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It is shown that, despite the double-scattering infinities of the dii7erential scattering rates for three particles,

the total scattering rates for three particles are unambiguous and finite. These rates are expressed in terms of
T-matrix elements by means of a we11-defined principal value of an integral whose integrand has a double

pole. We also derive an expression for the double-scattering rate.

I. INTRODUCTION II. QUALITATIVE SUMMARY

It is now well understood' ' that the differential
scattering rate of three colliding particles tends to
infinity as those final momenta of the particles are
approached at which real, energy- conserving
double scattering is possible. What is more, the
scattering amplitude grows at a rate that makes it
fail to be square integrable. As a result, the cal-
culation of a total scattering rate, and of inclusive
rates, for three incident particles, when based on
the known expressions for the amplitude, always
yield the physically unpallatable answer, infinity.

In the present paper we show that if the total or
inclusive rates are calculated in a manner that
differs somewhat from a straightforward integra-
tion of the previously known differential rate but
which is physically meaningful and mathematically
unambiguous, they are finite W. e arrive. at this
conclusion from a time-independent point of view
and we discuss the physical meaning of the various
terms we obtain in the answer. The dominant con-
tribution of the result so derived originates from
the double scattering, but the method makes it
difficult to interpret this unambiguously in terms
of a scattering rate. We therefore separately em-
ploy the time-dependent method of scattering
theory, that is, normalizable states or wave
packets, to derive a double-scattering rate that
depends in a simple and physically meaningful way
on the experimental arrangement. We also briefly
discuss the implication of our results for the cal-
culation of the third virial coefficient of gases and
for that of chemical reaction rates.

There are five appendixes: Appendix A defines
the Jacobi coordinates of three particles in their
center-of-mass system. Appendix B contains the
details of the stationary-phase evaluation of the
asymptotic wave function. Appendix C give details
of the integration of the squared modulus of the
wave function. Appendix D defines the principal
value of an integral containing a double pole in its
integrand, and Appendix E deals with the impact
parameters needed for the wave-packet description.

In Secs. III and IV we work in a time-independent
framework, in the center- of- mass system. Jacobi
coordinates will be used as in Ref. 4. They are
explicitly defined in Appendix A. We write

Go(E) =(E+ie —Ho) ',
V; = V,.(r,.), i = 1, 2, 3,

G;(E) =(E+i~-a.—V,.) '=G +G

(2.1)

(2.2)

(2 2)

0"=4.+0, +0, +0, +44,

where

iki
P gG+Vg

(2 4)

G+B V G+V q(+)

g, = P G' V,.G'V g"
(2 6)

g G' VG'VG'g Vg"

and

0,"= 4.+ G,'~, 40. (2.6)

The function $0, of course, describes the three
incident free particles; g, describes single scat-
tering, and g, describes the formation of bound
pairs in the outgoing wave. We are not interested
in any of these parts of the wave function in this
paper. The function |rt4 tends to zero at large dis-
tances as O(R '~'), and it describes, in an unam-
biguous way, a part of the "true" three-particle
scattering. It causes no difficulties, and we shall
be interested in it only in so far as it eventually

where G,. and G;.~ are the continuum and the bound-
state parts of G, , as defined explicitly in Eqs.
(2.10) and (2.11) of Ref. 4.

The time-independent wave function of three
particles, all three being incident freely, can be
decomposed as follows4:
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contributes a part of the scattering rate. We shall
return to it at the appropriate time.

The part of the three-particle wave function that
causes the double-scattering difficulties is

g($i)

i&j

i 0 j

(2.7)

(2.8)

and our attention will focus principally on it. Let
us remind ourselves' of the large-distance be-
havior of P'"'.

As R- ~ the function P
"~' contains as its leading

contributions two terms, one that goes as R ', and
another as R '~', with a, remainder o(R '~'). The
R ' term is identified as having the physical signif-
icance of describing the double scattering in which
the pair j (that is, particles i and I, jul ci) col-
lides first on the energy shell, followed by the
collision of the pair i.' For given initial momenta,
such a double collision is energetically possible
only at certain specific final momenta, which are
determined by the conservation equations'

'! k =k" q'. =q" k' =k". (2.9)

using unprimed letters for the initial momenta,
primed letters for the final ones, and double-
primed letters for the intermediate momenta, after
the first collision. Final momenta are identified
in the wave function as distance ratios and direc-
tions. (Exactly how this happens mathematically
was shown in Ref. 4, and we shall see it again be-
low. ) Physically this is because if particles col-
lide at the origin, they will then be found later
at points whose directions from the origin corre-
spond to their momentum directions and whose
distance ratios correspond to their velocity ratios. '
The total energy being given, specification of the
final momenta therefore corresponds to specifica-
tion of the direction of R in six-dimensional space.

If we fix the direction of the six-dimensional
vector R at a value that corresponds to momenta
for which double scattering is energetically pos-
sible, then the leading term in P, goes as R ' and
the factor of R 2 determines the double-scattering
rate. We shall refer to this direction in 6-space
as the double-scattering ridge, or simply the
ridge. On the ridge, then, the asymptotic behavior
of g

' as R -~ is a constant multiple of R 'e' i&

where K,, is determined by the double-scattering
equations (2.9).

In the other directions of 6-space, away from the
ridge, the leading term of g"" is also O(R '), but
as R 'e'~i&'". Since R is not along the ridge now,
its direction is not parallel to K„.and hence the
wave is not spherical. This term describes the
propagation of double-scattered particles not com-

ing from the center. The physical reason for this
is easy enough to understand: Double scattering
can take place with large distances between the
two collisions and hence the particles from the
second collision, seen at a given point, need not
come from the center. This fact imparts to the
double collisions, in effect, a very long range,
and it may be regarded as the physical origin of
the double-scattering problems, which in some
ways are analogous to those arising in the forward
direction for long- range potentials.

