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A relativistic version of the random phase approximation (RPA) is used to study allowed and forbidden
radiative transitions in atoms. The theory is applied to the He isoelectronic sequence to test its utility. Precise
numerical solutions to the relativistic RPA equations are obtained describing the transitions ] 'S„,—«2'S, (M1),
1 'So ~2 ''

Pi (E 1), and 1 'So ~2 'P, (M2). The resulting excitation energies and transition probabilities are in

good agreement with accurate nonrelativistic calculations for low-Z elements. For interlnediate- and high-Z
elements where relativistic effects are more important, the results are expected to be very accurate also.
Extensive comparison shows good agreement of the calculated forbidden transition rates with available beam-
foil measurements and the calculated transition energies with several lines from solar corona for high-Z
(Z —2S) elements.

I. INTRO13UCTION

The need for reliable data concerning highly
ionized atoms has increased in recent year& be-
cause of studies of the sola. r corona, solar flares,
and thermonuclear plasmas. ' Theoretically de-
termined data, moreover, can now be subjected
to scrutiny in the laboratory using beam-foil
spectroscopy.

For atomic transitions in highly stripped ions
relativistic effects become more and more im-
portant as the nuclear charge Z of the species
increases. It seems desirable therefore to develop
a theory of atomic transitions for high-Z atoms
which includes relativistic effects nonperturba, —

tively. Relativistic theories which do not account
for correlations, however, are likely to be un-
reliable. The traditional configuration-interaction
method used to treat correlations in the nonrela-
tivistic theory appears to present computational
difficulties in the relativistic case. 'Iherefore in
view of its successes and simplicity in nonrela. -
tivistic theory we have introduced a relativistic
version of the random phase approximation (RPA)
to treat those correlation effects important in the
calculation of radiative transitions in closed-shell
a.toms. '

The RPA was originally developed to study ex-
tended systems such as ei.ectron gases or nuclear
matter. ' It has been applied to a wide class of
atomic and molecular processes, especially for
the computation of transition probabilities and
photoionization cross sections. ' The RPA leads
to a. treatment of correlations in which the com-
putational advantages of an independent-particle
theory are retained. Froln. a physical point of
view correlation effects in the initial and final

states are treated simultaneously, leading to oscil-
lator strengths which satisfy the Thomas-Reiche-
Kuhn sum rule and which have identical values in
the length and velocity forms.

Our purpose is to develop a relativistic RPA in
which all of the correlations included in the non-
relativistic version are retained. In the nonrela-
tivistic t,~eory the RPA provides a generalization
of the Hartree-Fock (HF) equations; the differen-
ces between the PPA and HF theory are due to
certain correlation effects. Here we start with
the Dirae-Ha&dree-Fock (DHF) equations to avoid
perturbative treatment of relativity. A valuab'e
consequence of the relativistic approach is that
forbidden transitions are obtained with the same
ease as allowed transitions,

The nonrelativistic RPA takes three equivalent
forms as applied by d'.fferent workers, namely,
time-dependent Hartree-Fook (TDHF) theory, "'
the lineariz ed-equatioris -of -motion method, "

and the Green's-function method. ' The last twomo

approaches usually involve some further appl. oxi-
mation in the solution of the resulting RPA equa-
tions, si.nce a truncated basis set is required. The
Green's-function method can be analyzed in terms
of diagrams, so that a comparison with many-body
perturbation theory is possi. ble. ' For our pur-
poses, it is easiest to study the relativistic RPA
directly from the TDHF equations. '

The formulation of the theory is presented in
Sec. II. In our treatment of relativity we adopt
as fundamental the Dirac-Breit Hamiltonian con-
sisting of a sum of Dirac one-e'. ef:.tl'on terms and
the electron-electron Coulomb interactions. We
treat the Breit interaction as a. perturbation and
negLect the electron self-energy and vacuum polar-
ization, together with higher-order quantum-elec-
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trodynamic effects. " Specific applications of the
theory to the helium isoelectronic sequence are
given in Sec. III. A discussion of the numerical
methods used to solve the relativistic RPA equa-
tions 18 given ln See. IV» and ln See. V we de-
scribe the modifications of the theory required to
introduce the Breit interaction. Results for the
transitions 'S,-"P,(EI), 'S, -'S, (M1), and 'S,
-'P, (M2) are presented in Sec. VI. Our allowed
and forbidden transition rates compare favorably
vrith the accurate Hylleraas-type calculations at
low Z. Our results at high Z are expected to be
very accurate, since correlation decreases vrith

Z. Furthermore, the relativistic RPA can be
readily extended to more comp»cated systems
where accurate variational calculations are not
available,

II. FORMULATION

Our practical calculations are based on the
TDHF equations which are a variant of the RPA
often used in atomic structure calculations. %e
assume an R-electron closed-shell atom" vrith its
ground state described by a single determinant of
the N DHF orbitals u;(r). The perturbations
u„(r) induced in the orbitals ((((r) by an external
field A e '"'+A e'"' of frequency ~ satisfy the
RPA equations;

(I(,+ V —e; w (d)ao;, = (A, —V,"')u, , (= 1, 2, . . . , N,

%here

ho= ot 'p+Pm

Vm, =pe'

—(xof,u()'u~ —(ufu, )'(v„] . .

