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The previously reported general correlated wave function for three-particle Coulomb systems is analyzed term
by term for the cases of H™, e "e "e =, pup, dpd, tut, and ppd to find how sensitive the single terms are to
the configuration of the Coulomb systems, and how effective they are in giving accurate results. It is found
that on going from one-center Coulomb systems to systems with increasing two-center configuration, the
leading terms in the wave function become those containing powers of the relative distance between the
particles with the same sign of the charges. For mesonic molecular ions, a two-term wave function has been
found to give highly accurate ground-state energy results: —2776.87 eV for pup, —2982.97 eV for dpd,
—3069.15 eV for tut, and —2867.77 eV for pud. All of the wave-function parameters are tabulated

together with a number of useful expectation values.

I. INTRODUCTION

A number of relatively recent developments in
atomic theory have renewed interest in explicitly
correlated wave functions for three-body systems
with Coulomb interaction. Three of such develop-
ments have been mentioned in a recent paper by
Winkler and Porter'; namely, (1) the work done by
Bopp,? where is shown that the energies of ground
and excited states of N-electron atoms are given
to a very good approximation in zeroth order by a
sum of energies of appropriate states of two-elec-
tron atoms; (2) the calculations of the autoionizing
states of He and H™ with correlated wave func-
tions**; and (3) the calculations of long-range
atomic interaction potentials of two He-like atoms
by using one-electron densities.®

We may still quote the quite recently reported
measurements of the differential cross sections of
the (e, 2e) reaction in He,® which is considered an
important probe in the investigation of He correla-
ted wave functions, the Hartree-Fock wave func -
tion having been ruled out by experiment.” We
can also quote a recent analysis of the binding
limits in two-electron atoms, which has demon-
strated the inapplicability of the independent -el-
ectron viewpoint and the necessity of using cor-
related wave functions.®

In general, correlated wave functions are known
to be of crucial importance in the calculation of
several atomic and molecular properties® and in
obtaining meaningful results in many collision
problems.!° Detailed investigations of this subject
concerning several two-electron systems have
been performed recently by Banyard and co-work-
ers.ll-lS

Correlated wave functions are mostly formulated
by means of the configuration-interaction (CI)
method or by the use of correlation factors which
explicitly contain the interparticle coordinates
x4;. Although electron correlation calculations for
molecules and large atoms are usually based on the
CI method, excellent results may be also obtained
for relatively complex atoms and molecules with
wave functions explicitly containing factors de-
pending on x,;.'°

With this in mind, in a previous paper,'” hence -
forth referred to as I, we proposed for three-body
systems with Coulomb interaction the general ex-
plicitly correlated wave function

‘I’(n)(xxxzxs) = ZA:‘q)i(xxxzxa) ’ (1)
i=1
where
daf(xlxzxs):Fi(a,, Bi)G4(i—1,'}’i), (2)

with F an open-shell wave function,

F(Ot, B) = e"’"l'e"2+ e'ﬂ"l"“"z

=fla, B)+f(8, @), (3)
and G a correlation function,
G(p,y)=xe™™s. (4)

A similar general correlated wave function has
been recently proposed by Somorjai and Power,'®
in connection with the work of Somorjai and co-
workers on the integral-transform method. The
previous work along similar lines is found in Refs.
2-8 of 1.

In I the wave function ¥™ has been applied
in its three “orders” ¥, ¥@) and ¥®) to H~,
e"e*e”, and pup as test systems. All of the ob-
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tained results compared very favorably with the
most accurate calculations. However, the results
for pup were slightly inferior in accuracy to those
for H™ and e"e¢*e”. Clearly, the same analytical
function does not give results of identical accuracy
when applied to one-center and two-center three-
body systems.

It is the main purpose of this paper to analyze
term by term the first terms &,; of the general ex-
pansion ¥ for a number of three-body systems
of rather different configurations to find out which
are the most effective terms for each of them.
Secondly, we wish to construct for mesonic ions
wave functions as accurate as those for H™ and
e"e¢*e” reported in 1.

