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Atomic charge transfer in the presence of a laser field*
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Atomic charge-transfer cross sections in the presence of a laser field are calculated using proton —hydrogen-
atom scattering as an example. Both strong and ~eak laser limits are obtained. An experiment is suggested to
observe directly the modification of the differential cross section by the laser.

I. INTRODUCTION

The theory of atomic scattering processes is well
understood in most cases and accurately applied in
many. However, the introduction of lasers and
their projected use in such processes as laser-in-
duced fusion and laser-assisted isotope separation
makes it desirable to be able to apply atomic scat-
tering theory in the presence of a strong electro-
magnetic field. General theories of electron-atom'
and atom-atom' scattering have been presented, as
have some applications. ' Here, we present the the-
ory of low-energy symnletric charge transfer in
atom-atom scattering as modified by the presence
of an electromagnetic field.

The theory in the absence of the electromagnetic
field has been understood now for many years, and
we shall closely follow these old theories with the
specific example of proton-hydrogen scattering.
This example is somewhat special in that there is
only one electron so that the "electron translation
factor" can simply be inserted. 4 However, there
are many ways of inserting these factors' so that
there is an ambiguity in the method. An alternative
way of inserting these factors' via the "switching
function" is more general in that it allows for an
arbitrary number of electrons in the problem. We
shall neglect both forms of this refinement and
ignore the translational factors here since their
appearance has nothing to do with the electromag-
netic fields. In addition, the impact-parameter
method will be used. That is, we treat the inter-
nuclear coordinate classically and prescribe its
time dependence to be unaccelerated motion. This
limits the region of applicability of the theory to
above about 100 eV.

We shall expand the total wave function in the
molecular states of H, ' and further limit ourselves
to a two-state approximation. This is a common
approximation' in this problem in the absence of the
field, and its corrections have been assessed. In
the presence of the field it is, in addition, a limi-
tation on the frequency and strength of the field
since the laser photons are assumed to have insuf-
ficient energy and intensity to couple to higher mo-

lecular states. For the H, ' problem this is not too
great a restriction on current lasers, but for
heavier atoms (Ar~') where levels are more dense
it can invalidate the procedure. In all cases we
make the dipole approximation for the field.

In Sec. II we treat the problem of a weak laser,
and an experiment designed to observe the phenom-
ena is suggested. In Sec. III a stronger laser is
treated.

. aj—-HC=O, (2.1)

H =H„+HI+He+(e /2m)A

P 8 8
2m I r —R/21 I r+R/21

HI= —(e/m)p A,

(2.2)

where H~ is the Hamiltonian for the single-mode
free radiation field of frequency co,

and

H„=(rata

A = e (a+ a') .

(2.2)

(2.4)

The A2 term can be diagonalized along with Hz to
give a shift of the laser frequency due to the "load-
ing" of the atoms. We therefore simply drop the A'
term below.

The impact-parameter approximation is contained
in the prescription

R=b+Vt, b V=0, (2.5)

where b is the impact parameter and V the relative
velocity of the protons. The initial condition on +
is at t- —~

4 - y,. = y(r R/2) e-'eo', - (2.6)

where Q is the 1s state of hydrogen and E, its en-
ergy, and we seek the amplitude for charge trans-

II. WEAK ELECTROMAGNETIC FIELDS

Our starting point is the Schrodinger equation in
the impact-parameter approximation and the dipole
approximation for the electromagnetic field:
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fer to the ground state, which is the final state,

(f)~
= y(p-+R/2) e 's-o'. (2.7)

u, , (1/-Wi)[y(r R/-2)~y(~+R/2)],

Wo, (R) -Eo. (2.9)

If we assume that the radiation field is initially a
single mode of frequency a and occupation number

I

For low collision velocity, V «e'/8, it is useful to
expand in the molecular states defined by

[W„(R}—a„(r,R)]u„(r,5) =0 (2.8)

and as discussed above, to keep only the lowest
two molecular states with asymptotic properties

X»1, then the initial state may be written as

(1/~2) ( .+,) IN }=(1/~2) (lo, ~')+
I l, ~'}) .