A, (r) is the amplitude of external perturbation of
frequency ~(d, and &, is the orbital eigenvalue of
gth DHF equation. Natural units are used in Eq.
(1) and throughout the paper

The system of homogeneous equations which
follow from Eqs. (1) with A, = 0 define an eigen-
value problem. The eigenvalues (d, represent the
atomic excitation energies; the corresponding
eigenfunctions w;~, (r ) are conveniently normalized
by

decay to the ground state by single-photon emis-
sion. If we let X= 1 (0) designate an electric (mag-
netic) multipole field, then the multipolarity 8, M,
A. of the emitted photon is related to the parity m

of the excited state by v= (-1) "'. We designate
the vector potential of the multipole field by

a,"„', and &re have

[Z(J + 1)]'~'j~((dr) -(,)( )(df' JN

where jz(x) is a spherical Bessel function and

7~"„'(k) is a vector spherical harmonic.
The transition rate from the excited state k to

the ground state 0 by emission of a photon vrith

quantum numbers &„,Z»M, X is given by

A~„o= 8vn(d~ ~M~
~

',

M~ — ~) aug ' Q N).~ + gg Q ' ay@ K]p

Similar formulas can be developed vrithin the
framework of the RPA to treat transitions from
one excited state k to another excited state k'."

In the present paper @re determine some of the
lour-lying states of a two-electron ion by solving
the homogeneous RPA equations (1); we determine
the transition rates from these states to the atomic
ground state by evaluating ihe transition matrix
element M~ in Eq. (4).

For electric multipole transitions there are
equivalent @rays of vrriting the matrix element M,
corresponding to the velocity and length forms of
the nonrelativistic dipole matrix element. " The
expression for aJ((„' given in Eq. (3) reduces to the
velocity form in the nonrelativistic limit. The
relativistic length form is obtained by replacing
.~(x)Q'ag~ by 5g~+ Q' egg» &here

eT + 1 . 4)9'jJ ~(((d'Y)4~(r) = f ~ j z(~r)— 8+1

~rj ~(~r)

czar

[J(g 1)]1/2 r~J(((~)''
(2)

The eigenfunctions of Eqs. (1) describe atomic
states vrith definite values of angular momentum
J, M and parity m = + 1. Such an excited state may

The equivalence of the two forms in the relativis-
tic RPA follows directly from Eqs. (1) and the
identity Z" a~((~ = [h„b~„]/(d+ c( c~~; the equivalence
of the two forms in the nonrelativistic RPA is well
known.
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III. REDUCTION OF THE RPA EQUATION FOR
TWO-ELECTRON IONS

We describe the DHF orbitals u(r) using the fol-
lowing quantum numbers: n is the principal quan-
tum number, x=+ (j+ —,') for j=/+&~, where j and
l are angular momentum quantum numbers, and
the angular momentum projection quantum number
m (-j—m —j). The orbital u„„(r) is written in
terms of two radial functions, a large component
G„„(r) and a small component F„„(r) Int.roducing
the spherical spinor Q„(f)to'describe the angular
dependence of u, we may write

K = 1 or ~ = —2 corresponding to excitations s, &,
-p, &, (x= 1) or s, &, -P, I, (x= -2). The perturba-
tions w, of Eq. (1) are given as linea. r combina-
tions of p, &, and p, &, excited orbitals chosen to
give a final J= 1 state.

In the general case we designate the orbitals
with definite angular momenta (the s, &, -p, &, ex-
citations above, for example) by

1 fiS„,(r)Q„(f})

(T„,(r)Q „(f'}f
(8)

The excitation w, , of the ith electron (angular mo-
mentum v, m) is then made up as a combination of
the orbitals (8) given by

w„(r) = g +ii ~(y', m', s, m)w„. ..(r), (9)
For He there are just two orbitals with n= 1, w =

-1, and m =+-,' for the (1s,i,)' ground-state con-
figuration. The DHF equations reduce to a pair
of coupled radial differential equations for the
large-component and small-component radial func-
tions. Let us define the differential operator

e'Z(r)
y'

—+ — —P2—

where

Ig(K, m, K, m}=(K m'l Y» lcm).

With the ansatz (9) the RPA equations reduce to
a set of coupled radial equations for the functions
S„(r) and T„(r) The states described by Eqs. (11)
all have parity w= (-1)~; they decay to the ground
state by electric multipole radiation. To describe
states of parity v= (-1)~ ' which decay by mag-
netic multipole radiation we simply perform the
replacement

where Z(r) =Z —Y(r) and where

r aO I
Y(r)= dr'(G', +F',)'+r, (G,'+F',)'.

p r y

We use the subscript 0 to designate the ground
state. With the aid of Z„we may rewrite the radial
DHF equations as

I~(s', m', K, m) -Iz(x', m', —K m)

in Eq. (9); this replacement preserves the angular
momentum but reverses the parity of the excita-
tion.