The next-to-leading term in P'"' off the ridge,
as R-~, goes as R-' 'e', and its factor forms
one of the contributions to the "true" three-three
scattering. (The others come from P, .) It may be
thought of as an off-energy-shell contribution of the
double scattering. Its most important character-
istic is the fact that as the ridge is approached it
tends to infinity in a manner that is not square in-
tegrable. The "true" differential 3-3 scattering
rate, which is in principle well observable, ' and
which is theoretically described by the squared
magnitude of the factor of R ' in P, + g4, con-
sequently tends to infinity as the double-scattering
momenta are approached. Furthermore, any
attempt to calculate the total "true" 3-3 rate, or
an inclusive one, leads to an infinite result. In-
deed, because this is so, even the calculation of
the total 3-3 rate, including all of the observed
particles, whether double-scattered or not, cannot
be regarded as satisfactory even if the double-
scattering rate is finite, so long as the "true" 3-3
rate comes out infinite. The solution of this prob-
lem is therefore necessary for the reliability of
all calculated total 3-3 rates.

Mathematically the problem arises from a non-
uniform behavior of the function P" ' in its de-
pendence on the magnitude and the direction of R.
The "true" 3-3 amplitude is defined by fixing the
direction of R at a generic value and picking out the
factor of R ' ' as R-~. As we then allow'R to
approach the ridge, this factor tends to infinity.
If, on the other hand, we let R approach the ridge
first, then g'"' remains finite, even in the limit
as R —~. The two limits are not interchangeable.

As we shall show, the solution to the difficulty is
to examine the behavior of |t)'"' near the ridge, as
was done by Nuttall' and Merkuriev, ' who found it
well described in terms of a Fresnel function. If
this description is used, " the squared magnitude of
P is integrated over a region that includes the
ridge, and R is allowed to grow to infinity only
after the integration, then one obtains a finite re-
sult whose two leading terms go as R ~ and R '.
We shall derive these terms and interpret them
physically in Sec. IV.

We shall see, however, that this procedure does



644 ROGER G. NEWTON AND ROMAN SHTOKHAMER

not lend itself easily to the derivation of a double-
scattering rate in given experimental circum-
stances. We therefore approach the problem in
Sec. V from a wave-packet point of view and de-
rive there a rate for double scattering that depends
in a simple and physically meaningful way on the
experimental arrangement.

III. ASYMPTOTIC FORM OF THE WAVE FUNCTION

It was shown in Ref. 4 that ())"j' can be written
as follows':

whether R is on the double-scattering ridge, near
it, or away from it": Qn the ridge,

g. =It'"6(2'v)'"e "/'I j+. o(I).
near the ridge,

(3.8a)

ftl/26 {2&)1/2h eig/4 ja 3-/2g{x}
fj fj

,
", —S„sgssg( lsl)); (S.g)s)

0 ~q ~

and off the ridge,

q"j (R) = [2(m, m, m, )' '/fj/I' 23,p, ]~„,
where for large R

(3.1) g. .=2ft'"6 ""I (-'v)'"
fj fj 2

xexp[2(r, q', + p., k', ) —. 2KR)8(x)

2'/'f~'/'e "/'I . .(q )(m m m )'/'
+ ij j5 1 2 3 (3 8c)v'/'I'/' ib„ i'(q', q'„)-

jI(-)((E yss2)1/2@ ~~to) jl(s)(~~rs q ) (3.3)

vK(I + y'}'/'(m, m, m, )'/'
(-'e)'/'if „.iM"/'q, (3.9)

The unprimed momentum components are the in-
itial momenta, and q'f' and qj' are defined by'~

bj,.q'j' = k j —-(2/,.kj', bj jq'j'= k-j —a, jkj, (3.4)

a,.j and fji/ being defined by (A3). The function jtj"
is the off-shell scattering amplitude of the pair j,

1jtj"(q', q) =- , „/, /fgre ""' I/(jr) (I"/j(q, r),4m(2pj)' '

(3.5)

and A,'. ' is the other off-shell amplitude,

1
jtI '(q', q) =-, , /, /f33" ({)I '*(q', r)V,.(r)e"'" .

(3.6)

We are interested in the asymptotic value of gf j
as xf and p,. both tend to infinity with the fixed ratio lk',. = jp f,pf . (3.10)

and with qj, being the value of q,
". where the phase

is stationary. In the "near-ridge" value all func-
tions except g are evaluated at q,

". =qj, . The re-
maining symbols are defined in (Bll), and E{x)
is the Fresnel function defined in (B12). The ridge
is located at x=0, and the limiting values of I:,
given by (B13) and (B14), make the near-ridge
value of &jj in (3.8) go over into the on-ridge value
for &= 0, and also fit continuously to the off-ridge
values in the following sense: If we keep x10
fixed in the near-ridge value and allow R to be-
come large, then its asymptotic value is the off-
ridge function for small x, plus o(l). It follows
from the second equation of (3.4) and Eq. {A6) that
the stationary q„corresponds to kf, being parallel
(or antiparallel) to pi. This is what we call the
final momentum:

y= p, /r, . (3.7) In view of (3.3) we also call

This asymptotic value is obtained from (3.2) by
the method of stationary phase, app1. ied three
times, in each of the three integrations of (3.2).
In contrast to Ref. 4 we shift variables and use q,'. ,
defined by the second equation in (3.4), as the in-
tegration variable. The two angle integrations are
straightforward, but the integration over q&~ is
complicated by the zero in the denominator of
(3.2). This is what, mathematically, gives rise to
the double- scattering problem.