(2.10)

%e now assume that over the range of R of interest
there is one and only one point at which the two
molecular states are resonantly connected by a
single-photon transition,

W, (R„)—W,(R„.) = W(R„)= u.
At that point the states IIO, X+1), ,

'3. , i'i' —1) are ex-
actly degenerate with the two states in (2.jLO). Then
all four states must be included in the expansion of

t
4 = B N, O, I' O, E exp -i dI' @', —Eo +B X, l, t l, N exp -i dt 5', —Eo

+P(tt —l, l, t)(l, tt —1)exp —'

J et((V, —P)+tet

+B(N+1,0, t)IO, N+1 }exp -i dt(Wo —Eo) —i&dt e '~o~ 'N"'
m &)0

(2.12)

This form is then substituted back into (2.1) and projected onto each of the four states to yield the
equations

t
t)(ttp) &ptt(tt, , ()=, tt-, » pteeet tp)tt&tt (,(), -

m &)0

t
iB(N 1, 1) =-(1,N 11&ilO,N) exp i(dt+i dt W-B(N, O),

t

,p&tt= (), &l(x( p, p»per-t t. * etp}p(xe(, p),

t
t)(tt+(, p)=&p, tte((tt, ((,xt)exp t; ttt(p)p(tt)). ,

w&)o

(2.13)

The four matrix elements are readily calculable in
terms of the matrix elements of the photon crea-
tion a,nd destruction operators. If we make the
"laser approximation, "N'~'- (N + 1)' ', then

tion, the two pairs of coupled equations in (2.13~

become identical. The initial conditions implied
by (2.10) and (2.12) are

&OWIBill N -»=&0 N+1IB~I1»

=&1 NIB~IO, N+»*
=A

where
(2.14}

B(N, 0, —~) = B(N, 1, —~) = 1/)( 2

B(N —1, 1, —~)=B(N+1, 0, —~)=0,

so that (2.13) implies

B(N, 0) = B*(N, 1), B(N —1, 1)= B*(N + 1,0),
A = -(e/2m&d)E P»,
r„=(OIrIl&= ~)W(R)r„RR, (2.15)

and E may be interpreted as the classical elec-
tromagnetic field intensity which approximately
describes the single-mode laser. This is the same
result as obtained from a semiclassical treatment
of the eleetroma, gnetic field. With this approxima-

(2.1V)

and the conservation statements

IB(N+1, o)l'+ IB(N, »l'

= IB(N, O) I'+ IB(N —1, 1) I'=-' . (2.18)

Both (2.17}and (2.18) are true for all times. Thus
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it is necessary to solve only the pair

iB(N, O) = Ae '"'"B(N —1,1),
iB(N —1, 1)= A*e& ""B(N,0),

where

(2.19)

t
&()(t) = dt' W(R) —art (2.20)

Here and below the time dependence of the B's is
suppressed. The final-state amplitude may be
extracted from (2.12) with the result for the ex-
change amplitude

A(e)=
d
— (N) B(N, 0) exp(—

'1
dt(W, —E ) —B(N, 1)exp(—

'
dt (W, E, -

+ iN+ 1)B(N+ 1,0)exp i(dt——i dt ((P, —E)(N —1)B(N+1, 1)e P t —if 'dt(W, —E))
OC) BB(20

(2.21)

where the B's are evaluated at t=+ ~. This ampli-
tude evidently consists of subamplitudes for ex-
change with change of laser occupation number by

0, +1. They add incoherently and since their indi-
vidual observation is difficult we calculate only the
total probability for exchange (with no observation
of photon number). Using the conservation condi-
tions, (2.18) and (2.17), we obtain

where

T = (I/v )(R' b2)'t 2

2, dW
T(a}= —A(~)'

R= R

A(s)= — ", [b Ei V E(R' —tp2)'i2]a z .

(2.27)

(2.28)

P„(b}= — 1 —2ReB2(N, 0)exp
1

Now returning to (2.19) we note that

dt te(E))

(2.22)

(2.29}

For 5)R„the crossing is not effective for transi-
tions, and the transition probability becomes

(t) = W(R) —(d» A (2.23) P„=sin' dt W R (2.30)

except in the immediate vicinity of the resonant
point R =R„.This condition is our definition of
weak coupling. Under these circumstances the
E&ls. (2.19}are identical with those obtained in the
conventional atom-atom scattering problem with
the condition of one real curve crossing (see Fig.
1). The approximate S matrix for this case is
well known. Thorson' has given a systematic pre-
sentation from which our result may be obtained.
One simply has to modify the usual assumption
that the coupling A' is an even function of t. It is
not necessarily so for our case. With that modi-
fication we obtain

which is the usual result in the absence of the
field. For some optical lasers, E = 2 && 10' V/cm.
This yields an extremely small value of T(+}, -10 '
at colliding energy of about 500 ev. Thus the mod-
ification induced by the laser is small,