We designate the pair of radial functions S„,(r)
and T„,(r) by

(R, —z,}F,=O, (7)

with
and we let

We solve Eqs. (7) for &„9,(r), and Z(r) using
numerical self -consistent-field techniques. Once
we have obtained the ground-state function Fp we
are in a position to solve the RPA equations (1)
for the excited states.

To illustrate the method used to reduce the RPA
equations to radial equations, we consider the
special case j= 1, v= -1; an electric dipole (El)
excitation. The orbitals used to describe an E1
excited state must have angular quantum numbers

co

Yr, (x, s, r) = r dr' ~'„(S„,G, + T„,F,)' .
p

We then find upon substituting Eq. (9) into the RPA
equations (1}aset of radial equations which take
the simple form

(Z~ —cow (g)S„~=0„,PO. (10)

For EJ excitations Eqs. (10) are a set of coupled
equations for v =J and w = —J —1. We now describe
the exchange terms occurring on the right-hand
side of Eq. (10).
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EJ-excitation exchange terms:

Q
e' Y~(J, +, r)

(2J+1)' r

and (12) for magnetic excitations are treated by
parallel methods.

An approximate solution to Eqs. (10), corre-
sponding to nth excited state with a, given J (con-
figuration 1s, n J), is obtained in terms of the
DHF orbitals (F„„(r)with s =J, -J- 1. These orbi-
tals p„„satisfy DHF equations in the ion potential
—e'Z(r)/r,

M J-excitation exchange terms: For MJ excita-
tions Eqs. (10}are a set of equations for z = —J
and &=J+1. The exchange terms are

(12}

(R„—c„„)S„=O„,Fo —((d„„—(e)S„

(8„—2&0+ e„„)S„=0„5:0+((d - (d)S„
(14)

with (d =e„„-e,. Equations (14) are to be solved
iteratively using the zeroth approximation de-
scribed above to evaluate the right-hand side at
the first stage. To determine the parameters a„
and & in the zeroth approximation we make use
of the integrability condition for the upper equa-
tions in the system (14), viz. ,

The approximate solutions to the RPA equations
(10) are given in terms of 5: by S„'o'(r) = a„P„„and
S(o'(r) = 0. The coefficients a„and the approximate
excitation energy & are yet to be found. With this
zeroth approximation in mind we rewrite Eqs.
(10}as

dry„„(r)[0„,0 (r) —((d„„—(d)S„,(r)] = 0. (15}

The system of equations (10) for electric multi-
pole excitations are intermediate coupling equa-
tions. The resulting states reduce in the nonrela-
tivistic limit to singlet and triplet states with
I.=J The eigenvalues ~ of Eqs. (10}for EJstates'
appear in closely spaced pairs, separated by the
singlet-triplet fine structure. The system (10)
for MJ excitations decouples into a set of equa-
tions for z = —J and a set for w =J+ 1, as is seen
from the exchange integrals (12). The eigenfunc-
tions of the MJ excitations are nonvanishing for
g= —J or for &=J+1, but not for both. States
formed from g= —J reduce in the nonrelativistic
limit to triplet states with L =J —1; those formed
from v=J+1 reduce to triplets with L=J+1.

The ansatz (9}can be used for a general closed-
shell atom to reduce the RPA equations (1) to cou-
pled radial equations. The resulting radial equa-
tions in the general case are more complicated
than those given in Eqs. (10)-(12) and will not be
written here.

IV. NUMERICAL SOLUTIONS TO THE RADIAL
RPA EQUATIONS

In this sections we describe the procedures used
to solve the radial RPA equations (10) and (11) for
electric excitations. The simpler equations (10)

Using the zeroth approximation to evaluate Eqs.
(15) we obtain a linear eigenvalue equation Ma
= (()a for the vector a = (az, a z, ) and for the fre-
quency (d. The resulting zeroth -approximation
excitation functions S„',"(r}represent an interme-
diate coupling Hartree-Fock state. The first and
higher approximations to Eqs. (14) take us beyond
the Hartree-Fock theory.

We obtain our first approximation by solving
Eqs. (14}. This first approximation is then used
to construct a new right-hand side to Eqs. (14).
The first approximation for w is obtained again
with the s.id of the integrability condition (15). The
iteration procedure is continued in this way until
a suitable convergence is obtained. In practice
five iterations usually gave an energy accurate to
seven or eight significant figures.

Green's functions" were determined for the oper-
ators 2„—f and 2„—2&0+ a„„, and these numeri-
cal Green's functions were used to construct solu-
tions to Eqs. (14) at each stage of the iteration
procedure.

V. BREIT INTERACTION

As mentioned in Sec. I we include the Breit in-
teraction in the present calculation as a perturba-
tion. For the case of two electrons the Breit in-
teraction has the form"
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TABLE I. 1 So 2 'P& (El). RPA excitation energies
(in a.u. ) including the Breit correction and the RPA
oscillator strengths, compared with other values.

