PHYSICAL REVIEW A

VOLUME 14, NUMBER 1

JULY 1976

Inelastic electron scattering off of simple atoms for large-momentum-transfer collisions*

Edward J. Kelsey
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588
(Received 3 November 1975)

Inelastic electron scattering off of simple atoms is studied for collisions where the momentum transferred (q)
from the incident electron to the atom is larger than the normal momenta of the bound electrons. We discuss
the direct part of the scattering for collisions where the atom is excited to another bound state. In lowest
order the second Born term, which dominates the scattering amplitude, factors into two parts. One part
(1/q?) displays a Rutherford-like scattering off the nucleus; the other factor gives the response of the atom to
the preserice of the impinging electron. The second Born scattering amplitudes for 1s—2sand 1s—2p
electron-hydrogen scattering and 1'S,——2'P, electron-helium scattering for large-momentum-transfer collisions

are calculated.

I. INTRODUCTION

There has been recent interest' in various ap-
proximations to describe inelastic electron scat-
tering off of hydrogen and helium at high but non-
relativistic energies and large momentuin trans-
fers. The reasons for the interest include the
possibility of future measurements and previous
work which has suggested that the second Born
term dominates over the first in the region.”
Inasmuch as the second Born term has not been
calculated exactly, it seems reasonable to re-
examine electron-hydrogen scattering for large-
momentum-transfer collisions to determine which
parts of the second Born term are most important
and to calculate them without the use of closure
or similar approximations. The application of
the techniques, developed in Sec. II for other
simple atoms, is discussed in Sec. III.

II. INELASTIC ELECTRON-HYDROGEN SCATTERING

A. General problem

Inelastic electron-hydrogen scattering may be
represented up through and including the second
Bornterm by Figs. 1 and 2(a)—-(c). We are concerned
with processes in which the impinging electron with
initial momentum E.- encounters a hydrogen atom
in state u;, excites the atom to discrete state u;,
and then departs with final momentum E,. Figure
1 is the first Born term for inelastic scattering
and Figs. 2(a)-2(c) are the second Born term.
Additional diagrams consisting entirely of the
Coulomb field of the nucleus interacting with the
impinging electron do not contribute to inelastic
scattering and are therefore neglected. Exchange
graphs are expected to contribute little for high-
energy scattering and are not considered here.

The work that follows has general applicability
for high-energy, large-momentum-transfer colli-
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sions where the approximation of nonrelativistic
scattering and the neglect of recoil remain valid.
For purposes of comparing sizes of the contribu-
tion of the graphs, it is useful to employ the fol-
lowing power-counting assignments:
E E;~ o®m
ki, kiyqg~ Aem . (1)

The electron momentum transfer q is defined to
bek, k.. E; and E, are the energies of the initial
and final state, respectively. A is a number we
choose subject to the condition e<<A<<1/e. We
work in the set of units where Z=c=1 and e=(a)
where « is the fine-structure constant. A possible
choice for A is 1 which would lead the scattering
amplitude to be written as a power series in e and
In(e) in much the same way that conventional
bound -state quantum electrodynamics for hydrogen
writes out its answers in terms of a power series
in @ and In(a).

The scattering amplitude for Fig. 1 is B,
which may be calculated from the following expres-
sion:

B,= -(27r)2m(uf,E,| Vlgiuiyﬁi> . (2)

1/2

In this quantity and all the expressions to follow,
electron 1 is the electron in hydrogen and electron
2 is the impinging electron. Thus, 7,, is the dis-
tance of the free electron from the bound electron.

The wave functions for free electrons are given
in coordinate space by

o (F,) = (2m) "2 exp(ik - F,). (3)

We perform the integrals over ¥, and T, in Eq.