II. ANALYSIS OF THE WAVE FUNCTION

To find the most effective terms ®; for a given
three-body Coulomb system, we calculate varia-
tionally the ground-state energies,

E,=(&;|H|®,)/(@,;|®), (5)

and a number of other simple expectation values
(see Sec. III) of H™, e~e*e”, pup, dud, tut, and pud
for successive ®;. H entering in (5) is the Hamil -
tonian of an arbitrary three-body Coulomb system,
which is given in I in interparticle coordinates «x,,
x,, and x,, together with other details. As to the
analytical forms of ¢;, what really changes in
successive ®; is the power p in the correlation
function (4). In general, each &, contains three
variational parameters, a;, 8; and y;, to be op-
timized.

Next, to construct accurate wave functions we
take the linear combination

Wy, (x,2,%05) = 5 (0, %,%,) + €)B (x,%,%5) (6)

$7 and ®® being, respectively, the “best” and

the “next-best” single-term wave functions. The
ansatz (6) implicitly states that the best energy
with a two-term wave function is expected to be
obtained by combining the best and next-best sin-
gle-term functions ¢; and &;, and reoptimizing all
parameters entering into ¥;;. This statement must
be understood not as having general validity, but
simply as a result of an analysis of the different
pairs (&;, ;) partly reported in Table II. Al-
though the analysis is far from being complete,
the conclusion concerning our specific wave func-
tions may realistically be considered as definitive.
In a single-term variational calculation, such as
that reported in Table I, if the parameter p were
allowed to be free, almost certainly the best en-
ergy E would occur for noninteger p values (as
partially evidenced by Schrdder?®). Sinceinour cal-
culation p is not allowed to be nonintegral, the

TABLE I. Term-by-term analysis of the general
wave function ¥(" =2,7.1A;®;. E; is the energy obtained
with the wave function ¢;=F;(;,8;)G;(i—1,y;). i—-1=p is
the power of x3 in the correlation function G, m =(my + my)/
2my and my (1=1,2,3) being the particle masses. The
energies are in a.u. for H™ and e"e*e”, and in mesonic
a.u. for the mesonic molecular ions.

i1 -E; me

0.513303 0
0.511 875
0.498 552
0.496 390

0.256 652 1
0.259 395
0.253 464
0.247151

0.461 349 b 8.88
0.486 735
0.491 266
0.490 436
0.487 558

0.485928 b 17.75
0.517 312
525658
528099
.527 989
.526 609
.524 545

pup

dud

494 694 b 26.58
.528 505
.538 504
.542 428
543 660
543499
.542 549

tut

OO0 00O OO0 OoO

(=1

0.473335P 13.31
0.471 771
0.478 832
0.479 699
0.477761

pud

WP, O O WNFR, O Ok WNFO WO WN RO WO

2The mass values (in units of the electron mass) for
the muon, proton, deuteron, and triton are 206.77,
1836.12, 3670.4, and 5496.8, respectively.

b A mesonic a.u. of energy is m“e‘i/h'2 =5626.21 eV.

best combination ¥;; is then that containing the
single terms ¢; and &, with the parameters p;
and p, the closest to the “true” p. Such single-
term wave functions are clearly those we termed
best and next best. On the other hand, the trend
of all other pairs ¥;; may be predicted only very
approximately.

The results of the calculations are shown in
Tables I-III. From Table I, where the results of
the term-by -term analysis of the general expan-
sion (1) are shown, it can be seen that the best
and the next-best wave functions are
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TABLE II. Two-term analysis of the general wave
function ¥(m, E;; is the energy obtained with the wave
function ¥;;=®;+c®;. i—1=p; andj—1=p; are the
powers of x3 in the correlation functions G; and G;. The
energies are defined as in Table I.