RPA other fwpA fother

2
3
4
5
6

8
9

10
12
14
16
18
20
30
40
50
60
70
80
90

100

0 ~ 797
2.305
4.564
7.574

11~ 336
15.849
21.115
27.134
33.908
49.723
68.573
90.471

115.434
143.483
330.921
600.275
957.718

1412.225
1976.740
2670.139
3520.882
4574 ~ 409

0.780
2.286
4.545
7.555

11,316
15.828
21.094
27.112
33.884
49.694
68.536
90.423

115 372
143.401
330.644
599.557
956.209

1412.231
1976.757
2670.172
3520.921
4574.434

0.2518
0.4438
0.5443
0.6042
0.6435
0.6712
0.6915
0.7070
0.7190
0.7361
0.7464
0 ~ 7514
0 ~ 7516
0.7470
0.6661
0.5764
0.5175
0.4737
0.4341
0.3937
0.3504
0.3029

0.2762
0.4566
0.5516
0.6089
0.6471
0.6742
0.6944
0.7101
0.7226
O. 74O'
0.750
0.759
0.764
0.784
0.808

Accad et aL. , Ref. 16.
Schiff et &., Ref. 19.
Scofield, Ref. 17.
Dalgarno, Ref. 20.
Dalgarno and Parkinson, Ref. 21.

f Ivanov et al. , Ref. 18.

+ O„,(S)6', +B„,. (18)

The Breit corrections B(r) and B„,(r) are some-
what complicated; they are written out in the Ap-
pendix. In solving Eqs. (18) the numerical tech-
niques described in Sec. IV were employed.

The decay rates follow again from the matrix

B= -(e'l2r»)(a, n, + o., f'»n, ~ 0'») . (16)

The angular dependence of the DHF orbitals u(r)
and of the perturbations w, (r) is not changed by B,
since B is a rotational scalar. If we let F,(r)
represent the modification of F,(r) due to the Breit
interaction and let fy be the modification of Ep,

we find that the DHF equation for the modified or-
bital is

(2, —e,)P, = e,6,(r) B(r) . -
In a similar way we let X„,(r) represent the change
in S„,(r) and let ~, be the first-order excitation
energy. We find a set of perturbed radial RPA
equations which describe the modifications of Eqs.
(10):

(2„—c, v(g)X„,=O„,(X)6:,+ (e, + (u, )S„,

element of Eq. (4), but now the first-order cor-
rections to both u, and w„are used to give the
first-order correction to M~. It is in this way that
the equality of the velocity and length forms of M~
for electric excitations is maintained to first
order in the Breit interaction.

VI. RESULTS AND CONCLUSIONS

The E1 excitation spectrum consists of closely
spaced pairs of states which reduce to singlets
and triplets with L = 1 in the nonrelativistic limit.
We retain the nonrelativistic nomenclature 'P,
and 'P, to label the intermediate coupling solu-
tions to Eqs. (10) and (11).

In Table I we collect energies and oscillator
strengths for the resonance transition 2'P, -1'S,
(El). The RPA energies given in column 2 include
the Breit correction. Comparison values gleaned
from various sources are listed in column 3. At
low values of Z(~10) we compare our energies
with those of Accad, Pekeris, and Sehiff"; these
comparison calculations contain corrections be-
yond those included in the relativistic RPA, such
as the Lamb shift and the mass polarization ef-
fect. For Z between 10 and 50 we compare with
the recent calculations of Seofield, "who deter-
mined energies from the Dirac-Breit equation
supplemented by the Lamb shift. For Z & 50 our
energies are compared with those of Ivanov et al. ,
who included the Breit term but omitted the Lamb
shift. In columns 4 and 5 of Table I the resonance
oscillator strengths from the present calculation
are compared with nonrelativisitic values. For
low Z (~10) the comparison oscillator strengths
are from Schiff, Pekeris, and Accad, "while for
Z=10-18 the values of Dalga, rno and Drake" are
used. A few comparison values for Z = 20 and
Z = 30 are taken from the I/Z expansion of Dal-
garno and Parkinson. " This latter formula gives
remarkably accurate oscillator strengths for low-
er values of Z but breaks down at higher Z, where
the 'P channel begins to open. For high-Z atoms
the present oscillator strengths are in general
agreement with the rough relativistic Coulomb
field calculations of Safronova et al."