(2):

—2%1e?m - m
1= — D(u, TS s
B, 7 (u Y){[u“ (q+7)2]2]

where D(w,7) is the required linear combination
of derivatives of u and ¥ which constructs ujfu;,

(4)

7-o
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FIG. 1. First Born term for inelastic electron-hydro-
gen scattering. The double vertical lines crossed at the
top and the bottom in this graph represent an electron
in a hydrogen atom. The lower horizontal line designates
the initial discrete state »; and upper horizontal linedesig-
nates the final discrete state u;. The single vertical line
is the impinging electron coming in with momentum k;
and leaving with momentum _k} . The dashed line between
the electron in hydrogen and the free electron denotes
an electron-electron interaction.

from exp(—pr,+iy - T)).
1t is clear for g greater than u, which is of
order am, that B, decreases inversely with g at

FIG. 2. Second Born term for inelastic electron-hydro-
gen scattering. The notation is the same as in Fig. 1,
with the addition that the dashed line with a X at the end
denotes an interaction of the free electron with the Cou-
lomb field of the nucleus of hydrogen.

least as the sixth power. Inasmuch as it will
be shown that the second Born term decreases at
most as 1/¢?, it is not surprising that the first
Born term becomes smaller than the second Born
term at large momentum transfer.

Figure 2(a) gives rise to B,

J

gy By Vi, B g K1Vl K
B,, = -(21)°m fdak 2": <Et;+§e?/22um—3‘§f-k2/§7znu:iei>' ®

The sum over z in Eq. (7) is a sum over all the states of hydrogen. E, is the energy of the nth state.
Next, we perform the integration over the plane-wave position vectors:

=22 d’k 1
22 n* J E;-E;+k;/2m - k*/2m + i€ (ﬁ—ﬁf)z

<uf|ei(k1 -k)-?1|ul>

(E‘ —E)z . (6)

B,, can be reduced to a single integral using the techniques of Dalitz.® For the case of ns -ms scattering
B,, may be written in terms of parametric derivatives of the general three-denominator integral for which
Lewis* gives an analytic answer.

We are interested in this paper in the behavior of B,, where g, k;, k; > am. The exponential term
exp[(k, -K)-¥,] in the matrix element controls the principal contribution in the integral over k to be in the
neighborhood of k; such that |k, ~k|s am. If we define §, =k, -k, then in the region of interest ¢,/g<1
and (k —l?f)2 may be expanded in the following power series:

1/(k -k)2=(1/g®)(1+ 24, -G/ +- ). ™
Equation (7) is used to simplify Eq. (6):

4%, (gl i) l<1+ 2,8, ) ) (8)

i, e“_mf .
22" g2 J E,—E +K;*§;/m - ¢;/2m +ie q ¢ ¢

If we keep the lowest-order term in am/g, we obtain a simple relation for B,, valid for large-momen-
tum-transfer collisions:
e'm [ d (g le™” Tl
=~ —l1 £ i
22" 24 a; E,—-Ef+fi°ﬁi/m—qf/2m +ie )

Equation (9) is easily calculated. In lowest order B,, factors into a e?/¢* part which corresponds to the
impinging electron scattering off the nucleus and a part which contains the response of the atomic electron
to the presence of the incident electron. This interpretation is supported by the appearance in the analysis
of the response part of Eq. (9) of integrals which are similar to those encountered in the calculation of the
density fluctuation about a charged static impurity in a neutral electron gas.® An example of this form of
integral is evaluated in the Appendix.
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The steps in treating Fig. 2(a) and its amplitude B,, are used to examine Fig. 2(b) and its amplitude B,,:

_ 2 (g, KV llh:E)(umElelui’Ei>
2= ~(27) mfdskz );? +fkf/l§m —-E, -F*/2m +ie (10)

emf a’k 1 (u e 00 Ty (11)
E; —E +k/2m - k*/2m+ie (K, -k)? (k; -k)? :

Equation (11) is very similar to Eq. (6). We concentrate on the simplifications which arise in large-
momentum-transfer collisions. Using the steps analogous to treating B,, and the definition &, =Ef -k, we
find an expression for B, in the g, k;, k; > am region:

= .el”.f d’q; (ufle_‘af‘ alui) 1 ( %9, >
Ba= 72 E,—E;+k,§,/m - q2/2m +ie @ F\-"F ) (12)

Keeping only the lowest-order term in am/q, we obtain a simple expression for B,,:
e*m [ dq, 1
m2q? A Ef—E,.+E,'c’1f/m -q;/2m+ie

B,,= (ugple™ Y " ). (13)

In lowest order B,, factorsintoane?/q® part which corresponds to the incident electron scattering off the
nucleus and a part which contains the response of the atomic electron to the presence of the outgoing scat-
tered electron.