%e relegate the details of the evaluation of the
integrals to Appendix H. The result is

g(ij ) —ft-5/2e iKRt + O(ft-5/2)fj

where gf& has three different forms, depending on

q~s —(E y)g2)1/2r

the other final momentum. Similarly,

(3.10')

(3.10")

(3.11)

where Aoo comes from P, and is given explicitly
by (4.33) of Ref. 4. It is continuous in all directions.
The double-scattering difficulty, on the other hand,
is clearly visible in the off-ridge value of g« in

According to Ref. 4, the asymptotic behavior of

g, +P~ is now given by

—ft-5/2eiKR Q g 4 ~r )+O(ft-5/2)
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(3.8). This is the off-shell contribution of the
double scattering, and together with Aoo its squared
magnitude describes the "true" differential 3-3
scattering rate. As q&,

—q&, i.e. , as we approach
on-shell double scattering, it diverges. However,
if we do not take the asymptotic value but keep R
finite and retain the form (3.8b) near the ridge, then
q~ remains continuous. We shall exploit this fact
to evaluate the flux at finite R, and only subse-
quently allow R to increase to infinity.

IV. INTEGRATION

We will want to integrate"
~ g ~' over a spherical

surface of radius R in the six-dimensional R
space, where

de sine = [b', ,(1+y')'~'lyKa, ,k, jq. ,,dq, , (4.4)

Note that because of the appearance of y' in (4.1),
the y in the denominator of (4.4) causes no prob-
lem. We have

dR = (b '. ./K
~
a, k. ) dy y(1+ y') '~' dr dp, dq, q„.

(4.5)

The q&, integration is going to be performed by
doing separately the integral over the vicinity of
the ridge, q, , =q&, and the remaining integrals.
We then have near the ridge

d'R=R'dRdA =d'p, . d'r, =dp, dy', p',.y', dp, dr, .

Using the variables R and y as given by (A7) and
(3.7), we have

where «&1. In these integrals we use the near-
ridge value given in (3.8b).

To be specific, for the purpose of ordering
terms, we shall assume that

K '&'R «1. (4.6)

so that

dp, d~,. =r',-R 'dRdy,

and hence the surface element in six dimensions is

In the other two integrals we want to use the off-
ridge value given in (3.8c). Since the latter is ob-
tained by allowing xa to become large, we must
assume that

R ' dR = dr, dp,. dy y '(1 + y ') 'R' . (4.1)
~ ~2$R~ ~2 && ] (4 7)

o =yl(1+y')'",

we obtain

b', , q' =a', 0'. +~'E —2~Ka, k, cos8, (4.2)

which shows that in the domain 0 ~ 8 ~ m, q&, is a
monotonic function of 8, with the range"

Ia&zkz —&KI I a&&k&+ &K I

I b, , I

~' Ibq I

(4.3)

We may therefore change variables of integration
and use q&, in place of 8, with

For the calculation of a total scattering rate we

have to integrate
~

i( ~' over all directions of R or
over all three-dimensional solid angles of p,. and

x„and over y from 0 to ~, in any order. " We
choose to integrate first over the direction of p, .
Since 8 is the angle between p,. and k&, this means
integrating with d8 sin8 from 0 to m. The integra-
tion over the azimuthal angle y,. will be kept in

abeyance.
For a given value of y, the angle 8, may be elim-

inated from (B2) and (B4)„or from (B6) and (B8').
Setting

In fact, it will be convenient to make the stronger
assumption

K 'c'R»1. (4.8)

Our approach will be as follows: In the off-ridge
region we keep only the R"'~' terms of (3.8c), to-
gether with the R ' ' terms in the remainder of

(3 + (Q In this region the R ' terms are physical ly
distinguishable from the R ' ' terms, and as dis-
cussed earlier they represent the doubly scattered
particles that come from directions other than the
center, because their second collision took place
far from it. They are distinguishable from the
"truly" 3-3 scattered particles by their momentum.
However, the more closely the counters approach
the ridge, the harder it is to distinguish doubly
scattered particles from the others. Therefore in
the region near the ridge we must keep both. This
is analogous to the situation in the forward scat-
tering of a particle by a center, where scattered
particles near the forward directions become less
and less distinguishable from unscattered ones. "

We perform the details of these calculations in
Appendix C. The result of adding the two contribu-
tions, near the ridge and off the ridge, is given by
(C17) and (4.5) to be of the form
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b z C

ij j
2 2 6

Bhg~+2 q',. (5(*c *1m(h,.;~ '„')a '

+ 2vq' 5i'c ' Re(h,*&c,)R ' + o(R ') . (4 9)

Let us look at this result in some detail.
The first notable point is that it is finite and

contains only terms of order 1 and of order R '.
To be specific, there are no terms of order R ' '.
It is shown explicitly in Appendix C that the R ' '
terms cancel.

The leading term on the right-hand side of (4.9)
is the first, because of (4.7). This term, of
course, describes the double scattering. It counts
only the doubly scattered particles that come
from the center. For most physical applications
these are the only ones of interest. However, be-
cause of the dependence of this term on e, which
in a sense is a measure of the width of the ridge,
it is difficult to interpret it directly as a collision
rate. In order to obtain such a rate in terms of
physical parameters we are going to derive an ex-
pression for it in Sec. V from a wave-packet point
of view.

The second term in (4.9) is the one that describes
the total rate of "true" 3-3 scattering. The com-
bination, the square of whose modulus appears in
the integrand, is just the sum of terms that makes
up what in Ref. 4 is called

Ao, =Aoo+Ao

the "true" three-particle amplitude. It is simply
obtained from the T matrix after subtracting the
three 2-particle T matrices. " The significance of
(4.9) is that it gives a prescription for the evalua-
tion of the integral which in a straightforward
manner of evaluation would diverge.