In Table II the 2'P, -1'S, forbidden E1 transi-
tion energies and rates from the relativistic RPA
are compared with the nonrelativistic calculations
of Drake and Dalgarno" at low Z. The energy
comparison parallels that of Table I. Excitation
energies for the PI and P1 are in general agree-
ment with comparison calculations, but the RPA
energy difference &='P -'P is significantly too
large at smaller values of Z. The 'P1 'Sp rate
is inversely proportional to 4' in perturbation
theory; consequently, the overestimate of & pro-
duces an underestimate of the transition rate. If
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TABLE II. 1 So —2 3Pi (El). Excitation energies (in a.u. ) and transition rates (in sec )

including Breit correction, compared with other values. R is the ratio of RPA to exact
Pg- Pi energy seParation. Aemp=R ARPA corrects emPirically for Poor values of 'P&- Pf

determined by the RPA. The notation A(B) means A&10~

2
3
4
5
6
7
8
9

10
12
14
16
18
20
30
4p
50
60
70
80
90

100

~ RPA

0.780
2.256
4.483
7.460

11.188
15.667
20.898
26.883
33.621
49.365
68.138
89.953

114.822
142.760
329.119
595.512
946.357

1388.113
1930.012
2585.381
3374.082
4327.452

~ other

0.770
2.252
4.481
7,459

11.187
15.667
20.898
26.882
33.620
49.358
68 ~ 125
80.930

114.786
142.707
328.894
594 ~ 900
945.043
1388.050
1929.923
2585.237
3373.823
4326.390

R2

3.440
1.964
1.592
1.425
1.331
1.271
1.230
1.199
1.177
1.143
1.121
1.106
1.094
1.084

A RPA

6.785(1)
1.008(4)
2.648(5)
3.059(6)
2.170(7)
1.112(8)
4.520(8)
1.542(9)
4.586(9)
2.970(10)
1.410(11)
5.309(11)
1.664 (12)
4.477(12)
1.224(14)
6.976(14)
2.122 (15)
4.863(i5)
9.510(15)
1.678(16)
2.754 (16)
4.273(16)

emp

2.33(2)
1.98(4)
4.21(5)
4.36(6)
2.89(7)
1.41(8)
5.56(8)
i.85(9)
5.40(9)
3.40(10)
1.58(11)
5.87(11)
1.82(12)
4.85(12)

other

1.80(2)
1.81(4)
4.01(5)
4.23(6)
2.84(7)
1.40(8)
5.53(8)
1.85(9)
5.43(9)

Accad et aL. , Ref. 16.
b Drake and Dalgarno, Ref. 23.

Scofield, Ref. 17.
Ivanov et al. , Ref. 18.

we modify the RPA transition rate by a factor
equal to the square of the ratio of the RPA value
of 4 to its correct value, the resulting empirical
rate is in general agreement with that determined
by nonrelativistic calculations. For low values
of Z the forbidden rate grows approximately as

Z", while for high values the rate slows to ap-
proximately 2'.

To illustrate the relative importance of various
contributions to the energy and oscillator strength
we list in Table III intermediate coupling DHF
values, together with values determined from the

TABLE III. Intermediate coupling DHF values of excitation energy (in a.u. ) and oscill. ator
strengths compared with RPA calculations without Breit interaction (No-Br) and with final
RPA values including Breit interaction. fDHF and f~HF are the length and velocity values of
the DHF oscillator strengths. The length and velocity are equal in the RPA. A(B)=A~10

10
20
30
40
50

10
20
30
40
50

DHF

33.925
143~ 591
331.269
601.086
959.308

33.637
142.858
329.456
596.340
948.024

No-Br

33.920
143.586
331.263
601 ~ 080
959.303

33.632
142.852
329.450
596.334
948.018

RPA

33.908
143.483
330.921
600.275
957.718

33.621
142 ~ 760
329.119
595.152
946.357

fDHF

2'P -1'S
1 0

0.751
0.765
0.685
0.593
0.531

2 Pi 1 $0

0.307(-3)
0.180(—1)
0.963(—1)
0.173
0.212

VfDHF

P 744
0.762
0.683
p. 592
0.530

P.304(-3)
0.179(—1)
0.961(—1)
0.173
p.212

fNo-Br

0.7189
0.7492
0.6756
0.5875
0.5268

0.2942(-3)
0.1765(—1)
0.9505(—1)
P.1714
0.2106

fRPA

0.7190
0.7470
0.6661
0.5764
P, 5175

0.3788(—3)
P.2051(—1)
0 ~ 1055
0.1837
0.2213
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TABLE IV. RPA excitation energies (in a.u. ) and
oscillator strengths for E1 transitions from higher-
excited states to the ground state. A(B) =A x10

Z 0 (d(tl Pg} ~(+ Pf) f(+ P~ 1 Sp) f(~ Pf 1 Sp)

10 2 33.908 33.621
3 39.476 39.399
4 41.435 41.403
5 42.343 42.327

20 2 142.483 142.760
3 168.482 168.283
4 177.255 177.174
5 181.319 181.278

30 2 330.921 329.119
3 389.369 388.853
4 409.884 409.669
5 419.382 419.273

0.7190
0.1488
0.5586(—1)
0.2714(—1)

0.7470
0.1477
P.5467(—1)
0.2639(—1)

0.6661
0.1293
0.4760(—1)
0.2291(—1)

0.3788(-3)
0.8744(—4)
0.3403(—4)
p. i683(—4)

0.2051(—1)
0.4589(—2)
0.1769(—2)
0.8702(—3)

0.1055
0.2164(—1)
0.8106(—2)
0.3931(—2)

RPA without the Breit interaction, and final RPA
values, including the Breit correction for Z = 10-
50. The Breit correction to the allowed oscil-
lator strengths are of minor importance,
while the Breit correction to the forbidden transi-
tion oscillator strengths are very important. The
DHF values improve with increasing Z, because
of the diminishing importance of correlations.
In our calculations the oscillator strengths are

evaluated in both the velocity and length forms
(f„and f,). We list both f„and f, for the DHF cal-
culations; as Z increases the agreement between
f„and f, improves. The two forms are of course
equal for all Z in the relativistic RPA, before and
after the Breit correction is applied.