The remaining diagram, Fig. 2(c), is the most cumbersome with which to deal. The expression B,  cor-
responding to it is given below:

- 3 (u ’E v |u,.,E><umE|V12|unE>
Byo= =(2m)'m .[d k; Ef +k2/f?.2m -E,-k/2m+ie i (14)

The fact that the Coulomb Green’s function is known and methods® to deal with it have been developed
and are adaptable for application to B, is not much comfort. The result of using these techniques is that
B,. may be expressed in the form of two real and one contour integrations over a considerable number of
hypergeometric functions. The labor of performing this calculation even for the simplest choices of
states ¢ and f would be sizeable.

In this paper we circumvent the need for an exact evaluation by looking at this graph for large-momen-
tum-transfer scattering. Here, we will find the contribution of B, is negligible compared to B,, and B,,,
and thus may be neglected in calculating the first several orders in the total scattering amplitude.

First, we perform the integrals over the plane-wave position vectors:

a3k (u,le” ‘(kf -1 rllu N le:(k‘—k) r1|u)
sz(fc Ef) (k-k)* z E;+k2/2m —E, - k*/2m + i€ (15)

We consider Eq. (15) in momentum space and sum over the intermediate states, which turns the energy
denominator into the Coulomb Green’s operator where H is the Hamiltonian of hydrogen:

o [ e (B, -4 ! (B, -8 (16)
e (k-k)%k-k,)> " YE;+k/2m -H -k /2m+ie "V T
r

In Eq. (16) we use the well-known property of B. Calculations

trans‘lgtlf)n operators in Tomentum space: 1 Is— 25 excitation
T (B = (B, —F). 17
e (B = (B, ~K) () To obtain scattering amplitudes for 1s - 2s

Since |k; -Kk,| is larger than the normal atomic transitions for large-momentum-transfer colli-
momenta, then either u,(p, -4;) or u,( J O qf) is sions, we substitute the appropriate atomic param-
much smaller than its nomma.l value at normal eters into B, in Eq. (4), B,, in Eq. (8), and B, in
atomic momenta by a factor of order (am/q)%.” A Eq. (12), perform the necessary integrations and
consequence of this effect is that B, is reduced in derivatives, and sum the contributions. As an
size with respect to B,, and B,, by a factor of example of the procedure, we give in the Appendix
order (am/q)*. For q of order Aem, B,.~A"*a’B,,, the evaluation of the lowest-order part of B, for
A™*a?®B,,. Thus, B,. may be neglected in large- the 1s - 2s excitation.

momentum-transfer collisions. The approximate scattering amplitude for large-
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momentum-transfer collisions is given by

fo(ls=2s;9)

= B,(1s -2s)+B, (15~ 2s)+ B, (1s~2s). (18)

We give in Eq. (19) the value of the first Born
term and in Egs. (20) and (21) the two lowest
orders in e/A for the second Born part using the
power counting assignments in Eq. (1):

B,=-23V2e"m® (¢ + $e*'m?)3 (19)
-25/2e'm2( 1 3am
Byor 5, — 3%, i_zK > 23k‘ ]
—% a—q'rk-* (am)§ , (20)
22t Y10 g\ 3(am)
Ba® 3%, {qz [(1 - am>+ 2k, ]
+ E -(i‘ kt(am)} (21)
2 q4 b
& =(m/kR)E; -E,+ie), (22)
& =(m/k NE;~E, +ie). (23)

Employing the power-counting scheme described
in Eq. (1), we find that B, (1s~2s) and B,,(1s~2s)
dominate B, (1s-2s) by a factor of order (e/A)?
Therefore, we may neglect the first Born term in
the large-momentum-transfer region.