I, N+I

B*(N, O)=(I/v 2}[1—z'(+)]' '[1 —z'(-}]' '

+(I/O 2)z(+)z(-)e ' 2 2& "

where

( ) —(1 -Er&B))&/2

(2.24)

(2.25}

I', (+) = a,rgI'( —,iT(+))+ —T(+)[I —ln —T(1)]
T

+ d «+ dt[W(R) —&t)]
0

(2.26)

R

FIG. 1. Energy levels for the case of one crossing.
Arrows indicate initially occupied states.
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220 (20

R (h)=s' ' dtW(R)+ —
t (T(+)t T(-)] os 2 dt W(R) ~ 2(T(+)2(-)]'t's'2 2 dt W(R)t2tst, }Wt P 0 Tx

(2.31}

The term in curly brackets is small and propor-
tional to the laser intensity and is the quantity of
interest here. It could be observed by illuminating
the charge-exchange region with a chopped laser
and measuring the charge-transfer current at a
fixed angle (fixed b) in synchronization with the
modulated laser beam. This would eliminate the
larger cross section which is independent of the
laser. It would be interesting to make the mea-
surement (1) a.s a function of intensity, (2) as a.

function of polarization, (3}as a function of fre-
quency, and (4) as a function of collision energy.

(1) The signal should be proportional to the laser
intensity.

(2) It should depend on the laser direction with
respect to the direction of the incident beam
through the factors T(+)+ T( ) and IT(+)T( )]'~'.
(We assume that the scattering angle is small, so
that the incident and final directions are essential-
ly the same. ) These parameters have the dependence

T(+)+T( )= b'E +-E (RR —bR),

IT(y) T( )]&~R

where E, and E, are the components of the field
respectively parallel and perpendicular to the
atomic beam.

(3}The frequency dependence is complicated
since &o determines R„(2.11). The frequency also
appears explicitly as a factor e ' in both T's and
in the sine in (2.31).

(4) The signal should have an overall factor of
V ' and an oscillating behavior at two different fre-

quencies since the arguments of the sinusoidal
functions are different,

2 dt W(R) =— . ..i, W(R),
2 " dRR

2 d't W'R +2+Tx=—
2 2 1/2 W

Tx d2„

W(R' 2') }
The effect of the laser on the cross section

I
the

last term in (2.31)] is new and therefore of interest
in itself, but in addition it can be used as a probe
of the "quasimolecular" properties of the collision.
For example, the oscillation (as a, function of V)
in (2.32) is different from that of the leading term
thereby giving a different probe of W(R). In addi-
tion, measurement of T(s) is a probe of dW/dR at
variable R„determined by the choice of ~.

In the above we imposed the restriction upon co

that there be only one solution to (2.11). For
smaller co there can be more than one solution.
Figure 2 is an illustration of the case where there
are two such solutions. That is, not only are the
states I1,N) and IO, N+1) degenerate for a par-
ticular R, but I1,N) can also be degenerate with

IO, N+2) for some smaller value of R. It would
therefore seem to be necessary to couple in addi-
tional states in (2.12). This is not the case since
the coupling between I1,N ) and

I
O, N+2 ) vanishes.

Thus, in a single scattering (in along one curve and
out along another) with the restriction of energy-
conserving coupling, there is no population of these
additional states.

III. MORE INTENSE FIELDS

The probability of the laser-induced transition
becomes larger as the field gets more intense.
When the probability is no longer small, it is more
useful to diagonalize the two- state-plus-field prob-
lem' before dealing with the collision. Since we
still restrict the expansion by keeping only two
molecular states, this means that the laser cannot
be too intense. The assumption that the coupling
to other molecular states is negligible is expressed
by

FIG. 2. Energy levels for the case of two crossings.

where hW(R} is the separation between either one
of the states in question and any higher state. Pro-
vided that there is no resonance of this kind in
regions of R explored by the collision, this is sat-
isfied for intense lasers.
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Since we are dealing with not very intense fields,
diagonalization will be performed in the rotating-
wave approximation. ' In that case the two eigen-
states, for fixed R, can be written

(3.1)

with eigenvalues

E,(N) = p(Wo+ W, )+ (N —z)(dt+ e, ,

where

~ (g2+ A2)1/2 —~ ~

and the energy defect is

~(ft) = —.'[w(ft) —~].