Energies of higher-excited n'P, and n'P, states
are listed along with their oscillator strengths
in Table IV. For Z = 10 nonrelativistic comparison
values" of 0.1492, 0.0560, and 0.0274 are in good
agreement with the allowed oscillator strengths
listed in Table IV.

Results for magnetic dipole transitions 2 $y- 1 'So (Ml) are presented in Table V. The ener-
gies are compared with those found by Accad,
Pekeris, and Schiff" for Z ~ 10, and with results
of Ivanov et al."for Z ~20. The DHF rates are
listed together with RPA values in column 4 and
5 of Table V. The agreement between DHF and
RPA improves as Z increases and correlation de-
creases. The RPA transition rate is about 25% too
large at Z = 2 compared with Drake's nonrelativistic
calculation'4 and agrees with an alternative relativis-
tic calculation" for all but the lowest few Z values.
For Z = 8-18 the RPA also agrees well with the non-
relativistic calculation of Drake. An alternative cal-
culation of the M1 transition given by Feinberg
and Sucher" supports the Drake result at small

TABLE V. 2 S& 1 Sp (Ml). Excitation energies (in a.u. ) and transition rates (in sec ).
A(B) =A x10

RPA ~ other A nH( RPA o ther

2

3
4
5
6
7
8
9

10
12
14
16
18
20
30
4p
50
60
70
80
90

100

0.724
2.163
4.351
7.290

10.979
15.419
20.612
26.557
33.255
48.915
67.601
89.324

114.096
141.931
327.706
593.445
943.563

1384.476
1925.355
2579.437
3366.445
4317.456

0.728
2.169
4.358
7.298

10.987
15.428
20.619
26.564
33.261

141.904
327.591
593.159
942.988

1383.451
1923.659
2576.767
3362.372
4311.334

5.962(-5)
1 ~ 274( —2)
3.996(—1)
5.128(0)
3.902(1)
2.105(2)
8.903(2)
3.i38(3)
9.609(3)
6.561(4)
3.288(5)
1.319(6)
4.469(6)
1.328(7)
8.640(8)
1.674(10)
1.694(11)
1.146(12)
5.925(12)
2.537(i 3)
9.506(13)
3.249(14)

1.728(—4)
2.254( —2)
5.905(—1)
6.902(0)
4.959(1)
2.574(2)
1 ~ 058(3)
3.653(3)
1.100(4)
7.333(4)
3.614(5)
1.431(6)
4.804(6)
1.417(7)
9.013(8)
1.727(10)
1.736(11)
1.169(12)
6.028(12)
2.575(13)
9.633(i3)
3.289(14)

1.253(-4)
2.037(—2)
5.638(—1)
6.731(0)
4.887(1)
2.551(2)
1.052(3)
3.640(3)
1.098(4)
7.327(4)
3.614(5)
1.432(6)
4.808(6)
1.418(7)
9.023(8)
1.729(10)
1.737(11)
1.171(12)
6.032(12)
2.577(13)
9.639(i3)

1.272(—4)
2.039(—2)
5.618(—1)
6.695(0)
4.856(1)
2.532(2)
1.044(3)
3.608(3)
1.087(4)
7.243(4)
3.563(5)
1.408(6)
4.709(6)
1.383(7)

' Accad et al. , Ref. 16.
b Johnson and Lin, Ref. 25.

Drake, Ref. 24.
Ivanov et aE. , Ref. 18.
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TABLE VI. 2 P2 1 Sp (M2). Excitation energies (in a.u. ) and transition rates (in sec ).
A(B) =A~la .

2
3
4
5
6
7
8
9

10
12
14
16
18
20
30
40
50
60
70
80
90

100

&PA

0 ~ 779
2.257
4.483
7.460

11.188
15~ 688
20.901
26.887
33.628
49.380
68.169
90.010

114~ 920
142 ~ 919
330.144
599.274
956.450

1410.651
1974.821
2667.844
3518~ 188
4571.316

other

0.770
2.252
4.481
7.459

11.188
15.668
20.901
26.887
33.627

142.909
330.110
599.197
956.318

1410.441
1974.512
2667.515
3517.606
4570.547

DHF

2 ~ 949(—1)
3.240(1)
5.838(2)
4.805(3)
2.534(4)
1.001(5)
3.23O(5)
8.968(5)
2.217(6)
1.045(7)
3.83o(v)
1.170(8)
3.119(8)
7.468(8)
2.104(10)
2.217(11)
1.375(12)
6.126(12)
1.981(13)
6.5V2(13)
1.756(14)
4.274(14)