We combine Egs. (20) and (21) and keep the two

J

'29/2e4m2 “

fz(ls - sz; q)z

lowest-order terms

oy =224y, 3
flts= 250 = T (i- g am)) . (2

2. Is—2p excitation
In this subsection we give the approximate scat-
tering amplitudes for 1s—-2p_ and 1s—~2p, large-
momentum-transfer collisions. As in the 1s-2s
example we keep only the two lowest-order terms
in e/A for the second Born parts B,, and B,,:

~1223V 2e*%m"
—mﬁ ) (25)

1= 2(964

7/29/2647’1 N
Bya® 35, 7 3%, ¢ (7 &)

{1+?k”i[ -4 ln2+211n< . )]} (26)

—12% 2% m

3Bk,q

am S .. (am
i1+ 3k, [-ﬂ—31+4zln2—2zln< by )}g R

(27)
where f is either x or Z. The Z direction is paral-
lel to iei; % is perpendicular to Z and is in the
scattering plane.

As in the previous example the second Born
parts, B,, and B,,, dominate the first Born term,
B,, inthe large-momentum-transfer region. We
combine Eq. (29) and Eq. (30) and keep the two
lowest-order terms:

By~ (- kf)

1 . am [ . . X am
g (k,.x){-n 5 [31+11—4zln2+211n<-72—i—>]} , (28)

129 2g*m 2 O T (o . . famY]  fam),
fo{ls=2p,; ﬁ)r-Wfqzﬂ-{(l -z °kf)[1 —5(—kﬂ>]+ (1+2- k,) 3%, |:—4zln2+21h1<—;i—->j|+z<—k7;n->z-kf} - (29)

A question which remains is to what order do
the third Born terms give a contribution to the
scattering amplitude. Power counting says that
the third Born part is, nominally, an order e/A
correction to the lowest-order second Born part.
Thus, unless there is some unexpected cancella-
tion, the lowest-order third Born contribution
must be added to the second-order parts of Egs.
(24), (28), and (29) to determine these total scat-
tering amplitudes accurate through two orders.

III. INELASTIC ELECTRON-HELIUM SCATTERING

The simplifications to the scattering amplitude
which occur for large-momentum-transfer inelas-

r

tic electron-hydrogen collisions are based on
general properties of the momenta distribution of
atomic systems. The extension of this work to
other simple atoms is straightforward. We con-
fine our efforts here to the 1'S,~2'P,; transitions
where j is x or 2. Our coordinate system is set
up so that Z is parallel to the incident momentum
ﬁ, and % is in the scattering plane and is perpen-
dicular to %.

We utilize the simplest helium wave functions®

Uy 130(-f1’ T,)= (Z?;/”)exp(_zo'rl -Zgry), (30)
Uy 1P11(-fu T,)= (22/22?/2/23”)3(1 —2)7y;
xexp(=3Z,7, =Z;7,) , (31)
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where Z,=0.97Tam, Z;=2.0am, and Z;=1.69am.
S(1 — 2) is an operator which ensures the sym-
metry between electron 1 and 2.

In the lowest order the 1'S,~2'P,; scattering
amplitude for large-momentum collisions is

i3x 2%(e*m?) [joh, fok
(1S, -2'P, )~ c( L L),
o R AT ki Ry

(82)

where C=Z3%Z%°Z3%, w,=3Z,+Z;, and p,
=Z,+Zg.

Substituting the appropriate atomic parameters
into Eq. (32), we find

i(1.09)m?%* » ~ -
G Jehmb). (3)
i

fz(l ls()" 2 IP”):
Using the Mott and Massey wave function® for
the ground state, we find

(1. 21)m %e*
fz(l 150-21P1j)z2( - e
q°R;

Jelei=kp) .  (34)

The features of this electron-helium scattering
amplitude are the same as the electron-hydrogen
scattering amplitudes which were discussed pre-
viously. The dominant part for large q has a
2e%/q* term which comes from the electron scat-
tering off the nucleus multiplied by a response
factor which describes the way the helium atom
reacts to the presence of the impinging electron
both before and after scattering.