(3.2)

(3.3)

(3.4)

We have used the fact that the coupling A in (2.14)
is real. For large R, A vanishes exponentially
and 6=--,'&, a negative number, so that

y, (N) —~O, N&, y (N) —(- sgnA. ) ~1,N-1&
(3.5)

E,(N)-Eo+N~, E (N)-E, +(N —1)(N.

The energy-level curves are shown in Fig. 3.

FIG. 3. Energy levels for the case of one avoids
crossing.

For the case where there is only one solution to
(2.11), there is only one avoided crossing, and
again using the concept that coupling of states will
occur only at real crossings or avoided crossings,
we need only use four states in our expansion of 4,

t
E=A(zt)d(N)sxz, (- ,

'
e,z,(N, t)d!—E,(N, — )'t +A (N, tlt) (N)s s — fsz (Ntldt —'E, (N— )t)',

m t(O

t
+A (N+), tlt)(N+(lexz(-i ez (N+1, tldt —z(N+1, — )t)'
+A.(N+ 1,t)t .(N+1) exp (- i ez. (N+1, t)dt —'E.(N ~ 1,— lt ),

% oo

(3.6)

where

n.E,(N, f}=E,(N, f) E,(N, ). -—(3.'t }

pair.
The phase is defined by

The initial conditions implied by (3.5) and (2.10)
are

X(i) =1f dt ( - 'ts)ss

A,(N+1) =A (N) =0,

A, (N) =1/M, A(N+1) = —(1/M), sgnA.
(3.8)

and the coupling matrix element is given by

A, (N) = —'
tt, (N), —d, (N)&

's"""'A, (N),
8

(3.9)

where only the couplings of states at the avoided
crossing have been retained. A similar equation
with N replaced by %+1 is obtained for the other

Substitution of (3.6) into (2.1) with the approxima-
tion that dt), (N) are eigenfunctions of H for fixed
R yields

(3.11)

These equations are identical in form with those
obtained for the atom-atom scattering problem
in the case of an avoided crossing. The minimum
energy separation occurs near R„[Eq.(2.11)]and
is approximately ~A~. Equations (3.9) and (3.10)
can be combined to show that
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A'(N)
I

A (N+1)
A

)2O

A (N)
I

A '(N+1)
A

~ 22e

(3.12)

Again the exchange amplitude can be extracted
from (3.6) as was done in obtaining (2.21}. Again
there are three incoherent amplitudes for the
three different photon states. The result for the
total charge-exchange probability is

1 40

P(b)= —, ) —2R A', (N)e p —'
dt(22 — )

N

—,N-I

—,N-I

where

b

+[4'(R ) + A', ]'~' —(u].

(3.14)

Ab =(e/2~R)[E b+E„(R'—b')' ']W(R)r» R .

(3.15)

The result is unrealistic in that it requires that
T(s) & 1; so we shall not pursue it further here.

For the weak coupling limit of Eqs. (3.1)-(3.13),
the avoided-crossing curves approach each other
more closely and the slopes of the energies (3.2)
become discontinuous so that we return to the real
crossing or weak coupling limit. Therefore, there
seems to be no reason to pursue Eqs. (3.9) and

(3.13) further since both their weak and strong
coupling limits are given.

For the case where (2) is small enough that (2.11)
has an additional root at E, (N) =E (N+1) or

(3.13)

An interesting but somewhat unrealistic result
emerges when A~R s is large enough so that the
curves are well separated at the avoided crossing.
In that case the coupling in Eq. (3.9) can be ne-
glected with the result that A, (N) = 1/v 2 so that

P, (b) st ' f dt(2=t —e)

FIG. 4. Energy levels for the case of one avoided
crossing and one real crossing.

Q, (N), —P (N+1) = (0~ —~1) .p

~

8 A e —b 8
'st 2(&) e st

(3.17)

Then the four additional states $2(N+2) and

P, (N —1) are coupled at this crossing. These
populate exchange states with photon states )N + 2)
so that two-photon emission and absorption is ob-
tained. The reason for their appearance here and
not in Sec. II is that the rotating-wave approxima-
tion diagonalization of the (no motion) problem
has already incorporated multiphoton transitions
in the zero-order states [Eq. (3.1)].

For still smaller ~ there are additional real
crossings, but one can show that the coupling ma-
trix elements vanish at these points in this approx-
imation.

To summarize, we have obtained the small
change in the differential cross section for sym-
metric charge transfer caused by the presence of
an electromagnetic field in the interaction region.
The change in the cross section has an interesting
dependence on the field parameters, and an ex-
periment has been suggested to investigate this.
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