A RpA

3.935(-1)
3.692(1)
6.328(2)
5.088(3)
2 ~ 648(4)
1.038(5)
3.329(5)
9.205(5)
2.269(6)
l.o65(v)
3.892(7)
1 ~ 187(8)
3.158(8)
7.555(8)
2.122(10)
2.235(11)
l.386(12)
6.174(12)
2.194(13)
6.628(13)
1 ~ 772(14)
4.316(14)

3.27(—1)
3.50(1)
6.17(2)
5.01(3)
2.62(4)
1.03(5)
3.31(5)
9.16(5)
2.26(6)
1.06(7)
3.87(7)
1.19(8)
3 ~ 18(8)

other

4.00 (—1)
3.60(1)

Accad et aL. , Ref, 16.
Drake, Ref. 27, variational values and Jacobs, Ref. 30.
Drake, Ref. 27, 1/& expansion values.
Ivanov et aL. , Ref. 18.

Z. The calculated M1 decay rates have been con-
firmed by accurate beam-foil measurements for
elements ranging up to Z = 36.

Table VI lists energies and rates for the 2'P,
-1'S (M2) transition. The DHF rates and RPA
rates listed together in columns 4 and 5 of Table
VI again agree more and more as Z increases.
The RPA calculations of the decay rates agree
well with nonrelativistic values of Drake" for Z
up to 18, being about 20/g too large a.t Z = 2.

To give some notion of the usefulness of the RPA
energies for predictive purposes, in Table VII
we compare wavelengths determined by the RPA

with values determined from measurements. "
We see that in the range of elements considered,
Z= 12—30, the comparison with the semiempirical
values is close, a feature which is of course
shared by the comparison calculations used here-
in, and by other calculations in which relativistic
corrections are included. '

In Table VIII we collect together recent experi-
mental values of metastable transition probabil-
ities determined mainly by beam-foil spectro-
scopy. The agreement between theory and experi-
mental is seen to be good for the M1 transition
but only fair for the E1 and M2 transition. In the

TABLE VII. Comparison of RPA wavelengths with observation (by Gabriel, Ref. 28). All
values in A.

2 Pi 1 $p (El) 2 Pi 1 Sp (El) 2 P2 1 Sp (M2) 2 Si 1 Sp (Ml)

'obs RYA ~obs RPA obs RpA obs ~ RPA

12 (Mg)
14 (Si)
16 (s)
18 (Ar)
2O (Ca)
26 (Fe)
28 (Ni)
29 (Ci)

9 ~ 168
6.647
5.038
3.948
3.176
1.8500
1.5880
1.4771

9.163
6.644
5 ~ 036
3.947
3.176
1.8493
1.5873
1.4768

9.231
6.688
5.066
3.969
3.192
1.8591
l.5961
1.4849

9.230
6.687
5 ~ 065
3.968
3.192
1.8585
1.5956
1.4844

9.228
6.685
5.063
3.965
3,189
1.8551
1.5919
1.4807

9.227
6.684
5.062
3.965
3.188
1.8545
1.5914
1.4802

9 ~ 313
6.739
5.101
3.993
3.210
1.8677
1.6031
1.4913

9.315
6.740
5.101
3.993
3.210
1.8674
1.6028
1.4910
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TABLE VIII. Comparison of RPA predictions with experimental measurements of metastable
transition probabilities. Theoretical E1 transition rates to 2 S& states are subtracted from the
experimental 2 P decay rates. A(B) =A &10

2 S( 1 Sf} (1II1)

2
Rpp (nsec) v, „zt (nsec)

2 P) 1 So (El)

Z A Rp& (sec ) A expt sec )

2 P2 1 So (M2)

Z ARPA s c ) Aexpt

2

16
17
18
22
23
26
36

5.79(12)
699
374
208

26.6
16.9
4.80
0.171

9 + 3(12)
706+ 83
354+ 24
202 + 20
25.8 + 1.3
16.9 + 0.7
4.8 + 0.6
0.20+ 0.06

7 1.41(8)
8 5.56(8)
8
8
9 1.85(9)
9

16 5.87(11)

1.7 + 0.3(8) 16
5.8 + 0.6(8) & 17
6.0 + 0.4(8) 18
5 99+ 0.09(8) i 26
1.77+ 0.10(9) ~

1.77+ 0.07(9)
5.9 + 1.0(11)

1.19(8)
1 ' 96(8)
3.16(8)
6.55(9)

1.7+ 0 . (8) m

2.7+ 0.3(8) "
2.3 + 1(8) '
7.5 +2(9)

~ J. R. Woodworth and H. W. Moos, Phys. Rev. A 12, 2455 {1975).
J. A. Bednar, C. L. Cocke, B. Curnutte, and R. Randall, Phys. Ref. A 11, 460 (1975).
H. Gould and R. Marrus, Bull. Am. Phys. Soc. 21, 84 (1976).
H. Gould, R. Marrus, and R. W. Schmieder, Phys. Rev. Lett. 31, 504 (1973).' H. Gould, R. Marrus, and P. J. Mohr, Phys. Rev. Lett. 33, 676 (1974).
I. A. Sellin, B. L. Donnally, and C. Y. Fan, Phys. Rev. Lett. 21, 717 (1968).