The "dangerous" part of the integral has a pole
of second order. The prescription which renders
the integral finite is called a principal value and
defined in Appendix D. It is a reasonable exten-
sion of the definition of the well-known Cauchy
principal value of an integral that contains a simple
pole in its integrand. We show in Appendix D that
if the residue is continuous then the principal-value
integral there defined is finite. Appendix C shows
explicitly how this particular evaluation of the in-
tegral is justified by the combination of terms that
arise from (3.8). We emphasize that this evaluation
is not arbitrary; the combination of terms that
arise from the integrals near the ridge is exactly
that given in (D3). We thus have not only a, finite
total "true" 3-3 scattering rate, but a simple
method of evaluating it. In view of (4.37) of Ref. 4

we may write for the total "true" 3-3 rate

V. WAVE-PACKET APPROACH

We now consider the scattering of three wave
packets by each other, as described in the gener-
al case in Ref. 10. The central idea is to calcu-
late first the conditional probability P, that the
particles at some time cross a given surface, on

the assumption that the incoming wave packet is
centered at a given impact-parameter vector b;
then we shall calculate the probability p(b ) db

that the incoming packet is centered in the im-
pact-parameter element db; and hence we shall
conclude that for a thus incoherently distributed
beam the probability is given by

P = db p(b )P~. (5.1)

It is explicitly pointed out in Appendix D that the

principal value there defined has the counterin-
tuitive property of not necessarily being positive
when the integrand "looks" positive definite. This
means that we have no a Priori guarantee that the
integral in (4.10) is positive. This is, of course,
disturbing, since a negative value would be incom-
patible with an interpretation as a number of par-
ticles, or of particle triples. We are inclined to
interpret our result as an additional physical re-
quirement: The three-particle T matrix must be
such as to make the integral in (4.10) positive. If
there are T matrices that fail to have this proper-
ty, we do not know how to interpret (4.9) and (4.10)
for them.

The physical significance of the remaining two
terms in (4.9) is less clear. They are interfer-
ence terms between the "true" 3-3- and the double
scattering. Note that both are of order R ' and in-
dependent of e, i.e., free of arbitrariness. As the
interferences in a double-slit diffraction experi-
ment, they arise in a fundamental way from the
indistinguishability of "true" 3-3 scattering from
double scattering at and near the double-scattering
momenta. In a sense that is, of course, under-
standable only quantum mechanically, they count
the number of triples of particles that have been
both double scattered and "truly" 3-3 scattered.
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FAX] =- g + (5.2)

In the case of three particles the impact-parame-
ter space is five dimensional. This is because
displacing the center of mass or shifting all wave
packets along their tracks in proportion to their
velocities will not alter their relative positions
at the time of collision. Hence four of their nine
degrees of freedom are irrelevant. We explicitly
introduce in Appendix E the split of the nine-di-
mensional configuration space into a five-dimen-
sional impact-parameter space and its orthogonal
complement. The components of a set of three
vectors x;, i =1, 2, 3, in the latter are called x;,
i =1, . . . , 4, and in the former, x;, i =-5, . . . , 9.
The metric is such that

4 9

(5.7)
Here T is the time during which all three beams
fully inter sect.

(ii) Another assumption that has been used in
the derivation of (5.7) is that T is so large that
the "edge effects" due to partial intersection of
the beams are relatively negligible. The quantity
V;„, is the volume of the three-dimensional spatial
region ef intersection of the three beams.

The use of (5.7), together with the calculation of
P& as given in Ref. 10, leads to the rate at which
"truly" 3-3 scattered particles will be found cross-
ing a distant surface intersecting the cone C,

&=V. d; a, (5.8)
For "true" 3-3 scattering we have the following

situation:
(i) In a given beam, the b; are, of course,

bounded. However, we make the assumption
(a) that, as was explicitly discussed in Ref.
10, they must be allowed to become large enough
that the decrease of P, as a function of b permits
us to extend the integral in (5.1) to infinity without
appreciable error. " In fact, we must assume
(b) that the (macroscopic) radii of the beams are
very large compared to the maximal (microscop-
ic) impact parameters that contribute to the scat-
tering, i.e., to the integral in (5.1). These as-
sumptions are important for the calculation of the
density p(b ), which is determined by the require-
ment that [by (E11)j

3

p(b)db)dbdbdb lid
i=1

where d, =N, /V; is the particle density of the ith
beam if 1V; is the number of particles of kind i,
and o is the specific scattering rate"

o = (2m)' d'k'
j T~ k', ko)p 5 E' —Eo 5 K —Ko

C

(5.9)

In the case of double scattering there will be a
non-negligible number of events that come from
large impact parameters b, contrary to assump-
tion (i) above. Let us assume that b, , . . . , b, may
still be taken to be negligible, but b, need not be.
Then (5.3) has to be evaluated at b, = b, = b, = b, =0.

Let us consider the case of double collisions in
which particles 2 and 3 collide first, followed by a
collision of particles 3 and 1. The intermediate
velocity of particle 3 is then given by

with

p(b') d'b' =1.

-3/2

Ilp '

f i

(5.3)

(5.4)

v,"= p,"/m, = (K' —p,
' —p,')/m, , (5.10)

if p,
' is the final momentum of particle 2. The

beams of particles 2 and 3 must intersect in or-
der for collisions to occur. If we call the time at
which the (2, 3) collision takes place t = 0 and its
location x, then

Here p
' is the density of the ith beams, which we

assume to be uniform over the length" T; v',

=T;p';/m; and the cross section va'. Thus T;
is the duration of the ith beam, and inside the
volume

x, =x+tv,',
x, =x+tv,'.

(5.11)

(5.12)

Let t, be the time at which the collision of particle
3 with particle 1 occurs. Then we must have

V; = ma'v'; T;

the beam density has the constant value

(5 ' 5)

(5.6)

x, =x+tv,'+t, f,
with

f =v,"-v,',

(5.13)

(5.14)

Assumption (b) allows us to set b =0 in the inte-
gration (5.3). It was shown in Ref. 10 that as a
result'4

so that x, =x, for t = t, .
The parameters for this case are calculated in

Appendix E, with the results given in (E12) and
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(E16). Thus b, is proportional to the time inter-
val t, between the (2, 2) collision and the (I, 2)
collision. Its maximal value is determined by the
experimental configuration. If L, is the dimension
of the region of intersection of the three beams in
the direction v,", then where in this instance

(5.18)

0 & 5, & I"L/) v,"[= I'T, , (5.15) S(t„v3') = (1 —d/2a)'(1+d/4a),

db" dbs = I"(2E')'t' N't' d'x dt dt, , (5.16)

where T, is the maximal value of t, . Outside this
region we assume that the beams are contained in
pipes, and a particle that travels up one of them
before its second collision cannot reach the detec-
tor.

