated using BO and CC cross sections.

Energy above

Present work
threshold (eV) BO? BO®

cc Experiment ©

0.11 1.8x1074

1.2x107%

6x107% 4x10720

2 Calculation A (see Sec. IIIA); slope obtained from BO cross sections of Ref. 2.
b Calculation C (see Sec. IIIA); slope obtained from present BO cross sections calculated

using form-B wave functions.
¢ Reference 3.

sections which tend to agree closely. The discrep-
ancy can be explained easily; near threshold the
results of Ref. 2 are not reliable because of the
adoption of a threshold energy which is not very
close to experiment. Far from threshold, where
the effect of slight shift of threshold is not appre-
ciable, the two calculations should agree closely.

A comparison of our results (see Table I) with
experiment shows that the present close-coupling
cross section is in good agreement with the mea-
sured value. As expected, near threshold our cal-
culated slope (see Table II) is also in good agree-
ment with the experimental slope.

In the present case of parity-unfavored transition
both the BO and CC differential cross sections are
proportional to the square of the sine of the scat-
tering angle. When plotted against 6 these cross
sections will therefore show a nature similar to
the sin®6 curve.

C. Threshold behavior of cross sections

Kulander and Dahler'? have studied threshold
behavior of cross sections for parity-unfavored
transitions. In the present case of double excita-
tion, cross sections are expected to vary as k"
for quite some distance beyond threshold. A close
look at our cross sections (Table I) reveals that
the present calculations yield results which are
consistent with the threshold law for parity-unfa-
vored transitions.

IV. CONCLUSION

In the present investigation we find that the BO
method fails to predict reliable cross sections
near threshold. The present calculation indicates
that at a distance nearly 15 eV beyond threshold
the predictions of BO theory are in substantial
agreement with the results of the presumably
more accurate close-coupling method. The rea-
son for this apparent success of the BO method at
a little distance beyond threshold is given by Ku-
lander and Dahler.'> We further observe that close
to threshold BO cross sections are sensitive to the
wave functions we used. This is consistent with
the conclusion of Shelton et al.?° that in the case of

spin-forbidden transition, e.g., excitation of the
3p(1s2p) state of helium, cross sections are quite
sensitive to the choice of atomic wave functions.

One of the striking features of the present close-
coupling calculations is that near threshold cross
sections rise steeply, in sharp contrast to the re-
sults of Becker and Dahler. We remark that the
calculations of Becker and Dahler will not be ap-
plicable in the immediate neighborhood of thresh-
old because of the adoption of a threshold energy
which is not sufficiently close to the experimental
value. Near threshold our close-coupling cross
sections are sometimes about 50 or 60 times as
large as those of Becker and Dahler, and this
large difference cannot be attributed to the choice
of wave functions. We further observe that even a
two-state calculation such as ours yields results
in good agreement with experiment. Since the ex-
perimental cross sections are reported to be un-
certain by a factor of 2, it will be difficult to com-
ment upon the effect of coupling of other states in
the present situation. Moreover, the experimental
results available are very scanty; this is why it
has not been possible to say anything definite about
the success of a particular method. Precise ex-
perimental measurement is desirable for testing
the validity of the present two-state close-coupling
method in the neighborhood of threshold.
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APPENDIX A: EVALUATION OF PARTIAL-WAVE
MATRIX ELEMENTS

Becker and Dahler® have remarked that when
the atomic wave function is approximated by a
product of orbitals appropriate to a single atomic
configuration, e.g., to the configuration *P (2p)?,
only one partial wave (I=1'= L=1) contributes to
the cross section. Here we arrive at the same
conclusion while explicitly evaluating the matrix
element.

With T replaced by B in (14) in Sec. II we have
the partial-wave expansion
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(K'n'Um}|Blknlym, )= N'(k")™2 3 3~ S A VEm'm | LM) Y,k B (k"0 V' 1l; knll) U, mm | LM )Y ¥, (B) .
LM U'm’" Im
(A1)
Using the orthogonality properties of the spherical harmonics and Clebsch-Gordan coefficients, we invert
Eq. (Al) and get
(kk )1

BE('n'U'L; knll,) = f ' dke Z E (UEm'ml| LM ) (Uymm | LMY Yl RV Y ()RR U | B |Rnl,m,) .

’
m ma mma

(A2)
Let us now calculate the partial-wave matrix element for the 3P (2p)? - 1S (1s)? transition. We have
BL(R',2,I', 15k, 1, z,o)_(kk) fdk’dkz S (v, 1,m",m;|L,M){1,0,m,0|L,M)
m ﬂl mma
XY nlB)Y, o(R)(K’,2,1,m!|B|K, 1,0,0). (A3)

Considering a typical term of the ground-state wave function for helium, using (11), (12), and (9) of Sec. II,
expanding e'*'" and electron-electron interaction terms of Eq. (9) in terms of spherical harmonics, we find
that of all of the terms in the operator H - E only 1/7,; provides a nonvanishing contribution to B*. Equa-
tion (A3) then takes the form

BE(R',2,1,1;k,1,1,0)

fdk dk 32 (1, 1,mml| L MYS, LY il Y, u(B)

mmg

X fdfldfzdfs E (1L, 1,v,mi=v'[1,m)ririrse = B2=87sy¥ (G )YY pioy#,)
*Ta
y’

X 3 it (e )Y, (R, (7)) D (=) k7 ) Yy (B Yy, yol5)

14 vyt

X Zgll(rzyr;;)ZZ Y;‘“ul(’rg)ytl,pl(rg);

Tty
(A4)
where we have used the expansion A close inspection at the close-coupled equations
(19) and (20) shows that T*(k’,2,1’,1;k,1, 1, 0) sur-
Z & (r,,r,)zz Y,l,,,l(r,)Y,“ul(r,) vives only when I=1'= L=1. The rad1a1 integral R
1,0, which is yet to be performed is the following:
gll('ri’ 1’,) = (1/7">)('r</r>)ll s R= f dr, dr, dr rp’rg'r;’e-arl- Bro=6ry
with . and 7. the greater or lesser, respectively,
of r; and 7;. Using the orthogonality of spherical xj, (k)i (R'7,)g,(7,, 75). (A5)
harmonics we carry through the angular integra-
tions over #,, #,, #;, k, and k. We see that Now the integral R can be expressed in terms of
B*(k’,2,1',1;k,1, 1,0) vanishes unless I=1'= L=1. G and W integrals,'®

?
R=G(l,p’+1lk,a)<%zv+—:;2—)6(l,s’—llk’, 8)-W(1;9'+1,s" =1|k", B,8)+W(1;9"-2,s"+1]|k", B, 6)) s

(A8)
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with
GO, plk, @)= f dr jr(kr)r?Nemor |

o]
WO 0,81k, @, 8= [ drjaEnaya, e,
(4]

where

Ayfa,r)= f sPe~%*3ds .
r

Similarly, all other partial-wave matrix ele-
ments can be expressed in terms of six basic inte-
grals’® G, H, I, V, W, and X, which are computed
numerically according to the method prescribed by
Lyons and Nesbet.'®*® In the present case (A=1)
we have, however, evaluated the G integrals ana-
lytically and used the analytical form of G to com-
pute other integrals.

*On leave of absence from Department of Physics,
University of Kalyani, Kalyani, West Bengal, India.
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