~ I. A. Sellin, M. Brown, W. W. Smith, and B. Donnally, Phys. Rev. A 2, 1189 (1970).
C. F. Moore, W. J. Braithwaite, and D. L. Matthews, Phys. Lett. 44A, 199 (1973).
P. Richard, R. L. Kauffman, F. Hopkins, C. W. Woods, and K. A. Jamison, Phys. Rev.

A 8, 2187 (1973).
' J. R. Mowat, I. A. Sellin, R. S. Peterson, D. J. Pegg, M. D. Brown, and J. R. MacDonald,

Phys. Rev. A 8, 145 (1973).
P. Richard, R. L. Kauffman, F. Hopkins, C. W. Woods, and K. A. Jamison, Phys. Rev.

Lett. 30, 888 (1973).
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Gatlinburg, Tenn. , 1975 (Plenum, New York, 1976), p. 30.
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"C. L. Cocke, B. Curnutte, J. R. MacDonald, and R. Randall, Phys. Rev. A 9, 57 (1974).
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latter cases two competing channels are involved
in the decays; one channel leads to the ground
state and the other leads to the 2'5, state. In
quoting experimental rates to the ground state in
Table VIII we have subtracted the theoretical E1
rate" to the 2'5, state from the E1 and M2 mea-
surements. It is apparent from the comparison
that the relativistic RPA has the power to follow
the rapid Z-dependence characteristic of metastable
decay probabilities.

The virtues of RPA appear to be its simplicity
and versatility. On the basis of the present cal-
culations it appears worthwhile to undertake stu-
dies of more complex ions where reliable relativ-
istic values are not easily available from alter-
native calculations.
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we have

B(r}= —',W(r}8'o(r}.

Now for convenience let

jT„,(r}'}
S„, r =~

(~.,(r}j

(A1}

APPENDIX

The Breit corrections B(r}and B„,(r} introduced
in Eqs. (17}and (18}are two-component functions
of r defined in terms of the ground-state DHF
radial functions G,(r} and F,(r} and the unper-
turbed RPA radial functions S„,(r} and T„,(r}. Let
us introduce the two-component functions

fF.(r})}.f, r =(
(G,(r}f

then setting

p OO

W(r} = 2e' dr' PF (ro' }G(r' ,}
~0



574 W. R. JOHNSON AND C. D. LIN 14

z (1—(1+ [&}/J
M

-1 —(1+ «')/Jf

N„=!
(-1 —(1+ [&)/(J+ 1) 0

!1 —(1+ [&)/(J + I))

and introduce the matrices Define the functions

P (r) = S„,F, —T G, —[([&+ I)/J](S F,+ T„,G,),

Q„,(r}= S„,-F,+ T„,G,

—[([&+1)/(J+ 1)](S„,FO+ T~GO),

V„,(r) = S„,F,+ T G„
and introduce

J(J+1) 1 ('",r&~ ' 1 "",r&~ ' r&~+'

"r
1 " r J+' rJ "1 rJ+1

(A2)

I( (, s, )= f dr' '„)'„(v').
r)

In terms of SJ and KJ one has the following for the Breit correction:
Electric excitations EJ:

J-1 e'
B ,(r) = ——

(
()' + ()' ,)

))'( ) —
( )

[K ,(J, a, r) + I( ,(J, T, r)]f

2+,[-8~(J, +, r)+ (2J+2)8z(-J-1, +, r) —(2J+ 1)Sz(J, w, r)]J„

(A3)

(A4)

B ~ „(r)=-3 2J ISA+ ~ 11'z, W(r) — ~ [Kz„(-J-1,s, r)+K&„( J 1-, w,-r)]6:,

2

+ ~ 1
2[hz(-J —1, s, r)+2JB~(J; +, r) —(2J+1)8z(-J—1, v, r)]6:,. (As)

Magnetic excitations MJ:

2 J - J+1 e'
B

3 ~ 13 +2J l
Rg 1$ W(r} —

2J 1[6&,(-J, +, r) —hz, (-J, +, r)]go

+ 2 [-Kz(-J) +, r) —2JKz(J+ 1, +, r)+ (2J+ 1)K~(-J,+, r)]j»(J+ 1)e'
(A6)

2

BJ ~ 1S J++~ 1SJ Wr —~ 3 SJ„J+1+ r —SJ„J+1+ r

Je'
+

( ),[Kz(J+ 1, +, r) —(2J+ 2)Kz(-J, a, r)+ (2J+ 1)Kz(J + 1,T, r)]f0 (A7)

In applications Eqs. (A4)-(A7) are evaluated only once after the ItPA e&luations have been solved, and

the resulting functions B (r) are used as driving terms in the inhomogeneous e&luations (18).
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