The five coordinates b, , . . . , b, of (E12) and
(E16) are such that

with d =t,&vs'~. For other shapes of the region of
beam intersection the function 8 will be more com-
plicated.

We must now calculate the probability P, for
double scattering into the cone C on the assump-
tion that the initial wave packet is described by
the normalized function g(k), centered and sharply
peaked at Im|, in momentum space and at b in coor-
dinate space:

in terms of the point x of the (2, 2) collision, the
time t along the particle trajectories, and the in-
terval t, between the two collisions. We must now

carry out the integral

P, =(2w)* d'lt' Jd')g())e "'1'(),",))
4 2

X5 (K —K') 5(E —E')

(5.20)

in a somewhat simplified notation. " The part of
the T matrix of interest for double scattering is

+ i 0 ~

Q

(5.17)

under assumption (ii) above for long times T of
beam intersection. The integration over the posi-
tion of the first collision is complicated by the
fact that it necessarily depends on the intercolli-
sj,on time t„ that is, on 0, . When 0, =0, then the
entire volume of beam intersection is available to
the first collision; when b, has its maximal value,
then the accessible volume has shrunk to zero. In
general, the dependence of the accessible volume
on the intercollision time will be a function of the
direction of v,".

As a special example we may take a case in
which the region of beam intersection is approxi-
mately spherical, say of radius a. Then the vol-
ume available to double collisions with a vectorial
distance B between them is independent of the
(fixed) direction of B. Its value is readily calcu-
lated to be

& 7&(2a —d)2 (4a +d),

as compared to the volume

V. =+ma'.
int

Hence we may write

where T; and T& are the T matrices for only two
particles in interaction. In the momentum repre-
sentation

C" (E k" k'") =5'(k" k"')(E+te E") '

Vile pick out a particular double scattering by the
choice of the cone C. The absolute magnitude in
(5.20) then contains

~ ~ ~ (E+to E") ' (E-- &. e E") ' ~ ~ ~, -
and for this product we utilize the result (D7) in
the limit as z -0. The last term will not contri-
bute, and the first term wiH give rise to the
"true" 3-3 scattering as shown and discussed at
length in See. IV. The term that clearly describes
double scattering is the second. (Note the factor
of 2, which would be absent if each Green's func-
tion had been separately written as a principal
part plus an on-shell 5 function. ) Thus the prob-
ability relevant to double scattering is well ap-
proximated" by [say in the case of a(2, 2) collision
followed by a (1, 2) collision]

P&,
' = d k'I T, (EO; k', ko') T, (EO; ko', k, )Pk(, (k'),
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h, =8v' d kd%g(k)g*(K)e' 'I"

x 5'(K —K') 5'(K —K') 5(E —E')

x 5(E —E') 5(E —E")5(E E—"), (5.22)

because of the assumed sha, rp peaking of g at k, .
The notation here is such that k" is the set of in-
termediate momenta determined by the double-
scattering conditions:

i =1, . . . , 4, v;, i=5, . . . , 9, then the peaked nature
of g leads to

5'(v' - V') = (2E')" tVi" 5'(K - K) 5(E E)-,

(5.25)

as was shown in Ref. 10. Hence (5.22) becomes

k, = 8v" M-:"'(2Eo)-'"

x d'k d'kg(k) g*(%)

It is readily seen that for k= f=ko we have

E"-E"= (p, -p, ) ~ (v,'-v,")=(p, —p, ).l,

(5.23) xe" ' ' " '5'(K —K')5 (z —F )

x 5(E E')5(E— E")5[-1 ~ (p, -p, )j

(5.26)

(5.24)

f being defined by (5.14). If the three vectors v;,
i = 1, 2, 3, are decomposed into components v;,

We now do the integration over b, , . . . , b... using
the assumption (i a) above, and the fact that p(b )

is independent of these four components of b

Then, by (E10),

(5.27)

s/2
M-3/2(2go) -1/2I -1

f

& 5 (K' —K„)b(E' —E,)6(E" —E,) .

db, dbg h~ ——32m'

Consequently (5.18) leads to

'~id'b ptb )h, =32 ' lip'")ll'(K' —K,)5(Z' —E,)

1

x 5(E" Eo)TV,„,T,—(v,"), (5.28)

Use of (Ell) converts the nine velocity 5 functions
into those for particle momenta, setting k =P.
The integrations over k and k' may now be done.
Using the normalization of g to unity, we obtain

J "' =32m' p~'&'

d k IT2 Eo;k', ko) ~l ~o,'ko~ko ) Tc( 3)
C

x 5'(K' —K,)5(E' —Eo)b(E" E,) . -(5.31)

(5.32)

Hence if N, particles of kind i, i =1, 2, 3, are
sent in, then the number of triples of particles
that can be expected to be found in cone C is
(g, N;)P. If we set d; =p '"N;, the particle den-
sity in the ith beam, then (5.31) implies a count-
ing rate per unit time of

where by (E16)

T,(v,")=I' ' db, S(t„v,")= dt, S(t„v,")

(5.29)

where

a„=32m' d'k'I T,(E„k', k„") T, (E,; kg, k, )~''

x 5'(K' —K,)5(E' E,)5(E"—E-„)T,(v,")

&c(vs ) = s &c f (5.30)

in which T, =2a/~v, "~ is the maximal value of t,
Insertion of (5.28) and (5.21) in (5.1) gives us

the probability

is a mean intercollision time. In the special in-
stance of approximately spherical beam intersec-
tion, (5.19) leads to

(5.33)

is the specific double-scattering rate. It is the
appearance of 5(E, "-E,) that puts the particles
between collisions on the energy shell.