(E-1,j-1) —E;;

e"ete” 0,1 0.261 501

0,2 0.260 950

1,2 0.260 332

1,3 0.260 034

0,3 0.257471

2,3 0.256 090

pup 2,3 0.493 511

1,3 0.493 384

1,4 0.493129

1,2 0.492 442

2,4 0.492 217

0,3 0.492170

0,2 0.491 929

3,4 0.491 724

0,4 0.491 205

0,1 0.487 004
H™: %, &, p=0,1,
eee: &, ¢, p=10,
pup: o, ¢, p=2,3,
dud: &, &, p=3,4,
tut: ®, &, p=4,5,

pua: &, &, p=3,2.

If m, and m, are the masses of the particles with
the same sign of the charge, and m, the mass of
the binding particle, it results that the valuesofp
in G(p,y) [Eq. (4)] giving the best single-term
wave function increase regularly with the increase
of the quantity

m=(m,+m,)/2m,.

Looking at Table I it may remarked that for sym-
metric mesonic molecular ions simple single-term
wave functions give surprisingly good results. For
the asymmetric system pud the results are less
satisfactory, but it must be recalled that because
of the absence of symmetry, for pud we use only
the first part, f(a,B)=e **1%2, of the open-shell
wave function F(a, 8). Hence the resulting wave
functions for pud are analytically simpler than

the corresponding ones for the symmetric meson-
ic systems.

Table II displays the energy results calculated
for all possible ¥;;,, combining and reoptimizing
the single-term wave functions reported in Table
I (for e"e*e” and pup only).

Table III reports the energies and the variational

parameters corresponding to the best single-term
and ¥,;(x,x,x,) wave functions for the mesonic mo-
lecular ions. The data concerning H™ and e”e*e”
are not reported here, because they confirm the
results previously reported in I, and in this sense
are not new. In fact, for H" the best single-term
wave function &, coincides with ¥*’, while for
both H™ and e“e*e” the ¥,;(x,x,x,) wave function co-
incides with ¥?’ (for e"e*e” the best single-term
wave function &, does not coincide with ¥™*).

Again, it must be remarked that the two-term
wave functions ¥,; give accurate energy results,
in spite of their simple and compact form. In par-
ticular, for pup the two-term ¥;; is found to be
better than the three-term function ¥®’, In gen-
eral, the energy results compare very favorably
with the most accurate calculations (see Table V
below).

To save computer time, in this analysis we have
confined ourselves to the optimization of only the
two-term wave function (6), ¥,;; it is clear, how-
ever, that further improvement may be obtained
with the next approximation, e.g., with the three-
term configuration

V5= 7 +cOP +de; ", (7)

7B being the third-best single-term wave func-
tion, as found in Table I. That this is the case
can be inferred from the results reported in I,
where for both H™ and e"e*e” the wave functions
¥®) and ¥ coincide with the present ¥;; and ¥, ,,,
respectively. In going from ¥?’ to ¥’ the
ground-state energy passes from -0.261501 to
—0.261721 a.u. for e“e*e”, and from -0.527221 to
—-0.527363 a.u. for H™. Hence it is legitimate to
expect a similar improvement also for the mesonic
molecular ions. However, the ansatz (7) indicates
only a way to proceed. It does not exclude the pos-
sibility that even better three-term wave functions
may be constructed by adding to ¥,; single-term
wave functions &, other than &3® . For pud, ¥,;

is found to improve drastically the poor results
obtained with the single-term wave functions &;
however, the results are still inferior to those

for symmetric mesonic ions (see Table V). This
is an indication that the general wave function (1),
in order to be used with greater success for
asymmetric mesonic ions, needs some modifica-
tions, or the approximations such as ¥¥’, ¥,
¥ or ¢;, ¥,;, and ¥,;, must be built up in a
somewhat different way. This is why in the pres-
ent work we have confined ourselves to pud only.