IV. CONCLUSION

In this paper we examined the problem of direct
inelastic electron scattering between bound states
of simple atoms where the momentum transferred
between the free electron and the atom is much
larger than the normal momenta of the bound elec-
trons. We note that the atom resolves the physical
dilemma of accepting the large momentum trans-
fer without the bound electrons being ionized by
having the nucleus receive most of the momentum.

e

-R+i0 G 0+i0 R+i0

FIG. 3. Contour for the integral I in the calculation of
the lowest-order part of B,, for 1s— 2s excitations.
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Further, we find that the parts of the first and
second Born terms which contribute the most are
those which contain a free electron-nucleus inter-
action. Thus, the parts of the second Born term
with a free electron-nucleus interaction dominate
over the first Born term and also the other parts
of the second Born term which have only free
electron-bound electron interactions. As a con-
sequence, in lowest order the scattering ampli-
tudes for large-momentum-transfer collisions
factor into a 1/¢* part which displays a Rutherford-
like scattering off the nucleus and a factor which
gives the response of the atom to the presence of
the impinging electron.!°

APPENDIX

This Appendix gives as an example the calcula-
tion of the lowest-order part of B, for 1s - 2s
large-momentum-transfer excitations. For this
transition the lowest-order part of B,, and B,
are equal so we concentrate on the calculation of
B,,. The mathematics for other transitions is
quite similar.

Plugging the 1s and 2s wave functions into the
matrix element in Eq. (9) and performing the inte-
gration over T, and the angular parts of §;, we
obtain

2y o) 0

a”~ ,”qzki 3 ou/ op (g)l (A1)

H=3am/2

B,
in which

(" 41
9= 2 DR
o (gi+u?) g,

y m(z’”(E‘ —E,)+2k;q; - ¢ +i€
2m(E; - E;) - 2k;q; — ¢ +i€

) . (A2)

The ¢; addends inside the logarithm do not con-
tribute to lowest order, and therefore, we replace
g by I where we have extended the range of integra-
tion from —« to + .

1 (= . .
I=7 f —ddi__ 1n<g—t—&+q . (A3)
2/, ‘Ii((Ii+Ll ) gi—q;

The complex quantity g; is given in Eq. (22).

The integrand has poles at iy and branch cuts
at [—e — i€, -g; ] and [gl, w+ic]l. We deform a
portion (=R, R) of the original path (-, «) in the
upper half-plane as is shown in Fig. 3. Using
Cauchy’s theorem, the integral over section C, is
minus the sum of the rest of the path.

I==(I+ I+ 1+ I+ I+ I+ Ig+Ig+1,,) . (A4)

In the limit of the outer semicircle becoming
large, the inner semicircle about g; becoming
small, and the paths C, and C, coalescing, I=1,,
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I,=—I,, and I,=I,=1,,=0. Thus,

1=—‘]!;i_r)1;1°(13+15+18). (A5)

C; is a clockwise circle about the pole atgq; =ipu:

ST (Bt
s 2u2m<gz-iu)' 4o

C, and C, are paths in opposite directions below
and above the branch cut of the natural logarithmic
function. Using the relation

In(-|X|+in) =In(=|X| -in) =2m

for n tending to zero, the sum I;+/; for R going
to positive infinity is given by

m 2
lim (I, +1 )=-—1n(—&—>. (A7)
R 3 5 2[.1‘2 g§+ “2
Finally, after a small amount of algebraic
manipulation, we obtain

I= 11‘5 ]Jl(—‘gf—2> . (A8)
20 " \(gy+ip)

After discarding higher-order terms in Eq. (A8),
replacing it in Eq. (A1), and performing the re-
quired derivatives, we find the lowest-order term
for B,,. B, is obtained in a similar manner. For
large-momentum-transfer collisions the dominant
part of the scattering amplitude is the sum of
B,, and B,,.
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