The specific three-particle scattering rates
(5.9) and (5.33) have the dimensions (distance)'/
time, so that division by an initial velocity gives
(distance)', the analog of (distance)-' in the two-
particle case. If the cone C is selected so that



650 ROGER G. NEWTON AND ROMAN SHTOKHAMER 14

double scattering cannot occur for the final mo-
menta in it, then 8" will be outside the region of
integration and (5.33) vanishes. In that event the
"true" 3-3 scattering (5.9) is all that is observed.
However, if C includes double-scattering momenta,
then (5.33) will generally be very much larger than
(5.9). This is because of the appearance of T„or
of the intercollision distance D, = T, ~ v,"~, which is
macroscopic. In contrast, the distances that ap-
pear in (5.9) are all essentially the ranges of the
interparticle forces or of their effects, and these
are rnicxoscoPic. It follows that total scattering
rates, integrated over all final momenta, are al-
ways determined overwhelmingly by (5.33).

VI. FURTHER DISCUSSION

The results derived in Secs. IV and V allow us
to calculate total double-scattering rates and total
3-3 rates without any appearance of infinities. As
discussed at the end of Sec. V, in general the vast
majority of 3-3 scattered particles are, in fact,
double scattered, and the total double-scattering
rate obtained by letting C become all of space and
summing over all double-scattering pairs is for
practical purposes identical to the total 3-3 rate.
The total "true" 3-3 rate may be calculated by
means of (4.10), but its observation is problemati-
cal and its interpretation is ambiguous owing to
the appearance of the interference terms in (4.9),
as these describe particles that are scattered
both, doubly and "truly" 3-3. The principal virtue
of the result of Sec. IV consists therefore in ren-
dering the expression (5.33) unambiguous [by jus-
tifying the use of (D't) in the derivation of (5.22)j
and interpretable as a total 3-3 rate by demon-
strating that the "true" 3-3 rate, including inter-
ference terms, is finite and, in fact, small com-
pared to it.

Accelerators shooting three beams of particles
at each other do not exist yet and are unlikely to
be built in the near future. The calculated scatter-
ing rates therefore cannot be expected to be com-
pared with experiment in the manner discussed
for their derivation, now or soon. Nevertheless,
total 3-3 scattering rates are not devoid of ex-
perimental significance. Qne of the important
applications of three-particle collision probabilit-
ies lies in the calculation of third virial coeffici-
ents." Our results make such calculations on a
quantum-mechanicalbasis free from ambiguities. "'

A second area of application of three-particle
collision probabilities is that of chemical reaction
rates. " We are, in that case, of course, dealing
with molecular rearrangement collisions, and the
present paper deals only with elastic collisions of
three particles. However, it is clear that our con-

siderations are easily generalized to the scatter-
ing of three bound systems of particles giving rise
to three other bound systems. " The only changes
would be in the T-matrix elements, and in taking
into account that the initial and final masses need
not be the same. We may thus envisage two differ-
ent kinds of processes.

The first rearrangement would be one that could
take place by a two-step process. In the collision
between molecules 1 and 2, a fragment A is trans-
fered from 2 to 1 and fragment B from 1 to 2. In
the second collision, between molecules 2 and 3,
fragment C is transfered from 2 to 3, and D from
3 to 2. The final molecules are 1+A —B,
2-A+B —C+D, and 3+C -D. The reaction
rate for the three initial substances changing into
the three final ones will be proportional to the to-
tal rate for the corresponding rearrangernent colli-
sion, and this can be calculated by the appropriate
generalization of (5.33).

The second kind of rearrangement is one that
cannot occur in a two-step process. For example,
suppose that in the reaction described above, frag-
ment B does not have a bound state with 2 -A, but
it does with 2 -A +D —C. Then the three-particle
reaction can take place only via "true" 3-3 colli-
sions. Its rate would be proportional to the "true"
3-3 scattering rate given by (4.10), appropriately
generalized. How do we deal with the interference
terms in that case'P

It should be recognized that in such a case there
will be no interference terms, nor will the origin-
al problem of infinities arise. If the reaction can-
not go via a two-step process, this means that in
the corresponding matrix elements of T, the
T G p T& terms vanish when G p goes on the energy
shell. If they were present, the process could, in
fact, go in two steps. Hence the (on-shell) double-
scattering terms for this reaction are zero, and
interferences cannot occur. Moreover, since the
corresponding double-scattering matrix elements
must vanish, at least as we approach the energy
shell, the infinity in the differential rate, as we
approach the double-scattering momenta, can also
be expected to disappear.

APPENDIX A

The Jacobi coordinates of three particles in the
center-of-mass system are defined here as in Ref.
4. Let the coordinates, momenta, and masses of
the particles be R, , p, , and m, , respectively,
i =1,2, 3. We set

r, =(2p, ,)'~'(R, —R,),
p, = (2/p, )'~ (m, R, +m, R, ) =m, (2/P, )'~'R, , (Al)

k, =(2T, ) '"p, , i, =(-'u, )"(p./m. —p./m, ),
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p,, =m, m, /(m, +m, ),
M =my+m, +m3

p, , = m, (m, + m, )/M,

and cyclic permutations. A change from r, , p, to

rz, p,. is accomplished by the rotation

where

a, , =a, , =-(p,.p, )'/'/m, , k wi wj

b, ,-=b, , =(p, /P, )'/', i,j=1,2;2, 3;3,1.
(A3)

r& =a&,r,. +b&,p, , p,. =-b&,.r,. +a&,.p, , (A2) Further relations are given in Ref. 4.