III. EXPECTATION VALUES AND FINAL COMMENTS

As is customary, we have calculated, together
with the ground-state energies, a number of sim-
ple expectation values useful in applications and
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TABLE IV. (x}) are the expectation values of some powers of the interparticle distances
n=1,2,—1; 7=1,2,3). d is the relative rms displacement, x the diamagnetic susceptibility,
and v, (@=p,d,t) the muon-nucleus overlaps. All quantities are in mesonic a.u.

pup dud tut prd
@3 W34 L ) Yys5 @5 73 @4 Y3
(%)% 2.3962 2.3978 2.1283 2.1353 2.0214 2.0335 2.2483 2.4394
(x) 2.3962 2.3978  2.1283  2.1353 2.0214 2.0335 1.8559 2.1051
{x3) 3.3341 3.3118  2.8604 2.8522 2.6668 2.6708  2.7051 3.1176
(%) 7.8126 7.8296  5.9774  6.0433  5.3092 5.4140  6.1947 7.9255
(%) 7.8126 7.8296 59774 6.0433  5.3092 5.4140  4.3667 5.9649
(%3 12.6896  12.4772  9.0785  9.0242 7.7494 7.8014 8.0666 10.9600
7 0.6656 0.6690  0.7243  0.7272  0.7495 0.7519  0.6046 0.6390
(%Y 0.6656 0.6690  0.7243  0.7272  0.7495 0.7519  0.7669 0.7471
(') 0.3487 0.3509  0.3923  0.3942  0.4117 0.4134  0.4121 0.3667
d 0.3762 0.3709  0.3310  0.3307 0.2994 0.3061  0.3199 0.3572
105xy 11.6152  11.6404 8.8866 8.9847 7.8933  8.0491  7.8510 10.3255
Y 0.5505 0.5805 0.2280 x1072 0.4847
Ya 0.5738  0.6017 0.4669 x1072 0.6335
7 0.5858  0.6110

2 A mesonic a.u. of length is a, = #*/m,€e*=2.55922 107! cm.

in assessing the accuracy of the wave functions.
In particular, for pup, dud, tut, and pud we have
calculated the following:
(a) The expectation values of some powers of the
interparticle distances (x}) (n=1,2,-1; j=1,2,3).
(b) The relative rms displacement

d=[((x3) = @ ))/ o P 172,

which is a measure of the diffuseness of the wave
function.

(c) The diamagnetic susceptibility, which for any
atomic system is given by**

2
x=0.74336 X 10 Y _ (x2).

i=1
(d) The quantity
B, =35t - () = (x5,
coming directly from the virial theorem condition
(V)==-2(T),

V and T being the potential and the kinetic energy
operators of the three-Coulomb-particle Hamil-
tonian appearing in (5). In an exact calculation
—-E, should be equal to the ground-state energy.
The deviation z=E - E, is a measure of the ac-
curacy of minimization of the trial wave function.
(e) The muon-nucleus overlap y,, of importance
in the analysis of the muon capture experiments.
vy is defined as the ratio of the muon density at
the nucleus N in the molecular ion NuN’ (averaged
over the separation between the nuclei N and N’)

to the muon density at the nucleus N in the Npu
atom?2-24;
_ (W6 (X, p)IT)

TN o6&, b

4n ° .
- W J; I‘IJ(OS X35 xg)Fx:; dxs. (8)

In (8) N stands for p, d, and t, X, is the vector
radius of the muon with respect to the nucleus N
and in ¥ substitutes for X, or X,. ¢,(X,y) is the
ground-state normalized wave function of the Npu
mesonic atom. ¥ is now normalized.

(f) The percentage values

A= (E/E,) x 100%,

E, being the best available (in the literature) ener-
gy value of the Coulomb system with which we are
concerned. A is a measure of accuracy of our
energy results.