APPENDIX B

Using q» as variable of integration transforms (3.2) to

1 ib/; , „h;, exp(i[(E —k )' 'r; a, ,k/ p; +b, ;q/' p;j&

We choose the direction of p, as the z axis and denote the polar angles of k~ by 0 and y, and those of q,". by
0// and y". The y" integration is done first, and the stationary-phase method yields

1 i bg~

p,.
'/ (2m)' 'r',. ' (a,./Ib, /Ik/Isin8i)' '

x d»»s 2
' d8" sin8"h;/ (E —k~")' 'exptig+ ,'i 7/s—gn(b;, sin8 sin8")+ia;/k/ p~]

I sin8" I'/'
q

//2
0

where

g= r,.(E —k )'/'+ b/, p,q/" cos8' .

b, ,q, , = a, ,k,. sin8/sin 8, ,

from which it follows that

(B6)

The 0// integration, which originally extended from
0 to m, has been extended to -m in order to take
into account both stationary points at y" = y and

= (if)+ 77.

Next we perform the 0// integration by the sta-
tionary-phase method. This will define a station-
ary point 8//=8, at which

(B7)b, , sin0sin0, &0,

or

E sin'8, —a', ,k' sin'(8, —8)
(B8)

since a, , &0 and q, ,&0. Use of (B6) in (B2) and
(B4) also yields

88

y sin8, = a,./k, . sin(8, —8)/(E —k;. ')'/',

where

E k//2 g p2 k2 b q//2

+2a, /b, /k/q/ cos(8., —8) .

(B2)

(B3)

The q&' integration is done next. If we denote by

q, , the point at which g (at 8' = 8,) is stationary
with respect to q,'. , then the equation for q~, is

a~/k/ cos(8, —8) —b ~/q;,ycos8, =
fs

(B4)

It establishes a relation between 8, and y, at fixed
q',.', given by

y/(1+ y ')' ' = a,./k, . sin(8, —8)/K sin 8, . (B8')

Note that the stationary-phase evaluation of the
6 integral makes 8, a. function of q&', a.nd this
dependence of 0, on q&' has to be taken into account
in the evaluation of the q,

". integral by the station-
ary- phase method.

The presence of a pole at q,
". =q,. +i& complicates

the q',.' integral. We use the the stationary-phase
evaluations of such integrals given by Bleistein. "'"
The result depends on whether the point q, , of sta-
tionarity coincides with the pole position q,. (in the
limit as & -0+), is near it, or is far away from
it. The coincidence of q~, with q,. defines the
double-scattering direction in 6-space, i.e., the
ridge. We obtain the following:

where k„ is obtained by substituting q,. =q&, in
(B3). The sum of the squares of (B2) and (B4)
gives the result

(E —k2 )1/2 —A-(1+y2) ~/2 (B5)

(
—'7/)~ /2Ae i»/4e &//&

Ib I
"ft

where on the ridge

(B9)

On the other hand, insertion of the ratio of (B2)
and (B4) in the latter gives

1'. =(—'7/)' 'e" 'vh, . +0(R ' ') '

near the ridge

(B10a)
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r„= (2~)'~'h„e "~'e '""~'e x)

—a„sgaxE(alxl) ——,„v;i Bh]g

off the ridge

I = (2 )' 'vg e(s~'g(x)eg'««& 's&'"&' gr"
7T

2iA k&J(q

Js)ques

Ib l(1+ ')' 'R' '( ' — ')) '

(Blob)

ridge they are physically distinguishable from the
remainder. Therefore we shall consistently put
the remaining terms in the form

C, =c4R-~&2.

Thus we must evaluate
(C4)

6

I= dx lC, +C, +Cs+Cg ', (cs)

keeping terms of order R ' or larger. In the order-
ing of terms we must remember (4.6) and (4.8).
By (4.5)

with

v= (1+y' sin'e, )
'~'

(q',.' =q&,),
a= vK R lf)(g l(1+3' ), x=qg

R(«) = J d( "*'1'', g(«) = -,'(1 ~ «g««),

(B12)

and h, &
=h, &(q&' =q&). Both h&, (q&,) and h,.& are

evaluated at y' =0 and 8"= 8, . Note the limiting
values of the Fresnel function,

dx C, = c,

Integration by parts shows that

J dx dse " ~'= ia '+-o(a '),
0 ax

and hence

~

~

6

dxc, c,*=-ic,c,*a '+o(R ' ') .

Because C is an odd function of x,

(C 6)

(C7)

E(x) =sx-'+O(x-'), as x-
E(0) =(-'x)' 'e" '.

(B13)

(B14) f
6 C

dx C2C,*= dx C,C4*=0.
E

(C8)

q, and k", are the double-scattering values of q',. and
k'„ i.e. , those obtained from (2.9).

It should be noted that the near-ridge value con-
tinuously goes over into the on-ridge value as
x-0 (where only the leading term in R '~' is kept),
and that, similarly, the near-ridge value goes
over continuously into the off-ridge value as R- ~
at fixed small x. Note also that the off-ridge value
does not continuously go over into the on-ridge
value as x- 0. The nonuniform behavior of the
wave function with respect to x- 0 and R - ~ is
contained in the Fresnel function, whose argument
is a multiple of lx lR'~'.

APPENDIX C

The near-ridge value of (()"~) is given in (3.8).
consists of three terms:

It is clear that

r
E'

d lc"c.l'=o(~R') (C9)

and hence is negligible.
We readily find that

J
6

dxe(x)e" * ~'=-( 'x)' 'e"~'a '+o(a '-)

and therefore

dx C,*C,=(-'x)'i'e "i'c*c a 'R ')'+o(R ') .I 4
~~ 21

«

I 4
~ I I

~

I 3
~~ ~

21
I 2 t« ~ 4

I 3
I~ II

7

C

dxC,*C,=(—,'x)' 'e" 'c,*c,a'+o(R '), (C10)
6

and similarly

C, =c, e "*~'e(x)

C, = c, sgnx E(a
l
x

l ),
1C, =c,a

(C1)

(c2)

(c3)

The only term left to be considered is of the
form

6

lE(a lx
l
) l

= 2g lE(ae)
l

—4g lmE(as )
6

where a=cR' ', c, c„c„and c, are constants,
and E is given by (B12). In addition there are, of
course, the remaining terms in g, + |t)4, which are
continuous at x =0. Among them there will be
terms from other double scatterings, which are
O(1), and other terms, O(R '~'). As explained in
Sec. IV we shall ignore the double-scattering terms
except near their own ridge, because off their

+2y~~a-~

by integration by parts. The asymptotic value
(B13) yields

Using (4.8) we have
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6

dx lc2I =2v Ic2I g ~ —2lc2 f2o 2e ~+o(R ~)
der R ~ and of order R ' only:

(C12)

As a result of (C6)—(C12), the integral (C5) be-
comes

f = lc, I'e+»e[c,*(+"c,—fc, )]o '-2 lc, I'o 'e-'

+ (2v)' ' Re[e" 'c,"(c,a '+c,a 'R ' ')] +o(R ') . where

+2' R Im h* Bh&g
fg gqlI

+2vc 'R 'Re(h,*,c,) +o(R '), (C15)

The values of the constants, given by comparison
of (3.8) with (Cl)-(C3), are

c, = 6(2w)'~ h((e "~ qq, c, = —6hqyq(,

Bk]gc, =-iO „q,
Bq~

where 6 is given by (3.9). Consequently

c=vsc '"lt „l(1+y')'",
v being defined in (Bll), and all constants are
evaluated on the ridge.

We next evaluate the integrals away from the
ridge, using the off-ridge value given in (3.8) and,
for reasons explained in Sec. IV, discarding the
first term. The integrand is of the following form:

dx C5 q~
—q~, ) '+C6 R ',

and the second term in (C13) vanishes. This is the
interference term, which in the integral of

I
I(&l' is

of order R ' '. We are thus left with terms of or-

with the interval —& &x & e omitted. Here, of
course, C, and C, are not constants. Now accord-
ing to Appendix D

(P ax C 2 q2 q 2 2 + dx C 2 + g dx 2 Re C )4 C q2 q2 ) 1 + q 2 + 0 y )
& 'IC5

~-'R-'
I C5 i'J=R 6' dx C, q~ —q ~, '+C6 + q~ +o R '). (C16)

Examination of the constants shows that

and hence, when I and J are added, the two terms of order & 'R ' cancel:

~ 2wq', . I&I*c'Re» ;c»& +R'+., f, &q'i. Ic &e,
* —e,',&'+c. l'+0(R'&. (C17)

APPENDIX D

We define here the principal value of an integral whose integrand has a pole of second order. Assume
that in the domain a &x & 5 the functions f(x) and g(x) are continuous and differentiable. For a&xo& f& let
g(x, ) = 0 and g'(x, ) w 0. Then we define

Under the stated assumptions we obtain, integrating by parts,
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lim . , =(P —+2v'5(x)5(y)
1 1 1

0+ X —Z6 P+'LE XP

1 1
+ iv 5(&) 6' ——5(y) iP—

x x

-3/2
d'y, d'y, d'y, = IIm, d y,

i =1

3 3//2

5'(y, ) &'(y, ) 5'(y, ) = II m 5'(y)
1

(Elo)

(E11)

(D7)

APPENDIX E

Let p'; be the particle momenta at the center of the
wave packet; then

We label the first four 7};= y;, i = 1, . . . , 4, and the
other five y, =y;, i=5, . . . , 9.

If two particles with coordinates x;, i=2, 3, at
the time t =0 collide at x and at the time t, parti-
cle 3 collides with particle 1, as in (5.11)-(5.13),
then we easily calculate that

~0
pi)

the tote. l (central) momentum;

(E1)
x =m'~'x+m-'/' K't+ &, m, m-'~' T

(2@0}1/2f+ (2EO)-1/2m VD, I I
(E12)

v'; = p';/m;,

the (central) particle velocities;

V'; = vo; —K'/M,

(E2)

(E3)

9

i i i.. . = —I, ( V', +,M 'f --T'5„), =1, 2, 3,
=5

(E13)

the (central) particle velocities relative to the
center of mass; and

where f is given by (5.14) and

o. = (2E )
' m, V' '1 . (E14)

~02 K02 3 I y02
(E4)

the (central) energy in the center-of-mass system.
If y„ i=1, 2, 3, is any set of three vectors, then,

as in Ref. 10, we define y;, i =1, 2, 3, as the three
components of

9

ai, x,. —ai5x5 ~

j=5
(E15)

i, may be calculated from (E9):

Since only five parameters are needed for the de-
scription of (5.11)-(5.13), namely, x, t, and t„
we set x, = ~ ~ ~ =79=0, so that

and

3
y=m-'~2 m y,

y4=(2&') ' ' Q my~'V&.

(E5)

(E6)

X5 Ec I

where

I" = [m, (m, + m, )/M j 9 —(m', /2E') (V,' ~ 7)' .

(E16)

(E17)

3 3

rn; a;,. = rn a-. V', =0, (E7)

If the 27 vectors a;, , i = 1, 2, 3, j = 1, . . . , 9, are
such that

The five parameters x;, i=1, . . . , 5, are the five
numbers we call b;, i=1, . . . , 4 and b, for the
three beams described by (5.11)-(5.13).

Equation (E15), together with (E16) and (E13),
allows us to conclude that

then we can write

9

y, = M '/'
y + (2E') '/' V'; y, + g a, , y„. ,

i=1, 2, 3, (E8)

I' a;, = —(o.V'; + m, M ' f —f5„),
and particularly, from (E17),

als ' l = I n

(E18)

(E19)

and3

pm, y', = gy', , (E9)

It follows that if the set of vectors q;, i=1, 2, 3, is
such that q; =0, i = 1, . . . , 4, q; =0, i=6, . . . , 9,
then for the specific transformation implied by
(5.11)-(5.13), we have

provided that B 1 BI =a„.1 v, =I'rri, v, . (E20)
3

m;a;,, ~ a;, =5,.„j,l=1, . . . , 9,
S=1

which we shall always assume. It follows that

In the application of this result in (5.27) q, =v, —v,
and all its components except the fifth vanish, be-
cause of the other 5 functions in (5.27).
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