(g) The best and the worst values of the energy
derivatives with respect to the variational param-
eters, (8E/dq), and (8E/8q),,. These quantities,
which must be zero in an exact variational calcula-
tion, are a measure of the degree of the minimiza-
tion of a given trial wave function, and comple-
ment E_,.

(h) The normalization constant N.

The results concerning the quantities discussed
under points (d), (g), and (h) are reported in Ta-
ble III, while all of the others are found in Tables
IV and V, where they are compared with the per-
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TABLE V. Comparisons with data available from the literature.

(x3) d Y Ve -E Reference

pup 3.3118 0.3709 0.580 506 2776.87 This work
3.3077 0.5733 2782.20 2 24
3.3037 2748.44 26
3.3651 0.3879 2769.78 17
3.291 0.3585 2765.50 20
2.8913 0.3155 2761.272 28

0.654 2769.26 2 27,22
0.568 2781.44 23
2777.60 2 29

dud  2.8522 0.3307 0.601 768 2982.97 This work
0.585 2987.35 23
2.83829 2978.77 26
2.855 0.3278 2971.74 20
2.65225 0.2985 2971.44% 28
2984.122 27
2980.57 2 29

tut 2.6708 0.3061 0.611 049 3069.15 This work
2.655254 3069.57 26
0.595 3072.50 23
2.666 0.2997 3058.81 20

pud  3.1176 0.3572 0.4847 0.6334 2867.77 This work
3.08197 2858.21 26
0.507 0.641 2884.33 23
3.100 0.3462 2867.22 20
2.790 22 0.3056 2859.352 28
2876.19 2 27

@ Values corrected with respect to the original to be consistent with m, =206.77.

tinent literature.

The reported comparisons show that our simple
and compact correlated wave functions give ac-
curate results not only for the energy, but also
for other expectation values. This is true, in par-
ticular, also for muon-nucleus overlaps ¥, which
are not geometrical in nature and hence not strict-
ly related to the energy of the system, as is the
case for the mean distances.

In general, relatively simple combinations of
terms of the wave function ¥‘*’ have proved quite
effective in giving accurate results for three-body
Coulomb systems of very different configurations.
With a two-term wave function we have obtained
energy values quite close to the best values avail-
able in the literature, obtained, as a rule, by
means of very lengthy polynomial expansions (see
Table V).

In particular we have obtained the following en-
ergy results (in parentheses is A, the percentage
value with respect to the best literature value):
-27176.87 eV (99.72%) for pup; —-2982.97 eV
(99.85%) for dud; -3069.15 eV (99.89%) for ¢pu;
and -2867.77 eV (99.43%) for pud.

We have not tested the wave functions ¥ on

the He and He-like atoms, nor on H,*. However,
from the results of I for H™, and from Bonham
and Kohl’s results for He and Li*?® it is easy to
infer that relatively simple correlated wave func-
tions of type ¥ will work for these atoms as
well as they have worked for H". This seems to
be true also for H,* and similar molecular ions,
as is seen from Schréder’s work®® and some of
our preliminary calculations. The results for pud
appear to be slightly less accurate; in particular,
the muon overlaps calculated with the single-term
wave function &, are clearly very poor (see Table
IV). On the contrary, ¥,, shows a drastic im-
provement over the &, results, and gives accu-
rate expectation values (see Table V). Further
improvement is provided by the combination

Vo= P+ cPy+ dP,

which gives for the energy E=-2871.08 eV
(99.54%).

In conclusion, we believe that also for the asym-
metric mesonic molecular ions and other Coulomb
systems not considered here, it is possible to con-
struct simple combinations of terms &; to give
highly accurate results.
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A computer program based on the Klessing-
Polak conjugate gradient algorithm has been
worked out to minimize the energy expression (5),
and it was run on the IBM 370/145 of the Univer-
sity of Palermo Computation Center. The opti-
mization of a single-term wave function took, on
the average, about 2 min of cpu time, while about

20 min were required for two-term wave functions.
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